COLTR: Semi-supervised Learning to Rank with Co-training and Over-parameterization for Web Search

While learning to rank (LTR) has been widely used in web search to prioritize most relevant webpages among the retrieved contents subject to the input queries, the traditional LTR models fail to deliver decent performance due to two main reasons: 1) the lack of well-annotated query-webpage pairs wit...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on knowledge and data engineering Vol. 35; no. 12; pp. 1 - 14
Main Authors Li, Yuchen, Xiong, Haoyi, Wang, Qingzhong, Kong, Linghe, Liu, Hao, Li, Haifang, Bian, Jiang, Wang, Shuaiqiang, Chen, Guihai, Dou, Dejing, Yin, Dawei
Format Journal Article
LanguageEnglish
Published New York IEEE 01.12.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract While learning to rank (LTR) has been widely used in web search to prioritize most relevant webpages among the retrieved contents subject to the input queries, the traditional LTR models fail to deliver decent performance due to two main reasons: 1) the lack of well-annotated query-webpage pairs with ranking scores to cover search queries of various popularity, and 2) ill-trained models based on a limited number of training samples with poor generalization performance. To improve the performance of LTR models, tremendous efforts have been done from above two aspects, such as enlarging training sets with pseudo-labels of ranking scores by self-training, or refining the features used for LTR through feature extraction and dimension reduction. Though LTR performance has been marginally increased, we still believe these methods could be further improved in the newly-fashioned "interpolating regime". Specifically, instead of lowering the number of features used for LTR models, our work proposes to transform original data with random Fourier feature, so as to over-parameterize the downstream LTR models (e.g., GBRank or LightGBM) with features in ultra-high dimensionality and achieve superb generalization performance. Furthermore, rather than self-training with pseudo-labels produced by the same LTR model in a "self-tuned" fashion, the proposed method incorporates the diversity of prediction results between the listwise and pointwise LTR models while co-training both models with a cyclic labeling-prediction pipeline in a "ping-pong" manner. We deploy the proposed C o-trained and O ver-parameterized LTR system COLTR at Baidu search and evaluate COLTR with a large number of baseline methods. The results show that COLTR could achieve <inline-formula><tex-math notation="LaTeX">\Delta NDCG_{4}</tex-math></inline-formula>=3.64%<inline-formula><tex-math notation="LaTeX">\sim</tex-math></inline-formula>4.92%, compared to baselines, under various ratios of labeled samples. We also conduct a 7-day A/B Test using the realistic web traffics of Baidu Search, where we can still observe significant performance improvement around <inline-formula><tex-math notation="LaTeX">\Delta NDCG_{4}</tex-math></inline-formula>=0.17%<inline-formula><tex-math notation="LaTeX">\sim</tex-math></inline-formula>0.92% in real-world applications. COLTR performs consistently both in online and offline experiments.
AbstractList While learning to rank (LTR) has been widely used in web search to prioritize most relevant webpages among the retrieved contents subject to the input queries, the traditional LTR models fail to deliver decent performance due to two main reasons: 1) the lack of well-annotated query-webpage pairs with ranking scores to cover search queries of various popularity, and 2) ill-trained models based on a limited number of training samples with poor generalization performance. To improve the performance of LTR models, tremendous efforts have been done from above two aspects, such as enlarging training sets with pseudo-labels of ranking scores by self-training, or refining the features used for LTR through feature extraction and dimension reduction. Though LTR performance has been marginally increased, we still believe these methods could be further improved in the newly-fashioned “interpolating regime”. Specifically, instead of lowering the number of features used for LTR models, our work proposes to transform original data with random Fourier feature, so as to over-parameterize the downstream LTR models (e.g., GBRank or LightGBM) with features in ultra-high dimensionality and achieve superb generalization performance. Furthermore, rather than self-training with pseudo-labels produced by the same LTR model in a “self-tuned” fashion, the proposed method incorporates the diversity of prediction results between the listwise and pointwise LTR models while co-training both models with a cyclic labeling-prediction pipeline in a “ping-pong” manner. We deploy the proposed C o-trained and O ver-parameterized LTR system COLTR at Baidu search and evaluate COLTR with a large number of baseline methods. The results show that COLTR could achieve [Formula Omitted] = 3.64%[Formula Omitted]4.92%, compared to baselines, under various ratios of labeled samples. We also conduct a 7-day A/B Test using the realistic web traffics of Baidu Search, where we can still observe significant performance improvement around [Formula Omitted] = 0.17%[Formula Omitted]0.92% in real-world applications. COLTR performs consistently both in online and offline experiments.
