Dual Band Terahertz Reflective Linear Cross Polarization Converter-Based Biosensor
In this article, a dual-band electromagnetic reflective linear cross polarization converter (RLCPC) for terahertz applications is proposed. The proposed polarization converter consists of a hexagonal split ring-shaped metallic resonator, dielectric material, and conductive ground plane. The overall...
Saved in:
Published in | IEEE sensors journal Vol. 24; no. 5; pp. 6103 - 6110 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.03.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In this article, a dual-band electromagnetic reflective linear cross polarization converter (RLCPC) for terahertz applications is proposed. The proposed polarization converter consists of a hexagonal split ring-shaped metallic resonator, dielectric material, and conductive ground plane. The overall dimensions of the proposed polarization converter unit cell are <inline-formula> <tex-math notation="LaTeX">20\times 20\times 4.2\,\,\mu \text{m} </tex-math></inline-formula>. It has polarization converter ratio (PCR) <inline-formula> <tex-math notation="LaTeX">\geq90 </tex-math></inline-formula>% over a band of 0.0773 and 0.3754 THz centered at 2.912 and 5.905 THz, respectively. The full-width at half-maximum (FWHM) of the two bands are 0.349 and 1.1934 THz. This converts <inline-formula> <tex-math notation="LaTeX">{x} </tex-math></inline-formula>-pol. wave to <inline-formula> <tex-math notation="LaTeX">{y} </tex-math></inline-formula>-pol. and vice versa. It has incident angle (<inline-formula> <tex-math notation="LaTeX">\theta ^{\circ } </tex-math></inline-formula>) stability for <inline-formula> <tex-math notation="LaTeX">\theta \leq35^{\circ } </tex-math></inline-formula>. A good agreement between the computer simulation technology (CST MWS), high-frequency structure simulator (HFSS), and equivalent circuit model (ECM) results was observed. The suitability of the proposed converter for refractive index (RI) sensing, biosensing, and glucose detection application is also analyzed and presented. A minimum and maximum sensitivity of 300 and 700 GHz/RIU respectively are achieved for the proposed RLCPC-based sensor. In the case of cancer, tumor, and glucose detection, the proposed sensor achieves maximum sensitivity of 0.6346, 0.773, and 0.6886 THz/RIU, respectively. The RI of unknown samples is approximated with a %error between 0% and 0.8% subject to the availability of precise sample data. This converter has merits of compact dimensions, single layer geometry, incident angle (<inline-formula> <tex-math notation="LaTeX">\theta ^{\circ } </tex-math></inline-formula>) stability up to 35°, wider FWHM, and high sensitivity over other converters. |
---|---|
