COLTR: Semi-supervised Learning to Rank with Co-training and Over-parameterization for Web Search
While learning to rank (LTR) has been widely used in web search to prioritize most relevant webpages among the retrieved contents subject to the input queries, the traditional LTR models fail to deliver decent performance due to two main reasons: 1) the lack of well-annotated query-webpage pairs wit...
Saved in:
Published in | IEEE transactions on knowledge and data engineering Vol. 35; no. 12; pp. 1 - 14 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.12.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | While learning to rank (LTR) has been widely used in web search to prioritize most relevant webpages among the retrieved contents subject to the input queries, the traditional LTR models fail to deliver decent performance due to two main reasons: 1) the lack of well-annotated query-webpage pairs with ranking scores to cover search queries of various popularity, and 2) ill-trained models based on a limited number of training samples with poor generalization performance. To improve the performance of LTR models, tremendous efforts have been done from above two aspects, such as enlarging training sets with pseudo-labels of ranking scores by self-training, or refining the features used for LTR through feature extraction and dimension reduction. Though LTR performance has been marginally increased, we still believe these methods could be further improved in the newly-fashioned "interpolating regime". Specifically, instead of lowering the number of features used for LTR models, our work proposes to transform original data with random Fourier feature, so as to over-parameterize the downstream LTR models (e.g., GBRank or LightGBM) with features in ultra-high dimensionality and achieve superb generalization performance. Furthermore, rather than self-training with pseudo-labels produced by the same LTR model in a "self-tuned" fashion, the proposed method incorporates the diversity of prediction results between the listwise and pointwise LTR models while co-training both models with a cyclic labeling-prediction pipeline in a "ping-pong" manner. We deploy the proposed C o-trained and O ver-parameterized LTR system COLTR at Baidu search and evaluate COLTR with a large number of baseline methods. The results show that COLTR could achieve <inline-formula><tex-math notation="LaTeX">\Delta NDCG_{4}</tex-math></inline-formula>=3.64%<inline-formula><tex-math notation="LaTeX">\sim</tex-math></inline-formula>4.92%, compared to baselines, under various ratios of labeled samples. We also conduct a 7-day A/B Test using the realistic web traffics of Baidu Search, where we can still observe significant performance improvement around <inline-formula><tex-math notation="LaTeX">\Delta NDCG_{4}</tex-math></inline-formula>=0.17%<inline-formula><tex-math notation="LaTeX">\sim</tex-math></inline-formula>0.92% in real-world applications. COLTR performs consistently both in online and offline experiments. |
---|---|