While learning to rank (LTR) has been widely used in web search to prioritize most relevant webpages among the retrieved contents subject to the input queries, the traditional LTR models fail to deliver decent performance due to two main reasons: 1) the lack of well-annotated query-webpage pairs with ranking scores to cover search queries of various popularity, and 2) ill-trained models based on a limited number of training samples with poor generalization performance. To improve the performance of LTR models, tremendous efforts have been done from above two aspects, such as enlarging training sets with pseudo-labels of ranking scores by self-training, or refining the features used for LTR through feature extraction and dimension reduction. Though LTR performance has been marginally increased, we still believe these methods could be further improved in the newly-fashioned "interpolating regime". Specifically, instead of lowering the number of features used for LTR models, our work proposes to transform original data with random Fourier feature, so as to over-parameterize the downstream LTR models (e.g., GBRank or LightGBM) with features in ultra-high dimensionality and achieve superb generalization performance. Furthermore, rather than self-training with pseudo-labels produced by the same LTR model in a "self-tuned" fashion, the proposed method incorporates the diversity of prediction results between the listwise and pointwise LTR models while co-training both models with a cyclic labeling-prediction pipeline in a "ping-pong" manner. We deploy the proposed C o-trained and O ver-parameterized LTR system COLTR at Baidu search and evaluate COLTR with a large number of baseline methods. The results show that COLTR could achieve <inline-formula><tex-math notation="LaTeX">\Delta NDCG_{4}</tex-math></inline-formula>=3.64%<inline-formula><tex-math notation="LaTeX">\sim</tex-math></inline-formula>4.92%, compared to baselines, under various ratios of labeled samples. We also conduct a 7-day A/B Test using the realistic web traffics of Baidu Search, where we can still observe significant performance improvement around <inline-formula><tex-math notation="LaTeX">\Delta NDCG_{4}</tex-math></inline-formula>=0.17%<inline-formula><tex-math notation="LaTeX">\sim</tex-math></inline-formula>0.92% in real-world applications. COLTR performs consistently both in online and offline experiments.
Author Liu, Hao
Wang, Shuaiqiang
Li, Yuchen
Xiong, Haoyi
Dou, Dejing
Bian, Jiang
Kong, Linghe
Li, Haifang
Yin, Dawei
Chen, Guihai
Wang, Qingzhong
Author_xml – sequence: 1
  givenname: Yuchen
  orcidid: 0000-0002-3869-7881
  surname: Li
  fullname: Li, Yuchen
  organization: Department of Computer Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
– sequence: 2
  givenname: Haoyi
  surname: Xiong
  fullname: Xiong, Haoyi
  organization: Baidu, Inc., Beijing, China
– sequence: 3
  givenname: Qingzhong
  orcidid: 0000-0003-1562-8098
  surname: Wang
  fullname: Wang, Qingzhong
  organization: Baidu, Inc., Beijing, China
– sequence: 4
  givenname: Linghe
  orcidid: 0000-0001-9266-3044
  surname: Kong
  fullname: Kong, Linghe
  organization: Department of Computer Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
– sequence: 5
  givenname: Hao
  orcidid: 0000-0003-4271-1567
  surname: Liu
  fullname: Liu, Hao
  organization: Thrust of Artificial Intelligence, The Hong Kong University of Science and Technology (Guangzhou), Guangzhou, Guangdong Province, China
– sequence: 6