AbstractList | In this article, a dual-band electromagnetic reflective linear cross polarization converter (RLCPC) for terahertz applications is proposed. The proposed polarization converter consists of a hexagonal split ring-shaped metallic resonator, dielectric material, and conductive ground plane. The overall dimensions of the proposed polarization converter unit cell are <inline-formula> <tex-math notation="LaTeX">20\times 20\times 4.2\,\,\mu \text{m} </tex-math></inline-formula>. It has polarization converter ratio (PCR) <inline-formula> <tex-math notation="LaTeX">\geq90 </tex-math></inline-formula>% over a band of 0.0773 and 0.3754 THz centered at 2.912 and 5.905 THz, respectively. The full-width at half-maximum (FWHM) of the two bands are 0.349 and 1.1934 THz. This converts <inline-formula> <tex-math notation="LaTeX">{x} </tex-math></inline-formula>-pol. wave to <inline-formula> <tex-math notation="LaTeX">{y} </tex-math></inline-formula>-pol. and vice versa. It has incident angle (<inline-formula> <tex-math notation="LaTeX">\theta ^{\circ } </tex-math></inline-formula>) stability for <inline-formula> <tex-math notation="LaTeX">\theta \leq35^{\circ } </tex-math></inline-formula>. A good agreement between the computer simulation technology (CST MWS), high-frequency structure simulator (HFSS), and equivalent circuit model (ECM) results was observed. The suitability of the proposed converter for refractive index (RI) sensing, biosensing, and glucose detection application is also analyzed and presented. A minimum and maximum sensitivity of 300 and 700 GHz/RIU respectively are achieved for the proposed RLCPC-based sensor. In the case of cancer, tumor, and glucose detection, the proposed sensor achieves maximum sensitivity of 0.6346, 0.773, and 0.6886 THz/RIU, respectively. The RI of unknown samples is approximated with a %error between 0% and 0.8% subject to the availability of precise sample data. This converter has merits of compact dimensions, single layer geometry, incident angle (<inline-formula> <tex-math notation="LaTeX">\theta ^{\circ } </tex-math></inline-formula>) stability up to 35°, wider FWHM, and high sensitivity over other converters. In this article, a dual-band electromagnetic reflective linear cross polarization converter (RLCPC) for terahertz applications is proposed. The proposed polarization converter consists of a hexagonal split ring-shaped metallic resonator, dielectric material, and conductive ground plane. The overall dimensions of the proposed polarization converter unit cell are [Formula Omitted]. It has polarization converter ratio (PCR) [Formula Omitted]% over a band of 0.0773 and 0.3754 THz centered at 2.912 and 5.905 THz, respectively. The full-width at half-maximum (FWHM) of the two bands are 0.349 and 1.1934 THz. This converts [Formula Omitted]-pol. wave to [Formula Omitted]-pol. and vice versa. It has incident angle ([Formula Omitted]) stability for [Formula Omitted]. A good agreement between the computer simulation technology (CST MWS), high-frequency structure simulator (HFSS), and equivalent circuit model (ECM) results was observed. The suitability of the proposed converter for refractive index (RI) sensing, biosensing, and glucose detection application is also analyzed and presented. A minimum and maximum sensitivity of 300 and 700 GHz/RIU respectively are achieved for the proposed RLCPC-based sensor. In the case of cancer, tumor, and glucose detection, the proposed sensor achieves maximum sensitivity of 0.6346, 0.773, and 0.6886 THz/RIU, respectively. The RI of unknown samples is approximated with a %error between 0% and 0.8% subject to the availability of precise sample data. This converter has merits of compact dimensions, single layer geometry, incident angle ([Formula Omitted]) stability up to 35°, wider FWHM, and high sensitivity over other converters. |
