An Adaptive Prediction Model for the Remaining Life of an Li-Ion Battery Based on the Fusion of the Two-Phase Wiener Process and an Extreme Learning Machine
Lithium-ion batteries (LiBs) are the most important part of electric vehicle (EV) systems. Because there are two different degradation rates during LiB degradation, there are many two-phase models for LiBs. However, most of these methods do not consider the randomness of the changing point in the tw...
Saved in:
Published in | Electronics (Basel) Vol. 10; no. 5; p. 540 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
01.03.2021
|
Online Access | Get full text |
Cover
Loading…
Abstract | Lithium-ion batteries (LiBs) are the most important part of electric vehicle (EV) systems. Because there are two different degradation rates during LiB degradation, there are many two-phase models for LiBs. However, most of these methods do not consider the randomness of the changing point in the two-phase model and cannot update the change time in real time. Therefore, this paper proposes a method based on the combination of the two-phase Wiener model and an extreme learning machine (ELM). The two-phase Wiener model is used to derive the mathematical expression of the remaining useful life (RUL), and the ELM is implemented to adaptively detect the changing point. Based on the Poisson distribution, the distribution of the changing time is derived as a gamma distribution. To evaluate the theoretical results and practicality of the proposed method, we perform both numerical and practical simulations. The results of the simulations show that due to the precise and adaptive detection of changing points, the proposed method produces a more accurate RUL prediction than existing methods. The error of our method for detecting the changing point is about 4% and the mean prediction error of RUL in the second phase is improved from 4.39 cycles to 1.61 cycles. |
---|---|
AbstractList | Lithium-ion batteries (LiBs) are the most important part of electric vehicle (EV) systems. Because there are two different degradation rates during LiB degradation, there are many two-phase models for LiBs. However, most of these methods do not consider the randomness of the changing point in the two-phase model and cannot update the change time in real time. Therefore, this paper proposes a method based on the combination of the two-phase Wiener model and an extreme learning machine (ELM). The two-phase Wiener model is used to derive the mathematical expression of the remaining useful life (RUL), and the ELM is implemented to adaptively detect the changing point. Based on the Poisson distribution, the distribution of the changing time is derived as a gamma distribution. To evaluate the theoretical results and practicality of the proposed method, we perform both numerical and practical simulations. The results of the simulations show that due to the precise and adaptive detection of changing points, the proposed method produces a more accurate RUL prediction than existing methods. The error of our method for detecting the changing point is about 4% and the mean prediction error of RUL in the second phase is improved from 4.39 cycles to 1.61 cycles. |
Author | Yang, Chenglin Wang, Jingyuan Zhou, Xiuyun Liu, Zhen Long, Bing Chen, Xiaowu |
Author_xml | – sequence: 1 givenname: Xiaowu orcidid: 0000-0002-6673-9225 surname: Chen fullname: Chen, Xiaowu – sequence: 2 givenname: Zhen orcidid: 0000-0003-3406-0039 surname: Liu fullname: Liu, Zhen – sequence: 3 givenname: Jingyuan surname: Wang fullname: Wang, Jingyuan – sequence: 4 givenname: Chenglin surname: Yang fullname: Yang, Chenglin – sequence: 5 givenname: Bing surname: Long fullname: Long, Bing – sequence: 6 givenname: Xiuyun surname: Zhou fullname: Zhou, Xiuyun |