AbstractList | While learning to rank (LTR) has been widely used in web search to prioritize most relevant webpages among the retrieved contents subject to the input queries, the traditional LTR models fail to deliver decent performance due to two main reasons: 1) the lack of well-annotated query-webpage pairs with ranking scores to cover search queries of various popularity, and 2) ill-trained models based on a limited number of training samples with poor generalization performance. To improve the performance of LTR models, tremendous efforts have been done from above two aspects, such as enlarging training sets with pseudo-labels of ranking scores by self-training, or refining the features used for LTR through feature extraction and dimension reduction. Though LTR performance has been marginally increased, we still believe these methods could be further improved in the newly-fashioned “interpolating regime”. Specifically, instead of lowering the number of features used for LTR models, our work proposes to transform original data with random Fourier feature, so as to over-parameterize the downstream LTR models (e.g., GBRank or LightGBM) with features in ultra-high dimensionality and achieve superb generalization performance. Furthermore, rather than self-training with pseudo-labels produced by the same LTR model in a “self-tuned” fashion, the proposed method incorporates the diversity of prediction results between the listwise and pointwise LTR models while co-training both models with a cyclic labeling-prediction pipeline in a “ping-pong” manner. We deploy the proposed C o-trained and O ver-parameterized LTR system COLTR at Baidu search and evaluate COLTR with a large number of baseline methods. The results show that COLTR could achieve [Formula Omitted] = 3.64%[Formula Omitted]4.92%, compared to baselines, under various ratios of labeled samples. We also conduct a 7-day A/B Test using the realistic web traffics of Baidu Search, where we can still observe significant performance improvement around [Formula Omitted] = 0.17%[Formula Omitted]0.92% in real-world applications. COLTR performs consistently both in online and offline experiments. While learning to rank (LTR) has been widely used in web search to prioritize most relevant webpages among the retrieved contents subject to the input queries, the traditional LTR models fail to deliver decent performance due to two main reasons: 1) the lack of well-annotated query-webpage pairs with ranking scores to cover search queries of various popularity, and 2) ill-trained models based on a limited number of training samples with poor generalization performance. To improve the performance of LTR models, tremendous efforts have been done from above two aspects, such as enlarging training sets with pseudo-labels of ranking scores by self-training, or refining the features used for LTR through feature extraction and dimension reduction. Though LTR performance has been marginally increased, we still believe these methods could be further improved in the newly-fashioned "interpolating regime". Specifically, instead of lowering the number of features used for LTR models, our work proposes to transform original data with random Fourier feature, so as to over-parameterize the downstream LTR models (e.g., GBRank or LightGBM) with features in ultra-high dimensionality and achieve superb generalization performance. Furthermore, rather than self-training with pseudo-labels produced by the same LTR model in a "self-tuned" fashion, the proposed method incorporates the diversity of prediction results between the listwise and pointwise LTR models while co-training both models with a cyclic labeling-prediction pipeline in a "ping-pong" manner. We deploy the proposed C o-trained and O ver-parameterized LTR system COLTR at Baidu search and evaluate COLTR with a large number of baseline methods. The results show that COLTR could achieve <inline-formula><tex-math