  givenname: Haifang
  surname: Li
  fullname: Li, Haifang
  organization: Baidu, Inc., Beijing, China
– sequence: 7
  givenname: Jiang
  surname: Bian
  fullname: Bian, Jiang
  organization: Baidu, Inc., Beijing, China
– sequence: 8
  givenname: Shuaiqiang
  surname: Wang
  fullname: Wang, Shuaiqiang
  organization: Baidu, Inc., Beijing, China
– sequence: 9
  givenname: Guihai
  surname: Chen
  fullname: Chen, Guihai
  organization: Department of Computer Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
– sequence: 10
  givenname: Dejing
  orcidid: 0000-0003-2949-6874
  surname: Dou
  fullname: Dou, Dejing
  organization: Baidu, Inc., Beijing, China
– sequence: 11
  givenname: Dawei
  surname: Yin
  fullname: Yin, Dawei
  organization: Baidu, Inc., Beijing, China
BookMark eNp9kNtKw0AQhhdRsK0-gODFgtepe8jRO4n1gIFCW_EyTDYTu7VN4mZb0afxWXwyk7YX4oUwMAPz_3P4-uSwrEok5IyzIecsupw93oyGggk5lCJggccOSI97XugIHvHDtmYud1zpBsek3zQLxlgYhLxHsniczCZX319TXGmnWddoNrrBnCYIptTlC7UVnUD5St-1ndO4cqwBvW1AmdPxBo1Tg4EVWjT6E6yuSlpUhj5jRqftDDU_IUcFLBs83ecBebodzeJ7JxnfPcTXiaNE5FoHQj_zEKVypSdlVEAbCpRUXuTlynfzwvfyTIaSsULmfggC_AwigChysRBcDsjFbm5tqrc1NjZdVGtTtitTEYYB5y7zRaviO5UyVdMYLNLa6BWYj5SztEOZdijTDmW6R9l6gj8epe321Q7G8l_n-c6pEfHXplbdniN_ABeChGk
CODEN ITKEEH
CitedBy_id crossref_primary_10_1016_j_neucom_2024_128413
crossref_primary_10_1109_TSC_2024_3451185
crossref_primary_10_1016_j_conbuildmat_2024_139056
crossref_primary_10_4018_IJISP_337894
crossref_primary_10_1007_s10994_023_06469_9
crossref_primary_10_1007_s10489_024_05686_6
crossref_primary_10_1109_TKDE_2024_3368529
Cites_doi 10.1145/2939672.2939785
10.1145/1341531.1341544
10.1007/978-981-15-1967-3_8
10.1017/CBO9780511809071
10.1145/2063576.2063620
10.1007/978-3-031-01548-9
10.2200/S00590ED1V01Y201408AIM029
10.1007/s10115-009-0209-z
10.14778/2733004.2733078
10.1007/s10791-009-9123-y
10.1145/1102351.1102363
10.1145/3394486.3403297
10.1007/s10994-021-06122-3
10.1214/19-AOS1849
10.1017/S0962492921000039
10.1145/3534678.3539158
10.1145/3404835.3462917
10.1145/3397271.3401299
10.1109/CVPR42600.2020.01070
10.1145/1015330.1015360
10.1145/3447548.3467147
10.1145/279943.279962
10.1007/978-3-030-01267-0_9
10.1145/3534678.3539128
10.1145/3130348.3130374
10.1145/775047.775067
10.1145/3442381.3449794
10.1145/1277741.1277792
10.1145/3437963.3441751
10.1145/3077136.3084140
10.1145/3397271.3401333
10.1007/11815921_57
10.1007/978-3-030-82136-4_4
10.1073/pnas.1903070116
10.1145/133160.133199
10.1109/HCS49909.2020.9220641
10.1016/j.neucom.2019.12.130
10.1145/1273496.1273513
10.1145/3331184.3331347
10.1609/aaai.v34i05.6428
10.1145/3477495.3531986
10.1145/3534678.3539058
10.1145/3442381.3450078
10.1145/3447548.3467149
10.1109/ICDE.2019.00195
10.1145/3534678.3539080
10.1145/3477495.3531837
10.1109/ACVMOT.2005.107
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TKDE.2023.3270750
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1558-2191
EndPage 14
ExternalDocumentID 10_1109_TKDE_2023_3270750
10109140
Genre orig-research
GrantInformation_xml – fundername: Open Research Projects of Zhejiang
– fundername: National Key R&D Program of China (No. 2021ZD0110303), NSFC
  grantid: 62141220; 61972253; U1908212; 62172276; 61972254
– fundername: Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learning, Shanghai Science and Technology Development Funds
GroupedDBID -~X
.DC
0R~
29I
4.4
5GY
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACIWK
AENEX
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
IEDLZ
IFIPE
