Dual Band Terahertz Reflective Linear Cross Polarization Converter-Based Biosensor

In this article, a dual-band electromagnetic reflective linear cross polarization converter (RLCPC) for terahertz applications is proposed. The proposed polarization converter consists of a hexagonal split ring-shaped metallic resonator, dielectric material, and conductive ground plane. The overall...

Full description

Saved in:
Bibliographic Details
Published inIEEE sensors journal Vol. 24; no. 5; pp. 6103 - 6110
Main Authors Maurya, Vikram, Singhal, Sarthak
Format Journal Article
LanguageEnglish
Published New York IEEE 01.03.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this article, a dual-band electromagnetic reflective linear cross polarization converter (RLCPC) for terahertz applications is proposed. The proposed polarization converter consists of a hexagonal split ring-shaped metallic resonator, dielectric material, and conductive ground plane. The overall dimensions of the proposed polarization converter unit cell are <inline-formula> <tex-math notation="LaTeX">20\times 20\times 4.2\,\,\mu \text{m} </tex-math></inline-formula>. It has polarization converter ratio (PCR) <inline-formula> <tex-math notation="LaTeX">\geq90 </tex-math></inline-formula>% over a band of 0.0773 and 0.3754 THz centered at 2.912 and 5.905 THz, respectively. The full-width at half-maximum (FWHM) of the two bands are 0.349 and 1.1934 THz. This converts <inline-formula> <tex-math notation="LaTeX">{x} </tex-math></inline-formula>-pol. wave to <inline-formula> <tex-math notation="LaTeX">{y} </tex-math></inline-formula>-pol. and vice versa. It has incident angle (<inline-formula> <tex-math notation="LaTeX">\theta ^{\circ } </tex-math></inline-formula>) stability for <inline-formula> <tex-math notation="LaTeX">\theta \leq35^{\circ } </tex-math></inline-formula>. A good agreement between the computer simulation technology (CST MWS), high-frequency structure simulator (HFSS), and equivalent circuit model (ECM) results was observed. The suitability of the proposed converter for refractive index (RI) sensing, biosensing, and glucose detection application is also analyzed and presented. A minimum and maximum sensitivity of 300 and 700 GHz/RIU respectively are achieved for the proposed RLCPC-based sensor. In the case of cancer, tumor, and glucose detection, the proposed sensor achieves maximum sensitivity of 0.6346, 0.773, and 0.6886 THz/RIU, respectively. The RI of unknown samples is approximated with a %error between 0% and 0.8% subject to the availability of precise sample data. This converter has merits of compact dimensions, single layer geometry, incident angle (<inline-formula> <tex-math notation="LaTeX">\theta ^{\circ } </tex-math></inline-formula>) stability up to 35°, wider FWHM, and high sensitivity over other converters.
AbstractList In this article, a dual-band electromagnetic reflective linear cross polarization converter (RLCPC) for terahertz applications is proposed. The proposed polarization converter consists of a hexagonal split ring-shaped metallic resonator, dielectric material, and conductive ground plane. The overall dimensions of the proposed polarization converter unit cell are <inline-formula> <tex-math notation="LaTeX">20\times 20\times 4.2\,\,\mu \text{m} </tex-math></inline-formula>. It has polarization converter ratio (PCR) <inline-formula> <tex-math notation="LaTeX">\geq90 </tex-math></inline-formula>% over a band of 0.0773 and 0.3754 THz centered at 2.912 and 5.905 THz, respectively. The full-width at half-maximum (FWHM) of the two bands are 0.349 and 1.1934 THz. This converts <inline-formula> <tex-math notation="LaTeX">{x} </tex-math></inline-formula>-pol. wave to <inline-formula> <tex-math notation="LaTeX">{y} </tex-math></inline-formula>-pol. and vice versa. It has incident angle (<inline-formula> <tex-math notation="LaTeX">\theta ^{\circ } </tex-math></inline-formula>) stability for <inline-formula> <tex-math notation="LaTeX">\theta \leq35^{\circ } </tex-math></inline-formula>. A good agreement between the computer simulation technology (CST MWS), high-frequency structure simulator (HFSS), and equivalent circuit model (ECM) results was observed. The suitability of the proposed converter for refractive index (RI) sensing, biosensing, and glucose detection application is also analyzed and presented. A minimum and maximum sensitivity of 300 and 700 GHz/RIU respectively are achieved for the proposed RLCPC-based sensor. In the case of cancer, tumor, and glucose detection, the proposed sensor achieves maximum sensitivity of 0.6346, 0.773, and 0.6886 THz/RIU, respectively. The RI of unknown samples is approximated with a %error between 0% and 0.8% subject to the availability of precise sample data. This converter has merits of compact dimensions, single layer geometry, incident angle (<inline-formula> <tex-math notation="LaTeX">\theta ^{\circ } </tex-math></inline-formula>) stability up to 35°, wider FWHM, and high sensitivity over other converters.