BookMark | eNp9UMtOAjEUbQwmIvIFbvoDo51py0yXSEBJhkgMxuWkdG6lBlrS1gf_4sfaURfGGO_m3Mc55ybnFPWss4DQeU4uKBXkEragonfWqJATwgln5Aj1C1KKTBSi6P3oT9AwhCeSSuS0oqSP3scWj1u5j-YF8NJDa1Q0zuKFa2GLtfM4bgDfwU4aa-wjro0G7DSWNrXZPDGvZIzgDwkDtDgtOsHsOXQuidhNq1eXLTfpjh8MWPDpkVMQQnJpO6fpW_SwA1yD9J9fFlJtjIUzdKzlNsDwGwfofjZdTW6y-vZ6PhnXmSoEi5kcjfSIr0vJeMkY8EqVRLWVapUo2JoDy0FTpSkpE5-XtAAhNVcsJwVwoSs6QPTLV3kXggfd7L3ZSX9octJ0GTd_ZJxU4pdKmSi79KKXZvuv9gMu64k5 |
CitedBy_id | crossref_primary_10_1016_j_est_2022_106457 crossref_primary_10_1109_ACCESS_2024_3374776 crossref_primary_10_3390_s24010165 crossref_primary_10_1002_qre_3234 crossref_primary_10_1007_s10800_024_02217_6 crossref_primary_10_1007_s11581_023_05152_2 crossref_primary_10_2139_ssrn_3997554 crossref_primary_10_3390_wevj15050177 crossref_primary_10_3390_electronics11213528 crossref_primary_10_1016_j_est_2024_112947 crossref_primary_10_1016_j_est_2023_110376 crossref_primary_10_1016_j_est_2023_110248 crossref_primary_10_3390_app14020698 crossref_primary_10_3390_en14164787 crossref_primary_10_1016_j_heliyon_2024_e34625 crossref_primary_10_3389_fenrg_2022_973487 crossref_primary_10_1016_j_jpowsour_2023_233760 crossref_primary_10_1016_j_jechem_2023_03_026 crossref_primary_10_1016_j_est_2023_109798 crossref_primary_10_1016_j_ress_2022_108651 crossref_primary_10_1109_TIM_2025_3541667 |
Cites_doi | 10.1016/j.rser.2019.109405 10.20964/2019.08.44 10.1016/j.physa.2011.01.024 10.1016/j.jpowsour.2018.06.104 10.1109/ACCESS.2018.2817655 10.1109/TIA.2019.2902532 10.1016/j.ejor.2014.11.029 10.1109/TR.2018.2829844 10.1016/j.ymssp.2005.09.012 10.1002/qre.1504 10.1109/TVT.2018.2864688 10.1109/MIE.2013.2250351 10.3390/electronics8101190 10.1016/j.microrel.2012.12.003 10.3390/en7020520 10.1016/j.ress.2017.09.027 10.1109/TR.2017.2785978 10.1109/EuroSimE.2019.8724567 10.1109/ACCESS.2019.2962502 10.1016/j.jpowsour.2014.01.085 10.1016/j.apenergy.2016.04.057 10.1016/j.jpowsour.2011.08.040 10.1007/s10462-013-9405-z 10.1007/s12206-014-0904-x 10.3390/electronics9091546 10.1109/ACCESS.2018.2858856 10.1016/j.jpowsour.2020.228581 10.1109/TR.2017.2711621 10.1016/j.jpowsour.2008.12.123 10.1142/S0218213018500367 |
ContentType | Journal Article |
DBID | AAYXX CITATION |
DOI | 10.3390/electronics10050540 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2079-9292 |
ExternalDocumentID | 10_3390_electronics10050540 |
GroupedDBID | 5VS 8FE 8FG AAYXX ADMLS AFKRA ALMA_UNASSIGNED_HOLDINGS ARAPS BENPR BGLVJ CCPQU CITATION HCIFZ IAO KQ8 MODMG M~E OK1 P62 PHGZM PHGZT PIMPY PROAC |
ID | FETCH-LOGICAL-c294t-a66f65b7a45744e58c70cd8cdc924b5e41ef3cf307c295732e9af5c4102e59f83 |
ISSN | 2079-9292 |
IngestDate | Thu Apr 24 22:56:11 EDT 2025 Tue Jul 01 02:00:20 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c294t-a66f65b7a45744e58c70cd8cdc924b5e41ef3cf307c295732e9af5c4102e59f83 |
ORCID | 0000-0002-6673-9225 0000-0003-3406-0039 |
OpenAccessLink | https://www.mdpi.com/2079-9292/10/5/540/pdf?version=1614930096 |
ParticipantIDs | crossref_primary_10_3390_electronics10050540 crossref_citationtrail_10_3390_electronics10050540 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-03-01 |
PublicationDateYYYYMMDD | 2021-03-01 |
PublicationDate_xml | – month: 03 year: 2021 text: 2021-03-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Electronics (Basel) |
PublicationYear | 2021 |