Author | Maurya, Vikram Singhal, Sarthak |
Author_xml | – sequence: 1 givenname: Vikram orcidid: 0000-0003-2107-3578 surname: Maurya fullname: Maurya, Vikram email: 2021rec9054@mnit.ac.in organization: Department of Electronics and Communication Engineering, Malaviya National Institute of Technology, Jaipur, Rajasthan, India – sequence: 2 givenname: Sarthak orcidid: 0000-0002-1160-6150 surname: Singhal fullname: Singhal, Sarthak email: sarthak.ece@mnit.ac.in organization: Department of Electronics and Communication Engineering, Malaviya National Institute of Technology, Jaipur, Rajasthan, India |
BookMark | eNp9kD1PwzAQhi0EEm3hByAxRGJOOdtxHI-0lC9VgEqR2CLHuQpXIS52Won-ehLaATEw3Q3vc6f36ZPD2tVIyBmFIaWgLh9eJo9DBiwZci4g5fKA9KgQWUxlkh12O4c44fLtmPRDWAJQJYXskdn1WlfRSNdlNEev39E322iGiwpNYzcYTW2N2kdj70KInl2lvd3qxro6Grt606bRxyMdsIxG1gWsg_Mn5Gihq4Cn-zkgrzeT-fgunj7d3o-vprFhKmlinRkDasFSU6ZCKCh5AUqVVEOhgEKpABhVpijKjIqsMKxAmmoBCKmRpSj4gFzs7q68-1xjaPKlW_u6fZkzxZmQAiRrU3KXMl0Fj4vc2OanQeO1rXIKeScw7wTmncB8L7Al6R9y5e2H9l__Muc7xiLirzxXiieKfwM8jH4N |
CODEN | ISJEAZ |
CitedBy_id | crossref_primary_10_1016_j_sna_2024_115614 crossref_primary_10_1016_j_mseb_2025_118215 crossref_primary_10_1109_JSEN_2024_3440927 crossref_primary_10_1016_j_materresbull_2024_113292 crossref_primary_10_1016_j_matchemphys_2024_129846 crossref_primary_10_1016_j_solmat_2024_113292 |
Cites_doi | 10.1007/s11082-021-02898-9 10.1007/s10762-022-00879-x 10.3390/nano12183189 10.3390/mi13091547 10.1515/nanoph-2021-0520 10.1016/j.optcom.2022.129171 10.1109/TPS.2023.3314536 10.1016/j.ijleo.2021.166300 10.1016/j.aeue.2021.153884 10.1186/s43074-023-00108-1 10.1016/j.rinp.2022.105571 10.3390/s21238151 10.1016/j.optmat.2021.111129 10.1109/JSEN.2023.3268167 10.1016/j.jallcom.2022.166617 10.1007/s11468-023-01943-5 10.1109/JSEN.2023.3239669 10.1109/JSEN.2021.3087953 10.1109/JPHOT.2022.3203509 10.1002/adom.202100024 10.1016/j.optcom.2020.126480 10.1109/TAP.2021.3060087 10.1016/j.aeue.2023.154826 10.1016/j.snb.2021.131337 10.1016/j.optcom.2022.129042 10.1016/j.optcom.2023.129372 10.1016/j.pdpdt.2021.102192 10.1038/s41598-020-75081-x 10.1109/JPHOT.2016.2624559 10.1016/j.rinp.2020.103358 10.1016/j.optcom.2019.124901 10.1016/j.optcom.2020.125850 10.1109/tnb.2022.3217077 10.1109/JSTQE.2021.3058163 10.1016/j.physe.2022.115527 10.1088/2053-1591/ac0369 10.1364/OME.400322 10.1016/j.optcom.2023.129544 10.1109/JSEN.2023.3311018 10.1016/j.optcom.2021.127895 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
DBID | 97E RIA RIE AAYXX CITATION 7SP 7U5 8FD L7M |
DOI | 10.1109/JSEN.2024.3350637 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005-present IEEE All-Society Periodicals Package (ASPP) 1998-Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
DatabaseTitleList | Solid State and Superconductivity Abstracts |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography Engineering |
EISSN | 1558-1748 |
EndPage | 6110 |
ExternalDocumentID | 10_1109_JSEN_2024_3350637 10399349 |
Genre | orig-research |