In this article, a dual-band electromagnetic reflective linear cross polarization converter (RLCPC) for terahertz applications is proposed. The proposed polarization converter consists of a hexagonal split ring-shaped metallic resonator, dielectric material, and conductive ground plane. The overall dimensions of the proposed polarization converter unit cell are [Formula Omitted]. It has polarization converter ratio (PCR) [Formula Omitted]% over a band of 0.0773 and 0.3754 THz centered at 2.912 and 5.905 THz, respectively. The full-width at half-maximum (FWHM) of the two bands are 0.349 and 1.1934 THz. This converts [Formula Omitted]-pol. wave to [Formula Omitted]-pol. and vice versa. It has incident angle ([Formula Omitted]) stability for [Formula Omitted]. A good agreement between the computer simulation technology (CST MWS), high-frequency structure simulator (HFSS), and equivalent circuit model (ECM) results was observed. The suitability of the proposed converter for refractive index (RI) sensing, biosensing, and glucose detection application is also analyzed and presented. A minimum and maximum sensitivity of 300 and 700 GHz/RIU respectively are achieved for the proposed RLCPC-based sensor. In the case of cancer, tumor, and glucose detection, the proposed sensor achieves maximum sensitivity of 0.6346, 0.773, and 0.6886 THz/RIU, respectively. The RI of unknown samples is approximated with a %error between 0% and 0.8% subject to the availability of precise sample data. This converter has merits of compact dimensions, single layer geometry, incident angle ([Formula Omitted]) stability up to 35°, wider FWHM, and high sensitivity over other converters.
Author Maurya, Vikram
Singhal, Sarthak
Author_xml – sequence: 1
  givenname: Vikram
  orcidid: 0000-0003-2107-3578
  surname: Maurya
  fullname: Maurya, Vikram
  email: 2021rec9054@mnit.ac.in
  organization: Department of Electronics and Communication Engineering, Malaviya National Institute of Technology, Jaipur, Rajasthan, India
– sequence: 2
  givenname: Sarthak
  orcidid: 0000-0002-1160-6150
  surname: Singhal
  fullname: Singhal, Sarthak
  email: sarthak.ece@mnit.ac.in
  organization: Department of Electronics and Communication Engineering, Malaviya National Institute of Technology, Jaipur, Rajasthan, India
BookMark eNp9kD1PwzAQhi0EEm3hByAxRGJOOdtxHI-0lC9VgEqR2CLHuQpXIS52Won-ehLaATEw3Q3vc6f36ZPD2tVIyBmFIaWgLh9eJo9DBiwZci4g5fKA9KgQWUxlkh12O4c44fLtmPRDWAJQJYXskdn1WlfRSNdlNEev39E322iGiwpNYzcYTW2N2kdj70KInl2lvd3qxro6Grt606bRxyMdsIxG1gWsg_Mn5Gihq4Cn-zkgrzeT-fgunj7d3o-vprFhKmlinRkDasFSU6ZCKCh5AUqVVEOhgEKpABhVpijKjIqsMKxAmmoBCKmRpSj4gFzs7q68-1xjaPKlW_u6fZkzxZmQAiRrU3KXMl0Fj4vc2OanQeO1rXIKeScw7wTmncB8L7Al6R9y5e2H9l__Muc7xiLirzxXiieKfwM8jH4N
CODEN ISJEAZ
CitedBy_id crossref_primary_10_1016_j_sna_2024_115614
crossref_primary_10_1016_j_mseb_2025_118215
crossref_primary_10_1109_JSEN_2024_3440927
crossref_primary_10_1016_j_materresbull_2024_113292
crossref_primary_10_1016_j_matchemphys_2024_129846
crossref_primary_10_1016_j_solmat_2024_113292
Cites_doi 10.1007/s11082-021-02898-9
10.1007/s10762-022-00879-x
10.3390/nano12183189
10.3390/mi13091547
10.1515/nanoph-2021-0520
10.1016/j.optcom.2022.129171
10.1109/TPS.2023.3314536
10.1016/j.ijleo.2021.166300