References | Xiong (ref_4) 2019; 68 Zhang (ref_20) 2019; 68 Li (ref_21) 2020; 8 Wu (ref_8) 2016; 173 Ding (ref_11) 2013; 44 Ren (ref_9) 2018; 6 Hannan (ref_2) 2018; 6 Chen (ref_18) 2015; 243 Molini (ref_31) 2011; 390 ref_19 Wang (ref_30) 2014; 30 Wang (ref_25) 2018; 170 Rezvanizaniani (ref_6) 2014; 256 Hannan (ref_13) 2019; 55 Peng (ref_17) 2014; 28 Meng (ref_5) 2019; 116 Chemali (ref_10) 2018; 400 Ma (ref_15) 2020; 476 He (ref_28) 2011; 196 Xing (ref_29) 2013; 53 Wang (ref_24) 2018; 67 ref_1 Tang (ref_22) 2014; 7 Jardine (ref_16) 2006; 20 Ojha (ref_3) 2013; 7 ref_27 Chakrabarti (ref_12) 2018; 27 Burgess (ref_23) 2009; 191 Kong (ref_26) 2017; 66 ref_7 Ma (ref_14) 2019; 14 |
References_xml | – volume: 116 start-page: 109405 year: 2019 ident: ref_5 article-title: A review on prognostics and health management (PHM) methods of lithium-ion batteries publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2019.109405 – volume: 14 start-page: 7737 year: 2019 ident: ref_14 article-title: The Remaining Useful Life Estimation of Lithium-ion Batteries Based on the HKA -ML-ELM Algorithm publication-title: Int. J. Electrochem. Sci. doi: 10.20964/2019.08.44 – volume: 390 start-page: 1841 year: 2011 ident: ref_31 article-title: First passage time statistics of Brownian motion with purely time dependent drift and diffusion publication-title: Phys. A Stat. Mech. Its Appl. doi: 10.1016/j.physa.2011.01.024 – volume: 400 start-page: 242 year: 2018 ident: ref_10 article-title: State-of-charge estimation of Li-ion batteries using deep neural networks: A machine learning approach publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2018.06.104 – volume: 6 start-page: 19362 year: 2018 ident: ref_2 article-title: State-of-the-Art and Energy Management System of Lithium-Ion Batteries in Electric Vehicle Applications: Issues and Recommendations publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2817655 – volume: 55 start-page: 4225 year: 2019 ident: ref_13 article-title: Extreme Learning Machine Model for State-of-Charge Estimation of Lithium-Ion Battery Using Gravitational Search Algorithm publication-title: IEEE Trans. Ind. Appl. doi: 10.1109/TIA.2019.2902532 – volume: 243 start-page: 190 year: 2015 ident: ref_18 article-title: Condition-based maintenance using the inverse Gaussian degradation model publication-title: Eur. J. Oper. Res. doi: 10.1016/j.ejor.2014.11.029 – volume: 68 start-page: 689 year: 2019 ident: ref_20 article-title: A Novel Lifetime Estimation Method for Two-Phase Degrading Systems publication-title: IEEE Trans. Reliab. doi: 10.1109/TR.2018.2829844 – volume: 20 start-page: 1483 year: 2006 ident: ref_16 article-title: A review on machinery diagnostics and prognostics implementing condition-based maintenance publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2005.09.012 – volume: 30 start-page: 513 year: 2014 ident: ref_30 article-title: Real-time Reliability Evaluation for an Individual Product Based on Change-point Gamma and Wiener Process publication-title: Qual. Reliab. Eng. Int. doi: 10.1002/qre.1504 – volume: 68 start-page: 4110 year: 2019 ident: ref_4 article-title: Lithium-Ion Battery Health Prognosis Based on a Real Battery Management System Used in Electric Vehicles publication-title: IEEE Trans. Veh. Technol. doi: 10.1109/TVT.2018.2864688 – volume: 7 start-page: 4 year: 2013 ident: ref_3 article-title: Battery Management System: An Overview of Its Application in the Smart Grid and Electric Vehicles publication-title: IEEE Ind. Electron. Mag. doi: 10.1109/MIE.2013.2250351 – ident: ref_1 doi: 10.3390/electronics8101190 – volume: 53 start-page: 811 year: 2013 ident: ref_29 article-title: An ensemble