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
RXW
TAE
TN5
UHB
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c294t-a86b5ee3c435339fa9facac3c595dc64df65db38300f3d68a2a6ba9aa994ef213
IEDL.DBID RIE
ISSN 1041-4347
IngestDate Mon Jun 30 06:22:10 EDT 2025
Tue Jul 01 01:19:42 EDT 2025
Thu Apr 24 23:09:52 EDT 2025
Wed Aug 27 02:14:16 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c294t-a86b5ee3c435339fa9facac3c595dc64df65db38300f3d68a2a6ba9aa994ef213
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-3869-7881
0000-0003-1562-8098
0000-0001-9266-3044
0000-0003-4271-1567
0000-0003-2949-6874
0009-0003-1098-4023
0000-0002-5451-3253
0000-0001-6997-1989
0000-0002-9212-1947
0000-0002-6934-1685
0000-0002-0684-6205
PQID 2887114062
PQPubID 85438
PageCount 14
ParticipantIDs ieee_primary_10109140
proquest_journals_2887114062
crossref_primary_10_1109_TKDE_2023_3270750
crossref_citationtrail_10_1109_TKDE_2023_3270750
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-12-01
PublicationDateYYYYMMDD 2023-12-01
PublicationDate_xml – month: 12
  year: 2023
  text: 2023-12-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on knowledge and data engineering
PublicationTitleAbbrev TKDE
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
burges (ref62) 2006
ref15
ref14
ref53
chapelle (ref23) 2011
qin (ref22) 2013
ref54
ref17
ref16
ref19
yehudai (ref66) 2019
abney (ref56) 2002
ref51
ref50
qin (ref20) 2020
ref46
ref45
ref48
sriperumbudur (ref72) 2015
ref47
chipman (ref30) 2006
nakkiran (ref68) 2020
ref44
ref43
ref49
ref8
ref7
vaswani (ref61) 2017
ref9
ref4
ref3
ref6
ref5
ref40
ref34
ref78
bodin (ref67) 2021
ref37
samarin (ref74) 2022
ref36
ref75
goldman (ref57) 2000
ref33
ref77
rahimi (ref52) 2007
ref32
ref76
ref2
ref1
ref39
liao (ref70) 2020
vapnik (ref65) 1999
ref38
devlin (ref58) 2019
raisi (ref31) 2017
yang (ref41) 2022
holzmüller (ref71) 2021
settles (ref10) 2011
zhou (ref26) 2005
ref24
ref25
ref64
sun (ref59) 2019
ref63
zhu (ref11) 2005
ke (ref18) 2017
yang (ref73) 2012
ref21
ref28
ref27
ref29
collins (ref55) 1999
ref60
li (ref42) 2020
li (ref35) 2008
li (ref69) 2019
References_xml – start-page: 1718
  year: 2022
  ident: ref74
  article-title: Feature learning and random features in standard finite-width convolutional neural networks: An empirical study
  publication-title: Proc Conf Uncertainty of Artificial Intelligence
– start-page: 65
  year: 2008
  ident: ref35
  article-title: McRank: Learning to rank using multiple classification and gradient boosting
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref78
  doi: 10.1145/2939672.2939785
– ident: ref36
  doi: 10.1145/1341531.1341544
– ident: ref29
  doi: 10.1007/978-981-15-1967-3_8
– ident: ref60
  doi: 10.1017/CBO9780511809071
– ident: ref50
  doi: 10.1145/2063576.2063620
– ident: ref12
  doi: 10.1007/978-3-031-01548-9
– ident: ref14
  doi: 10.2200/S00590ED1V01Y201408AIM029
– ident: ref75
  doi: 10.1007/s10115-009-0209-z
– ident: ref76
  doi: 10.14778/2733004.2733078
– ident: ref21
  doi: 10.1007/s10791-009-9123-y
– ident: ref38
  doi: 10.1145/1102351.1102363
– ident: ref7
  doi: 10.1145/3394486.3403297
– start-page: 1
  year: 2011
  ident: ref23
  article-title: Yahoo! Learning to rank challenge overview
  publication-title: Proc Learn to Rank Challenge
– ident: ref46
  doi: 10.1007/s10994-021-06122-3
– ident: ref64
  doi: 10.1214/19-AOS1849
– start-page: 1
  year: 2020
  ident: ref20
  article-title: Are neural rankers still outperformed by gradient boosted decision trees?