10.1016/j.aeue.2021.153884
10.1186/s43074-023-00108-1
10.1016/j.rinp.2022.105571
10.3390/s21238151
10.1016/j.optmat.2021.111129
10.1109/JSEN.2023.3268167
10.1016/j.jallcom.2022.166617
10.1007/s11468-023-01943-5
10.1109/JSEN.2023.3239669
10.1109/JSEN.2021.3087953
10.1109/JPHOT.2022.3203509
10.1002/adom.202100024
10.1016/j.optcom.2020.126480
10.1109/TAP.2021.3060087
10.1016/j.aeue.2023.154826
10.1016/j.snb.2021.131337
10.1016/j.optcom.2022.129042
10.1016/j.optcom.2023.129372
10.1016/j.pdpdt.2021.102192
10.1038/s41598-020-75081-x
10.1109/JPHOT.2016.2624559
10.1016/j.rinp.2020.103358
10.1016/j.optcom.2019.124901
10.1016/j.optcom.2020.125850
10.1109/tnb.2022.3217077
10.1109/JSTQE.2021.3058163
10.1016/j.physe.2022.115527
10.1088/2053-1591/ac0369
10.1364/OME.400322
10.1016/j.optcom.2023.129544
10.1109/JSEN.2023.3311018
10.1016/j.optcom.2021.127895
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
7U5
8FD
L7M
DOI 10.1109/JSEN.2024.3350637
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE All-Society Periodicals Package (ASPP) 1998-Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList
Solid State and Superconductivity Abstracts
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Engineering
EISSN 1558-1748
EndPage 6110
ExternalDocumentID 10_1109_JSEN_2024_3350637
10399349
Genre orig-research
GroupedDBID -~X
0R~
29I
4.4
5GY
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AGQYO
AHBIQ
AJQPL
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
EBS
F5P
HZ~
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
TWZ
AAYXX
CITATION
7SP
7U5
8FD
L7M
ID FETCH-LOGICAL-c294t-a8cc09f26cd65590d3b099d1a0b9010d900219cbbd8158bc2be16a50e06c7d5b3
IEDL.DBID RIE
ISSN 1530-437X
IngestDate Mon Jun 30 08:12:29 EDT 2025
Thu Apr 24 23:08:49 EDT 2025
Tue Jul 01 04:27:25 EDT 2025
Wed Aug 27 02:08:38 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c294t-a8cc09f26cd65590d3b099d1a0b9010d900219cbbd8158bc2be16a50e06c7d5b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-2107-3578
0000-0002-1160-6150
PQID 2932575072
PQPubID 75733
PageCount 8
ParticipantIDs proquest_journals_2932575072
crossref_citationtrail_10_1109_JSEN_2024_3350637
crossref_primary_10_1109_JSEN_2024_3350637
ieee_primary_10399349
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-03-01
PublicationDateYYYYMMDD 2024-03-01
PublicationDate_xml – month: 03
  year: 2024
  text: 2024-03-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE sensors journal
PublicationTitleAbbrev JSEN
PublicationYear 2024
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
ref12
ref34
ref15
ref37
ref14
ref36
ref31
ref30
ref11
ref33
ref10
ref32
ref2
ref1
ref17
ref39
ref16
ref38
ref19
ref24
ref23
ref26
ref25
ref20
ref41
ref22
ref21
ref28
ref27
ref29
ref8
ref7
ref9
Chaudhuri (ref18) 2023
ref4
ref3
ref6
ref5
ref40
References_xml – ident: ref34
  doi: 10.1007/s11082-021-02898-9
– ident: ref1
  doi: 10.1007/s10762-022-00879-x
– ident: ref6
  doi: 10.3390/nano12183189
– ident: ref30
  doi: 10.3390/mi13091547
– ident: ref15
  doi: 10.1515/nanoph-2021-0520
– year: 2023
  ident: ref18
  article-title: Design of a dual-band metasurface cross-polarization converter for cancer detection in the terahertz band
  publication-title: IEEE Sensors J.