notation="LaTeX">\Delta NDCG_{4}</tex-math></inline-formula>=3.64%<inline-formula><tex-math notation="LaTeX">\sim</tex-math></inline-formula>4.92%, compared to baselines, under various ratios of labeled samples. We also conduct a 7-day A/B Test using the realistic web traffics of Baidu Search, where we can still observe significant performance improvement around <inline-formula><tex-math notation="LaTeX">\Delta NDCG_{4}</tex-math></inline-formula>=0.17%<inline-formula><tex-math notation="LaTeX">\sim</tex-math></inline-formula>0.92% in real-world applications. COLTR performs consistently both in online and offline experiments. |
Author | Liu, Hao Wang, Shuaiqiang Li, Yuchen Xiong, Haoyi Dou, Dejing Bian, Jiang Kong, Linghe Li, Haifang Yin, Dawei Chen, Guihai Wang, Qingzhong |
Author_xml | – sequence: 1 givenname: Yuchen orcidid: 0000-0002-3869-7881 surname: Li fullname: Li, Yuchen organization: Department of Computer Science and Engineering, Shanghai Jiao Tong University, Shanghai, China – sequence: 2 givenname: Haoyi surname: Xiong fullname: Xiong, Haoyi organization: Baidu, Inc., Beijing, China – sequence: 3 givenname: Qingzhong orcidid: 0000-0003-1562-8098 surname: Wang fullname: Wang, Qingzhong organization: Baidu, Inc., Beijing, China – sequence: 4 givenname: Linghe orcidid: 0000-0001-9266-3044 surname: Kong fullname: Kong, Linghe organization: Department of Computer Science and Engineering, Shanghai Jiao Tong University, Shanghai, China – sequence: 5 givenname: Hao orcidid: 0000-0003-4271-1567 surname: Liu fullname: Liu, Hao organization: Thrust of Artificial Intelligence, The Hong Kong University of Science and Technology (Guangzhou), Guangzhou, Guangdong Province, China – sequence: 6 givenname: Haifang surname: Li fullname: Li, Haifang organization: Baidu, Inc., Beijing, China – sequence: 7 givenname: Jiang surname: Bian fullname: Bian, Jiang organization: Baidu, Inc., Beijing, China – sequence: 8 givenname: Shuaiqiang surname: Wang fullname: Wang, Shuaiqiang organization: Baidu, Inc., Beijing, China – sequence: 9 givenname: Guihai surname: Chen fullname: Chen, Guihai organization: Department of Computer Science and Engineering, Shanghai Jiao Tong University, Shanghai, China – sequence: 10 givenname: Dejing orcidid: 0000-0003-2949-6874 surname: Dou fullname: Dou, Dejing organization: Baidu, Inc., Beijing, China – sequence: 11 givenname: Dawei surname: Yin fullname: Yin, Dawei organization: Baidu, Inc., Beijing, China |
BookMark | eNp9kNtKw0AQhhdRsK0-gODFgtepe8jRO4n1gIFCW_EyTDYTu7VN4mZb0afxWXwyk7YX4oUwMAPz_3P4-uSwrEok5IyzIecsupw93oyGggk5lCJggccOSI97XugIHvHDtmYud1zpBsek3zQLxlgYhLxHsniczCZX319TXGmnWddoNrrBnCYIptTlC7UVnUD5St-1ndO4cqwBvW1AmdPxBo1Tg4EVWjT6E6yuSlpUhj5jRqftDDU_IUcFLBs83ecBebodzeJ7JxnfPcTXiaNE5FoHQj_zEKVypSdlVEAbCpRUXuTlynfzwvfyTIaSsULmfggC_AwigChysRBcDsjFbm5tqrc1NjZdVGtTtitTEYYB5y7zRaviO5UyVdMYLNLa6BWYj5SztEOZdijTDmW6R9l6gj8epe321Q7G8l_n-c6pEfHXplbdniN_ABeChGk |
CODEN | ITKEEH |
CitedBy_id | crossref_primary_10_1016_j_neucom_2024_128413 crossref_primary_10_1109_TSC_2024_3451185 crossref_primary_10_1016_j_conbuildmat_2024_139056 crossref_primary_10_4018_IJISP_337894 crossref_primary_10_1007_s10994_023_06469_9 crossref_primary_10_1007_s10489_024_05686_6 crossref_primary_10_1109_TKDE_2024_3368529 |