  publication-title: Proc Int Conf Learn Representations
– ident: ref33
  doi: 10.1017/S0962492921000039
– ident: ref1
  doi: 10.1145/3534678.3539158
– ident: ref45
  doi: 10.1145/3404835.3462917
– ident: ref48
  doi: 10.1145/3397271.3401299
– ident: ref16
  doi: 10.1109/CVPR42600.2020.01070
– start-page: 908
  year: 2005
  ident: ref26
  article-title: Semi-supervised regression with co-training
  publication-title: Proc 19th Int Joint Conf Artif Intell
– ident: ref15
  doi: 10.1145/1015330.1015360
– ident: ref4
  doi: 10.1145/3447548.3467147
– ident: ref53
  doi: 10.1145/279943.279962
– start-page: 1144
  year: 2015
  ident: ref72
  article-title: Optimal rates for random fourier features
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref28
  doi: 10.1007/978-3-030-01267-0_9
– start-page: 1
  year: 2021
  ident: ref71
  article-title: On the universality of the double descent peak in ridgeless regression
  publication-title: Proc Int Conf Learn Representations
– start-page: 476
  year: 2012
  ident: ref73
  article-title: Nyström method vs random fourier features: A theoretical and empirical comparison
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref6
  doi: 10.1145/3534678.3539128
– start-page: 327
  year: 2000
  ident: ref57
  article-title: Enhancing supervised learning with unlabeled data
  publication-title: Proc 17th Int Conf Mach Learn
– ident: ref39
  doi: 10.1145/3130348.3130374
– start-page: 5587
  year: 2020
  ident: ref42
  article-title: Learning to rank for active learning: A listwise approach
  publication-title: Proc IEEE 25th Int Conf Pattern Recognit
– year: 2022
  ident: ref41
  article-title: Algorithmic foundation of deep X-risk optimization
  publication-title: arXiv 2206 00439
– ident: ref24
  doi: 10.1145/775047.775067
– ident: ref63
  doi: 10.1145/3442381.3449794
– ident: ref17
  doi: 10.1145/1277741.1277792
– ident: ref47
  doi: 10.1145/3437963.3441751
– ident: ref19
  doi: 10.1145/3077136.3084140
– start-page: 1
  year: 2017
  ident: ref31
  article-title: Co-trained ensemble models for weakly supervised cyberbullying detection
  publication-title: Proc NIPS Workshop Learn Limited Labeled Data
– ident: ref51
  doi: 10.1145/3397271.3401333
– start-page: 3905
  year: 2019
  ident: ref69
  article-title: Towards a unified analysis of random fourier features
  publication-title: Proc Int Conf Mach Learn
– start-page: 3146
  year: 2017
  ident: ref18
  article-title: LightGBM: A highly efficient gradient boosting decision tree
  publication-title: Proc Adv Neural Inf Process Syst
– year: 2019
  ident: ref66
  article-title: On the power and limitations of random features for understanding neural networks
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref27
  doi: 10.1007/11815921_57
– year: 1999
  ident: ref65
  publication-title: The Nature of Statistical Learning Theory
– ident: ref44
  doi: 10.1007/978-3-030-82136-4_4
– ident: ref32