– ident: ref29
  doi: 10.1016/j.optcom.2022.129171
– ident: ref37
  doi: 10.1109/TPS.2023.3314536
– ident: ref12
  doi: 10.1016/j.ijleo.2021.166300
– ident: ref25
  doi: 10.1016/j.aeue.2021.153884
– ident: ref20
  doi: 10.1186/s43074-023-00108-1
– ident: ref28
  doi: 10.1016/j.rinp.2022.105571
– ident: ref41
  doi: 10.3390/s21238151
– ident: ref11
  doi: 10.1016/j.optmat.2021.111129
– ident: ref21
  doi: 10.1109/JSEN.2023.3268167
– ident: ref13
  doi: 10.1016/j.jallcom.2022.166617
– ident: ref32
  doi: 10.1007/s11468-023-01943-5
– ident: ref38
  doi: 10.1109/JSEN.2023.3239669
– ident: ref17
  doi: 10.1109/JSEN.2021.3087953
– ident: ref24
  doi: 10.1109/JPHOT.2022.3203509
– ident: ref19
  doi: 10.1002/adom.202100024
– ident: ref4
  doi: 10.1016/j.optcom.2020.126480
– ident: ref2
  doi: 10.1109/TAP.2021.3060087
– ident: ref26
  doi: 10.1016/j.aeue.2023.154826
– ident: ref39
  doi: 10.1016/j.snb.2021.131337
– ident: ref8
  doi: 10.1016/j.optcom.2022.129042
– ident: ref10
  doi: 10.1016/j.optcom.2023.129372
– ident: ref35
  doi: 10.1016/j.pdpdt.2021.102192
– ident: ref23
  doi: 10.1038/s41598-020-75081-x
– ident: ref22
  doi: 10.1109/JPHOT.2016.2624559
– ident: ref33
  doi: 10.1016/j.rinp.2020.103358
– ident: ref3
  doi: 10.1016/j.optcom.2019.124901
– ident: ref40
  doi: 10.1016/j.optcom.2020.125850
– ident: ref36
  doi: 10.1109/tnb.2022.3217077
– ident: ref16
  doi: 10.1109/JSTQE.2021.3058163
– ident: ref14
  doi: 10.1016/j.physe.2022.115527
– ident: ref7
  doi: 10.1088/2053-1591/ac0369
– ident: ref31
  doi: 10.1364/OME.400322
– ident: ref9
  doi: 10.1016/j.optcom.2023.129544
– ident: ref27
  doi: 10.1109/JSEN.2023.3311018
– ident: ref5
  doi: 10.1016/j.optcom.2021.127895
SSID ssj0019757
Score 2.4757829
Snippet In this article, a dual-band electromagnetic reflective linear cross polarization converter (RLCPC) for terahertz applications is proposed. The proposed...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 6103
SubjectTerms Biosensor
Biosensors
Computer simulation
Cross polarization
equivalent circuit model (ECM)
Equivalent circuits
Glucose
glucose detector
Ground plane
linear polarization converter
Polarization
Reflection
Reflection coefficient
refractive index (RI) sensor
Refractivity
Resonant frequency