GroupedDBID | -~X 0R~ 29I 4.4 5GY 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AGQYO AHBIQ AJQPL AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 EBS F5P HZ~ IFIPE IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS TWZ AAYXX CITATION 7SP 7U5 8FD L7M |
ID | FETCH-LOGICAL-c294t-a8cc09f26cd65590d3b099d1a0b9010d900219cbbd8158bc2be16a50e06c7d5b3 |
IEDL.DBID | RIE |
ISSN | 1530-437X |
IngestDate | Mon Jun 30 08:12:29 EDT 2025 Thu Apr 24 23:08:49 EDT 2025 Tue Jul 01 04:27:25 EDT 2025 Wed Aug 27 02:08:38 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c294t-a8cc09f26cd65590d3b099d1a0b9010d900219cbbd8158bc2be16a50e06c7d5b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-2107-3578 0000-0002-1160-6150 |
PQID | 2932575072 |
PQPubID | 75733 |
PageCount | 8 |
ParticipantIDs | proquest_journals_2932575072 crossref_citationtrail_10_1109_JSEN_2024_3350637 crossref_primary_10_1109_JSEN_2024_3350637 ieee_primary_10399349 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-03-01 |
PublicationDateYYYYMMDD | 2024-03-01 |
PublicationDate_xml | – month: 03 year: 2024 text: 2024-03-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE sensors journal |
PublicationTitleAbbrev | JSEN |
PublicationYear | 2024 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref35 ref12 ref34 ref15 ref37 ref14 ref36 ref31 ref30 ref11 ref33 ref10 ref32 ref2 ref1 ref17 ref39 ref16 ref38 ref19 ref24 ref23 ref26 ref25 ref20 ref41 ref22 ref21 ref28 ref27 ref29 ref8 ref7 ref9 Chaudhuri (ref18) 2023 ref4 ref3 ref6 ref5 ref40 |
References_xml | – ident: ref34 doi: 10.1007/s11082-021-02898-9 – ident: ref1 doi: 10.1007/s10762-022-00879-x – ident: ref6 doi: 10.3390/nano12183189 – ident: ref30 doi: 10.3390/mi13091547 – ident: ref15 doi: 10.1515/nanoph-2021-0520 – year: 2023 ident: ref18 article-title: Design of a dual-band metasurface cross-polarization converter for cancer detection in the terahertz band publication-title: IEEE Sensors J. – ident: ref29 doi: 10.1016/j.optcom.2022.129171 – ident: ref37 doi: 10.1109/TPS.2023.3314536 – ident: ref12 doi: 10.1016/j.ijleo.2021.166300 – ident: ref25 doi: 10.1016/j.aeue.2021.153884 – ident: ref20 doi: 10.1186/s43074-023-00108-1 – ident: ref28 doi: 10.1016/j.rinp.2022.105571 – ident: ref41 doi: 10.3390/s21238151 – ident: ref11 doi: 10.1016/j.optmat.2021.111129 – ident: ref21 doi: 10.1109/JSEN.2023.3268167 – ident: ref13 doi: 10.1016/j.jallcom.2022.166617 – ident: ref32 doi: 10.1007/s11468-023-01943-5 – ident: ref38 doi: 10.1109/JSEN.2023.3239669 – ident: ref17 doi: 10.1109/JSEN.2021.3087953 – ident: ref24 doi: 10.1109/JPHOT.2022.3203509 – ident: ref19 doi: 10.1002/adom.202100024 – ident: ref4 doi: 10.1016/j.optcom.2020.126480 – ident: ref2 doi: 10.1109/TAP.2021.3060087 – ident: ref26 doi: 10.1016/j.aeue.2023.154826 – ident: ref39 doi: 10.1016/j.snb.2021.131337 – ident: ref8 doi: 10.1016/j.optcom.2022.129042 – ident: ref10 doi: 10.1016/j.optcom.2023.129372 – ident: ref35 doi: 10.1016/j.pdpdt.2021.102192 – ident: ref23 doi: 10.1038/s41598-020-75081-x – ident: ref22 doi: 10.1109/JPHOT.2016.2624559 – ident: ref33 doi: 10.1016/j.rinp.2020.103358 – ident: ref3 doi: 10.1016/j.optcom.2019.124901 – ident: ref40 doi: 10.1016/j.optcom.2020.125850 – ident: ref36 doi: 10.1109/tnb.2022.3217077 – ident: ref16 doi: 10.1109/JSTQE.2021.3058163 – ident: ref14 doi: 10.1016/j.physe.2022.115527 – ident: ref7 doi: 10.1088/2053-1591/ac0369 – ident: ref31 doi: 10.1364/OME.400322 – ident: ref9 doi: 10.1016/j.optcom.2023.129544 – ident: ref27 doi: 10.1109/JSEN.2023.3311018 – ident: ref5 doi: 10.1016/j.optcom.2021.127895 |