  doi: 10.1073/pnas.1903070116
– ident: ref34
  doi: 10.1145/133160.133199
– start-page: 360
  year: 2002
  ident: ref56
  article-title: Bootstrapping
  publication-title: Proc Annual Meeting of the Assoc Computational Linguistics
– ident: ref9
  doi: 10.1109/HCS49909.2020.9220641
– start-page: 4171
  year: 2019
  ident: ref58
  article-title: BERT: Pre-training of deep bidirectional transformers for language understanding
  publication-title: Proc Annu Conf North Amer Chapter Assoc Comput Linguistics
– start-page: 193
  year: 2006
  ident: ref62
  article-title: Learning to rank with nonsmooth cost functions
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref13
  doi: 10.1016/j.neucom.2019.12.130
– start-page: 5998
  year: 2017
  ident: ref61
  article-title: Attention is all you need
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref37
  doi: 10.1145/1273496.1273513
– ident: ref40
  doi: 10.1145/3331184.3331347
– ident: ref3
  doi: 10.1609/aaai.v34i05.6428
– year: 2005
  ident: ref11
  article-title: Semi-supervised learning literature survey
– ident: ref2
  doi: 10.1145/3477495.3531986
– start-page: 100
  year: 1999
  ident: ref55
  article-title: Unsupervised models for named entity classification
  publication-title: Proc Joint SIGDAT Conf Empir Methods Natural Lang Process Very Large Corpora
– ident: ref8
  doi: 10.1145/3534678.3539058
– ident: ref43
  doi: 10.1145/3442381.3450078
– year: 2013
  ident: ref22
  article-title: Introducing LETOR 4.0 datasets
– start-page: 13939
  year: 2020
  ident: ref70
  article-title: A random matrix analysis of random fourier features: Beyond the Gaussian kernel, a precise phase transition, and the corresponding double descent
  publication-title: Proc Adv Neural Inf Process Syst
– start-page: 1
  year: 2020
  ident: ref68
  article-title: Deep double descent: Where bigger models and more data hurt
  publication-title: Proc Int Conf Learn Representations
– start-page: 21605
  year: 2021
  ident: ref67
  article-title: Model, sample, and epoch-wise descents: Exact solution of gradient flow in the random feature model
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref25
  doi: 10.1145/3447548.3467149
– start-page: 265
  year: 2006
  ident: ref30
  article-title: Bayesian ensemble learning
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref77
  doi: 10.1109/ICDE.2019.00195
– ident: ref5
  doi: 10.1145/3534678.3539080
– ident: ref49
  doi: 10.1145/3477495.3531837
– year: 2019
  ident: ref59
  article-title: ERNIE: Enhanced representation through knowledge integration
– start-page: 1
  year: 2011
  ident: ref10
  article-title: From theories to queries: Active learning in practice
  publication-title: Proc Act Learn Exp Des Workshop Conjunction AISTATS JMLR Workshop
– start-page: 1177
  year: 2007
  ident: ref52
  article-title: Random features for large-scale kernel machines
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref54