Cites_doi | 10.1145/2939672.2939785 10.1145/1341531.1341544 10.1007/978-981-15-1967-3_8 10.1017/CBO9780511809071 10.1145/2063576.2063620 10.1007/978-3-031-01548-9 10.2200/S00590ED1V01Y201408AIM029 10.1007/s10115-009-0209-z 10.14778/2733004.2733078 10.1007/s10791-009-9123-y 10.1145/1102351.1102363 10.1145/3394486.3403297 10.1007/s10994-021-06122-3 10.1214/19-AOS1849 10.1017/S0962492921000039 10.1145/3534678.3539158 10.1145/3404835.3462917 10.1145/3397271.3401299 10.1109/CVPR42600.2020.01070 10.1145/1015330.1015360 10.1145/3447548.3467147 10.1145/279943.279962 10.1007/978-3-030-01267-0_9 10.1145/3534678.3539128 10.1145/3130348.3130374 10.1145/775047.775067 10.1145/3442381.3449794 10.1145/1277741.1277792 10.1145/3437963.3441751 10.1145/3077136.3084140 10.1145/3397271.3401333 10.1007/11815921_57 10.1007/978-3-030-82136-4_4 10.1073/pnas.1903070116 10.1145/133160.133199 10.1109/HCS49909.2020.9220641 10.1016/j.neucom.2019.12.130 10.1145/1273496.1273513 10.1145/3331184.3331347 10.1609/aaai.v34i05.6428 10.1145/3477495.3531986 10.1145/3534678.3539058 10.1145/3442381.3450078 10.1145/3447548.3467149 10.1109/ICDE.2019.00195 10.1145/3534678.3539080 10.1145/3477495.3531837 10.1109/ACVMOT.2005.107 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
DOI | 10.1109/TKDE.2023.3270750 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Xplore CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Technology Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Computer Science |
EISSN | 1558-2191 |
EndPage | 14 |
ExternalDocumentID | 10_1109_TKDE_2023_3270750 10109140 |
Genre | orig-research |
GrantInformation_xml | – fundername: Open Research Projects of Zhejiang – fundername: National Key R&D Program of China (No. 2021ZD0110303), NSFC grantid: 62141220; 61972253; U1908212; 62172276; 61972254 – fundername: Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learning, Shanghai Science and Technology Development Funds |
GroupedDBID | -~X .DC 0R~ 29I 4.4 5GY 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACIWK AENEX AGQYO AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ IEDLZ IFIPE IPLJI JAVBF LAI M43 MS~ O9- OCL P2P PQQKQ RIA RIE RNS RXW TAE TN5 UHB AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c294t-a86b5ee3c435339fa9facac3c595dc64df65db38300f3d68a2a6ba9aa994ef213 |
IEDL.DBID | RIE |
ISSN | 1041-4347 |
IngestDate | Mon Jun 30 06:22:10 EDT 2025 Tue Jul 01 01:19:42 EDT 2025 Thu Apr 24 23:09:52 EDT 2025 Wed Aug 27 02:14:16 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c294t-a86b5ee3c435339fa9facac3c595dc64df65db38300f3d68a2a6ba9aa994ef213 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-3869-7881 0000-0003-1562-8098 0000-0001-9266-3044 0000-0003-4271-1567 0000-0003-2949-6874 0009-0003-1098-4023 0000-0002-5451-3253 0000-0001-6997-1989 0000-0002-9212-1947 0000-0002-6934-1685 0000-0002-0684-6205 |
PQID | 2887114062 |
PQPubID | 85438 |
PageCount | 14 |
ParticipantIDs | ieee_primary_10109140 proquest_journals_2887114062 crossref_primary_10_1109_TKDE_2023_3270750 crossref_citationtrail_10_1109_TKDE_2023_3270750 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-12-01 |
PublicationDateYYYYMMDD | 2023-12-01 |
PublicationDate_xml | – month: 12 year: 2023 text: 2023-12-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on knowledge and data engineering |
PublicationTitleAbbrev | TKDE |