SSID | ssj0019757 |
Score | 2.4757829 |
Snippet | In this article, a dual-band electromagnetic reflective linear cross polarization converter (RLCPC) for terahertz applications is proposed. The proposed... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 6103 |
SubjectTerms | Biosensor Biosensors Computer simulation Cross polarization equivalent circuit model (ECM) Equivalent circuits Glucose glucose detector Ground plane linear polarization converter Polarization Reflection Reflection coefficient refractive index (RI) sensor Refractivity Resonant frequency Sensitivity Sensors split ring resonator Stability Terahertz frequencies terahertz frequency Unit cell |
Title | Dual Band Terahertz Reflective Linear Cross Polarization Converter-Based Biosensor |
URI | https://ieeexplore.ieee.org/document/10399349 https://www.proquest.com/docview/2932575072 |
Volume | 24 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1JT8JAFH4RL-rBBTHiljl4MilMO9OWOQpCCInEICTcms7SaDRgsBz01_umHYhLNN7m8KaZ9s1bvr4N4JLpNJNa-l6oEOlwqn1Pxtp4aEtxTbniwtY73w6j_oQPpuHUFasXtTDGmCL5zDTssojl67la2l9lTRu2FIyLClQQuZXFWuuQgYiLtp4owdTjLJ66EKZPRXNw3x0iFAx4g7EQbXL8xQgVU1V-qOLCvvT2YLg6WZlW8tRY5rKh3r81bfz30fdh13ma5Lq8GgewYWZV2PnUf7AKW24E-sPbIYxulkjdTmeajA1qILPI38nIZM-lRiQIWlEoSMe-ELmzgNhVcJKOTVy3maFeG02iJu3H-SuC4_miBpNed9zpe27ggqcCwXMvbSlFRRZESkeINKhmEh1I7adU2iwOLaxHIJSUuuWHLakCafwoDamhkYp1KNkRbM7mM3MMRKoWkyrzM6ZSrrmWKUU_HmljO4mC-3WgKw4kynUjt0MxnpMClVCRWKYllmmJY1odrtZbXspWHH8R1ywTPhGW378OZys-J05aXxN0eVBz4dmCk1-2ncK2fXqZfHYGm_liac7RG8nlRXELPwDEWNqT |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV05T8MwFH7iGICBG1FOD0xIKU7sJPVIC6iUUiEoUrcoPiIQVYvadKC_nufERRwCsXl4Vpw8v-PLuwBOmE4zqaXvhQqRDqfa92SsjYe2FNeUKy5svfNtJ2o-8lYv7Lli9aIWxhhTJJ-Zql0WsXw9VBP7q-zMhi0F42IeFtHwh0FZrvURNBBx0dgTZZh6nMU9F8T0qThrPVx2EAwGvMpYiFY5_mKGirkqP5RxYWGu1qAzO1uZWPJSneSyqqbf2jb--_DrsOp8TXJeXo4NmDODTVj51IFwE5bcEPSnty24v5ggdT0daNI1qIPMKJ-Se5P1S51IELaiWJCGfSFyZyGxq-EkDZu6bnNDvToaRU3qz8MxwuPhaBsery67jabnRi54KhA899KaUlRkQaR0hFiDaibRhdR-SqXN49DC-gRCSalrfliTKpDGj9KQGhqpWIeS7cDCYDgwu0CkqjGpMj9jKuWaa5lS9OSRNrazKLhfATrjQKJcP3I7FqOfFLiEisQyLbFMSxzTKnD6seW1bMbxF_G2ZcInwvL7V-BgxufEyes4QacHdReeLdj7ZdsxLDW7t-2kfd252Ydl-6QyFe0AFvLRxByib5LLo-JGvgNYp93d |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dual+Band+Terahertz+Reflective+Linear+Cross+Polarization+Converter-Based+Biosensor&rft.jtitle=IEEE+sensors+journal&rft.au=Maurya%2C+Vikram&rft.au=Singhal%2C+Sarthak&rft.date=2024-03-01&rft.issn=1530-437X&rft.eissn=1558-1748&rft.volume=24&rft.issue=5&rft.spage=6103&rft.epage=6110&rft_id=info:doi/10.1109%2FJSEN.2024.3350637&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_JSEN_2024_3350637 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-437X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-437X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-437X&client=summon |