  doi: 10.1109/ACVMOT.2005.107
SSID ssj0008781
Score 2.5272717
Snippet While learning to rank (LTR) has been widely used in web search to prioritize most relevant webpages among the retrieved contents subject to the input queries,...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Data models
Feature extraction
Labels
Learning to Rank
Machine learning
Over-parameterization
Parameterization
Performance enhancement
Predictive models
Queries
Ranking
Search engines
Searching
Semi-supervised Learning
Semisupervised learning
Task analysis
Training
Web and internet services
Title COLTR: Semi-supervised Learning to Rank with Co-training and Over-parameterization for Web Search
URI https://ieeexplore.ieee.org/document/10109140
https://www.proquest.com/docview/2887114062
Volume 35
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwELYoJziUZ9XlJR84ITkE23Hi3tACQi0PCRbBLRo_gipKFrHZC7-mv4VfxjhxEBS1qpSDD7bl6POM57PnQcg2cFcYywVD079i0kDKDAjDcvDGcOsliBDvfHqmjq_k95vsJgart7Ew3vvW-cwnodm-5buxnYarMpTwkMZSIkP_hMytC9Z6VbtF3lYkRXqBpEjIPD5h4ojd0Y-DwyTUCU8Ez8MZ-e4QaquqfFDF7flytEDO-pV1biV3ybQxiX36I2njfy99kXyOlibd77bGEpnx9TJZ6Ks40CjUy2T-TUrCFWKG5yeji2_Pvy_9_U82mT4EXTLxjsZErLe0GdMLqO9ouMGlwzHri0xQqB09R8lgIZ34fXCziTGeFA1jeu0N7XybV8nV0eFoeMxiHQZmuZYNg0KZzHth0bQSQleAnwUrbKYzZ5V0lcqcQaqbppVwqgAOyoAG0Fr6iu-JL2S2Htf-K6FOOA04kYLKyUoWgAaDzSulc-eQqaYDkvbAlDYmKQ-_8atsyUqqy4BlGbAsI5YDsvM65KHL0PGvzqsBmzcdO1gGZKOHv4xCPCk5KmCki6nia38Ztk7mwuyde8sGmW0ep34TjZTGbLWb8wXZ4uQq
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3NbtQwEB6VcgAOFEoRCwV8gAuSQ7AdJ0bigLattuy2lcpW9Bb8F4RKsxWbFYJ3QeJJOPBkjBNnVUBwq4SUQw6xEzuf58ee-QbgkWauMJZxiqZ_RYXRKTWaG5prbwyzXmge8p339uXoSLw6zo5X4OsyF8Z73waf-STctmf5bmYXYasMV3igsRRpjKEc-8-f0EObv9jdwt_5mLGd7elwRGMRAWqZEg3VhTSZ99yiXcC5qjReVltuM5U5K4WrZOYM-mlpWnEnC820NFpprZTwFXvGsd9LcBkNjYx16WFLQV_kbQ1UdGjQDeMij4em-I1Pp-Ot7SRUJk84y4NW_kXttXVc_hD-rUbbWYPv_Vx0gSwnyaIxif3yG03kfztZN-B6tKXJyw78N2HF1-uw1tepIFFsrcO1c6SLt8AMDybTw-c_vr32p-_pfHEWpOXcOxKpZt-RZkYOdX1Cwh41Gc5oX0aD6NqRA1z7NBCmn4ZAopjFStD0J2-8IV309gYcXci4b8NqPav9HSCOO6WxI6krJypRaDSJbF5JlTuHvng6gLQHQmkjDXsYxoeydcdSVQbslAE7ZcTOAJ4sm5x1HCT_engjYOHcgx0MBrDZw62MYmpeMlQx6BCnkt39S7OHcGU03ZuUk9398T24Gt7UBfNswmrzceHvo0nWmAftwiDw9qLB9RMyx0RJ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=COLTR+%3A+Semi-Supervised+Learning+to+Rank+With+Co-Training+and+Over-Parameterization+for+Web+Search&rft.jtitle=IEEE+transactions+on+knowledge+and+data+engineering&rft.au=Li%2C+Yuchen&rft.au=Xiong%2C+Haoyi&rft.au=Wang%2C+Qingzhong&rft.au=Kong%2C+Linghe&rft.date=2023-12-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1041-4347&rft.eissn=1558-2191&rft.volume=35&rft.issue=12&rft.spage=12542&rft_id=info:doi/10.1109%2FTKDE.2023.3270750&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1041-4347&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1041-4347&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1041-4347&client=summon