PublicationYear | 2023 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref12 burges (ref62) 2006 ref15 ref14 ref53 chapelle (ref23) 2011 qin (ref22) 2013 ref54 ref17 ref16 ref19 yehudai (ref66) 2019 abney (ref56) 2002 ref51 ref50 qin (ref20) 2020 ref46 ref45 ref48 sriperumbudur (ref72) 2015 ref47 chipman (ref30) 2006 nakkiran (ref68) 2020 ref44 ref43 ref49 ref8 ref7 vaswani (ref61) 2017 ref9 ref4 ref3 ref6 ref5 ref40 ref34 ref78 bodin (ref67) 2021 ref37 samarin (ref74) 2022 ref36 ref75 goldman (ref57) 2000 ref33 ref77 rahimi (ref52) 2007 ref32 ref76 ref2 ref1 ref39 liao (ref70) 2020 vapnik (ref65) 1999 ref38 devlin (ref58) 2019 raisi (ref31) 2017 yang (ref41) 2022 holzmüller (ref71) 2021 settles (ref10) 2011 zhou (ref26) 2005 ref24 ref25 ref64 sun (ref59) 2019 ref63 zhu (ref11) 2005 ke (ref18) 2017 yang (ref73) 2012 ref21 ref28 ref27 ref29 collins (ref55) 1999 ref60 li (ref42) 2020 li (ref35) 2008 li (ref69) 2019 |
References_xml | – start-page: 1718 year: 2022 ident: ref74 article-title: Feature learning and random features in standard finite-width convolutional neural networks: An empirical study publication-title: Proc Conf Uncertainty of Artificial Intelligence – start-page: 65 year: 2008 ident: ref35 article-title: McRank: Learning to rank using multiple classification and gradient boosting publication-title: Proc Adv Neural Inf Process Syst – ident: ref78 doi: 10.1145/2939672.2939785 – ident: ref36 doi: 10.1145/1341531.1341544 – ident: ref29 doi: 10.1007/978-981-15-1967-3_8 – ident: ref60 doi: 10.1017/CBO9780511809071 – ident: ref50 doi: 10.1145/2063576.2063620 – ident: ref12 doi: 10.1007/978-3-031-01548-9 – ident: ref14 doi: 10.2200/S00590ED1V01Y201408AIM029 – ident: ref75 doi: 10.1007/s10115-009-0209-z – ident: ref76 doi: 10.14778/2733004.2733078 – ident: ref21 doi: 10.1007/s10791-009-9123-y – ident: ref38 doi: 10.1145/1102351.1102363 – ident: ref7 doi: 10.1145/3394486.3403297 – start-page: 1 year: 2011 ident: ref23 article-title: Yahoo! Learning to rank challenge overview publication-title: Proc Learn to Rank Challenge – ident: ref46 doi: 10.1007/s10994-021-06122-3 – ident: ref64 doi: 10.1214/19-AOS1849 – start-page: 1 year: 2020 ident: ref20 article-title: Are neural rankers still outperformed by gradient boosted decision trees? publication-title: Proc Int Conf Learn Representations – ident: ref33 doi: 10.1017/S0962492921000039 – ident: ref1 doi: 10.1145/3534678.3539158 – ident: ref45 doi: 10.1145/3404835.3462917 – ident: ref48 doi: 10.1145/3397271.3401299 – ident: ref16 doi: 10.1109/CVPR42600.2020.01070 – start-page: 908 year: 2005 ident: ref26 article-title: Semi-supervised regression with co-training publication-title: Proc 19th Int Joint Conf Artif Intell – ident: ref15 doi: 10.1145/1015330.1015360 – ident: ref4 doi: 10.1145/3447548.3467147 – ident: ref53 doi: 10.1145/279943.279962 – start-page: 1144 year: 2015 ident: ref72 article-title: Optimal rates for random fourier features publication-title: Proc Adv Neural Inf Process Syst – ident: ref28 doi: 10.1007/978-3-030-01267-0_9 – start-page: 1 year: 2021 ident: ref71 article-title: On the universality of the double descent peak in ridgeless regression publication-title: Proc Int Conf Learn Representations – start-page: 476 year: 2012 ident: ref73 article-title: Nyström method vs random fourier features: A theoretical and empirical comparison publication-title: Proc Adv Neural Inf Process Syst – ident: ref6 doi: 10.1145/3534678.3539128 – start-page: 327 year: 2000 ident: ref57 article-title: Enhancing supervised learning with unlabeled data publication-title: Proc 17th Int Conf Mach Learn – ident: ref39 doi: 10.1145/3130348.3130374 – start-page: 5587 year: 2020 ident: ref42 article-title: Learning to rank for active learning: A listwise approach publication-title: Proc IEEE 25th Int Conf Pattern Recognit – year: 2022 ident: ref41 article-title: Algorithmic foundation of