Sensitivity
Sensors
split ring resonator
Stability
Terahertz frequencies
terahertz frequency
Unit cell
Title Dual Band Terahertz Reflective Linear Cross Polarization Converter-Based Biosensor
URI https://ieeexplore.ieee.org/document/10399349
https://www.proquest.com/docview/2932575072
Volume 24
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1JT8JAFH4RL-rBBTHiljl4MilMO9OWOQpCCInEICTcms7SaDRgsBz01_umHYhLNN7m8KaZ9s1bvr4N4JLpNJNa-l6oEOlwqn1Pxtp4aEtxTbniwtY73w6j_oQPpuHUFasXtTDGmCL5zDTssojl67la2l9lTRu2FIyLClQQuZXFWuuQgYiLtp4owdTjLJ66EKZPRXNw3x0iFAx4g7EQbXL8xQgVU1V-qOLCvvT2YLg6WZlW8tRY5rKh3r81bfz30fdh13ma5Lq8GgewYWZV2PnUf7AKW24E-sPbIYxulkjdTmeajA1qILPI38nIZM-lRiQIWlEoSMe-ELmzgNhVcJKOTVy3maFeG02iJu3H-SuC4_miBpNed9zpe27ggqcCwXMvbSlFRRZESkeINKhmEh1I7adU2iwOLaxHIJSUuuWHLakCafwoDamhkYp1KNkRbM7mM3MMRKoWkyrzM6ZSrrmWKUU_HmljO4mC-3WgKw4kynUjt0MxnpMClVCRWKYllmmJY1odrtZbXspWHH8R1ywTPhGW378OZys-J05aXxN0eVBz4dmCk1-2ncK2fXqZfHYGm_liac7RG8nlRXELPwDEWNqT
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV05T8MwFH7iGICBG1FOD0xIKU7sJPVIC6iUUiEoUrcoPiIQVYvadKC_nufERRwCsXl4Vpw8v-PLuwBOmE4zqaXvhQqRDqfa92SsjYe2FNeUKy5svfNtJ2o-8lYv7Lli9aIWxhhTJJ-Zql0WsXw9VBP7q-zMhi0F42IeFtHwh0FZrvURNBBx0dgTZZh6nMU9F8T0qThrPVx2EAwGvMpYiFY5_mKGirkqP5RxYWGu1qAzO1uZWPJSneSyqqbf2jb--_DrsOp8TXJeXo4NmDODTVj51IFwE5bcEPSnty24v5ggdT0daNI1qIPMKJ-Se5P1S51IELaiWJCGfSFyZyGxq-EkDZu6bnNDvToaRU3qz8MxwuPhaBsery67jabnRi54KhA899KaUlRkQaR0hFiDaibRhdR-SqXN49DC-gRCSalrfliTKpDGj9KQGhqpWIeS7cDCYDgwu0CkqjGpMj9jKuWaa5lS9OSRNrazKLhfATrjQKJcP3I7FqOfFLiEisQyLbFMSxzTKnD6seW1bMbxF_G2ZcInwvL7V-BgxufEyes4QacHdReeLdj7ZdsxLDW7t-2kfd252Ydl-6QyFe0AFvLRxByib5LLo-JGvgNYp93d
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dual+Band+Terahertz+Reflective+Linear+Cross+Polarization+Converter-Based+Biosensor&rft.jtitle=IEEE+sensors+journal&rft.au=Maurya%2C+Vikram&rft.au=Singhal%2C+Sarthak&rft.date=2024-03-01&rft.issn=1530-437X&rft.eissn=1558-1748&rft.volume=24&rft.issue=5&rft.spage=6103&rft.epage=6110&rft_id=info:doi/10.1109%2FJSEN.2024.3350637&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_JSEN_2024_3350637
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-437X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-437X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-437X&client=summon