deep X-risk optimization publication-title: arXiv 2206 00439 – ident: ref24 doi: 10.1145/775047.775067 – ident: ref63 doi: 10.1145/3442381.3449794 – ident: ref17 doi: 10.1145/1277741.1277792 – ident: ref47 doi: 10.1145/3437963.3441751 – ident: ref19 doi: 10.1145/3077136.3084140 – start-page: 1 year: 2017 ident: ref31 article-title: Co-trained ensemble models for weakly supervised cyberbullying detection publication-title: Proc NIPS Workshop Learn Limited Labeled Data – ident: ref51 doi: 10.1145/3397271.3401333 – start-page: 3905 year: 2019 ident: ref69 article-title: Towards a unified analysis of random fourier features publication-title: Proc Int Conf Mach Learn – start-page: 3146 year: 2017 ident: ref18 article-title: LightGBM: A highly efficient gradient boosting decision tree publication-title: Proc Adv Neural Inf Process Syst – year: 2019 ident: ref66 article-title: On the power and limitations of random features for understanding neural networks publication-title: Proc Adv Neural Inf Process Syst – ident: ref27 doi: 10.1007/11815921_57 – year: 1999 ident: ref65 publication-title: The Nature of Statistical Learning Theory – ident: ref44 doi: 10.1007/978-3-030-82136-4_4 – ident: ref32 doi: 10.1073/pnas.1903070116 – ident: ref34 doi: 10.1145/133160.133199 – start-page: 360 year: 2002 ident: ref56 article-title: Bootstrapping publication-title: Proc Annual Meeting of the Assoc Computational Linguistics – ident: ref9 doi: 10.1109/HCS49909.2020.9220641 – start-page: 4171 year: 2019 ident: ref58 article-title: BERT: Pre-training of deep bidirectional transformers for language understanding publication-title: Proc Annu Conf North Amer Chapter Assoc Comput Linguistics – start-page: 193 year: 2006 ident: ref62 article-title: Learning to rank with nonsmooth cost functions publication-title: Proc Adv Neural Inf Process Syst – ident: ref13 doi: 10.1016/j.neucom.2019.12.130 – start-page: 5998 year: 2017 ident: ref61 article-title: Attention is all you need publication-title: Proc Adv Neural Inf Process Syst – ident: ref37 doi: 10.1145/1273496.1273513 – ident: ref40 doi: 10.1145/3331184.3331347 – ident: ref3 doi: 10.1609/aaai.v34i05.6428 – year: 2005 ident: ref11 article-title: Semi-supervised learning literature survey – ident: ref2 doi: 10.1145/3477495.3531986 – start-page: 100 year: 1999 ident: ref55 article-title: Unsupervised models for named entity classification publication-title: Proc Joint SIGDAT Conf Empir Methods Natural Lang Process Very Large Corpora – ident: ref8 doi: 10.1145/3534678.3539058 – ident: ref43 doi: 10.1145/3442381.3450078 – year: 2013 ident: ref22 article-title: Introducing LETOR 4.0 datasets – start-page: 13939 year: 2020 ident: ref70 article-title: A random matrix analysis of random fourier features: Beyond the Gaussian kernel, a precise phase transition, and the corresponding double descent publication-title: Proc Adv Neural Inf Process Syst – start-page: 1 year: 2020 ident: ref68 article-title: Deep double descent: Where bigger models and more data hurt publication-title: Proc Int Conf Learn Representations – start-page: 21605 year: 2021 ident: ref67 article-title: Model, sample, and epoch-wise descents: Exact solution of gradient flow in the random feature model publication-title: Proc Adv Neural Inf Process Syst – ident: ref25 doi: 10.1145/3447548.3467149 – start-page: 265 year: 2006 ident: ref30 article-title: Bayesian ensemble learning publication-title: Proc Adv Neural Inf Process Syst – ident: ref77 doi: 10.1109/ICDE.2019.00195 – ident: ref5 doi: 10.1145/3534678.3539080 – ident: ref49 doi: 10.1145/3477495.3531837 – year: 2019 ident: ref59 article-title: ERNIE: Enhanced representation through knowledge integration – start-page: 1 year: 2011 ident: ref10 article-title: From theories to queries: Active learning in practice publication-title: Proc Act Learn Exp Des Workshop Conjunction AISTATS JMLR Workshop – start-page: 1177 year: 2007 ident: ref52 article-title: Random features for large-scale kernel machines publication-title: Proc Adv Neural Inf Process Syst – ident: ref54 doi: 10.1109/ACVMOT.2005.107 |
SSID | ssj0008781 |
Score | 2.5272717 |
Snippet | While learning to rank (LTR) has been widely used in web search to prioritize most relevant webpages among the retrieved contents subject to the input queries,... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1 |
SubjectTerms | Data models Feature extraction Labels Learning to Rank Machine learning Over-parameterization Parameterization Performance enhancement Predictive models Queries Ranking Search engines Searching Semi-supervised Learning Semisupervised learning Task analysis Training Web and internet services |
Title | COLTR: Semi-supervised Learning to Rank with Co-training and Over-parameterization for Web Search |
URI | https://ieeexplore.ieee.org/document/10109140 https://www.proquest.com/docview/2887114062 |
Volume | 35 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwELYoJziUZ9XlJR84ITkE23Hi3tACQi0PCRbBLRo_gipKFrHZC7-mv4VfxjhxEBS1qpSDD7bl6POM57PnQcg2cFcYywVD079i0kDKDAjDcvDGcOsliBDvfHqmjq_k95vsJgart7Ew3vvW-cwnodm-5buxnYarMpTwkMZSIkP_hMytC9Z6VbtF3lYkRXqBpEjIPD5h4ojd0Y-DwyTUCU8Ez8MZ-e4QaquqfFDF7flytEDO-pV1biV3ybQxiX36I2njfy99kXyOlibd77bGEpnx9TJZ6Ks40CjUy2T-TUrCFWKG5yeji2_Pvy_9_U82mT4EXTLxjsZErLe0GdMLqO9ouMGlwzHri0xQqB09R8lgIZ34fXCziTGeFA1jeu0N7XybV8nV0eFoeMxiHQZmuZYNg0KZzHth0bQSQleAnwUrbKYzZ5V0lcqcQaqbppVwqgAOyoAG0Fr6iu-JL2S2Htf-K6FOOA04kYLKyUoWgAaDzSulc-eQqaYDkvbAlDYmKQ-_8atsyUqqy4BlGbAsI5YDsvM65KHL0PGvzqsBmzcdO1gGZKOHv4xCPCk5KmCki6nia38Ztk7mwuyde8sGmW0ep34TjZTGbLWb8wXZ4uQq |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3NbtQwEB6VcgAOFEoRCwV8gAuSQ7AdJ0bigLattuy2lcpW9Bb8F4RKsxWbFYJ3QeJJOPBkjBNnVUBwq4SUQw6xEzuf58ee-QbgkWauMJZxiqZ_RYXRKTWaG5prbwyzXmge8p339uXoSLw6zo5X4OsyF8Z73waf-STctmf5bmYXYasMV3igsRRpjKEc-8-f0EObv9jdwt_5mLGd7elwRGMRAWqZEg3VhTSZ99yiXcC5qjReVltuM5U5K4WrZOYM-mlpWnEnC820NFpprZTwFXvGsd9LcBkNjYx16WFLQV_kbQ1UdGjQDeMij4em-I1Pp-Ot7SRUJk84y4NW_kXttXVc_hD-rUbbWYPv_Vx0gSwnyaIxif3yG03kfztZN-B6tKXJyw78N2HF1-uw1tepIFFsrcO1c6SLt8AMDybTw-c_vr32p-_pfHEWpOXcOxKpZt-RZkYOdX1Cwh41Gc5oX0aD6NqRA1z7NBCmn4ZAopjFStD0J2-8IV309gYcXci4b8NqPav9HSCOO6WxI6krJypRaDSJbF5JlTuHvng6gLQHQmkjDXsYxoeydcdSVQbslAE7ZcTOAJ4sm5x1HCT_engjYOHcgx0MBrDZw62MYmpeMlQx6BCnkt39S7OHcGU03ZuUk9398T24Gt7UBfNswmrzceHvo0nWmAftwiDw9qLB9RMyx0RJ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=COLTR+%3A+Semi-Supervised+Learning+to+Rank+With+Co-Training+and+Over-Parameterization+for+Web+Search&rft.jtitle=IEEE+transactions+on+knowledge+and+data+engineering&rft.au=Li%2C+Yuchen&rft.au=Xiong%2C+Haoyi&rft.au=Wang%2C+Qingzhong&rft.au=Kong%2C+Linghe&rft.date=2023-12-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1041-4347&rft.eissn=1558-2191&rft.volume=35&rft.issue=12&rft.spage=12542&rft_id=info:doi/10.1109%2FTKDE.2023.3270750&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1041-4347&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1041-4347&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1041-4347&client=summon |