model for predicting the remaining useful performance of lithium-ion batteries publication-title: Microelectron. Reliab. doi: 10.1016/j.microrel.2012.12.003 – ident: ref_27 – volume: 7 start-page: 520 year: 2014 ident: ref_22 article-title: Remaining Useful Life Prediction of Lithium-Ion Batteries Based on the Wiener Process with Measurement Error publication-title: Energies doi: 10.3390/en7020520 – volume: 170 start-page: 244 year: 2018 ident: ref_25 article-title: Bayesian analysis of two-phase degradation data based on change-point Wiener process publication-title: Reliab. Eng. Syst. Saf. doi: 10.1016/j.ress.2017.09.027 – volume: 67 start-page: 688 year: 2018 ident: ref_24 article-title: Bayesian Approach for Two-Phase Degradation Data Based on Change-Point Wiener Process with Measurement Errors publication-title: IEEE Trans. Reliab. doi: 10.1109/TR.2017.2785978 – ident: ref_19 doi: 10.1109/EuroSimE.2019.8724567 – volume: 8 start-page: 5471 year: 2020 ident: ref_21 article-title: A Sequential Bayesian Updated Wiener Process Model for Remaining Useful Life Prediction publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2962502 – volume: 256 start-page: 110 year: 2014 ident: ref_6 article-title: Review and recent advances in battery health monitoring and prognostics technologies for electric vehicle (EV) safety and mobility publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2014.01.085 – volume: 173 start-page: 134 year: 2016 ident: ref_8 article-title: An online method for lithium-ion battery remaining useful life estimation using importance sampling and neural networks publication-title: Appl. Energy doi: 10.1016/j.apenergy.2016.04.057 – volume: 196 start-page: 10314 year: 2011 ident: ref_28 article-title: Prognostics of lithium-ion batteries based on Dempster–Shafer theory and the Bayesian Monte Carlo method publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2011.08.040 – volume: 44 start-page: 103 year: 2013 ident: ref_11 article-title: Extreme learning machine: Algorithm, theory and applications publication-title: Artif. Intell. Rev. doi: 10.1007/s10462-013-9405-z – volume: 28 start-page: 3937 year: 2014 ident: ref_17 article-title: A Bayesian optimal design for degradation tests based on the inverse Gaussian process publication-title: J. Mech. Sci. Technol. doi: 10.1007/s12206-014-0904-x – ident: ref_7 doi: 10.3390/electronics9091546 – volume: 6 start-page: 50587 year: 2018 ident: ref_9 article-title: Remaining Useful Life Prediction for Lithium-Ion Battery: A Deep Learning Approach publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2858856 – volume: 476 start-page: 228581 year: 2020 ident: ref_15 article-title: The capacity estimation and cycle life prediction of lithium-ion batteries using a new broad extreme learning machine approach publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2020.228581 – volume: 66 start-page: 1345 year: 2017 ident: ref_26 article-title: Two-Phase Degradation Process Model with Abrupt Jump at Change Point Governed by Wiener Process publication-title: IEEE Trans. Reliab. doi: 10.1109/TR.2017.2711621 – volume: 191 start-page: 16 year: 2009 ident: ref_23 article-title: Valve Regulated Lead Acid battery float service life estimation using a Kalman filter publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2008.12.123 – volume: 27 start-page: 1850036 year: 2018 ident: ref_12 article-title: Extreme Learning Machine Based Prognostics of Battery Life publication-title: Int. J. Artif. Intell. Tools doi: 10.1142/S0218213018500367 |
SSID | ssj0000913830 |
Score | 2.3026407 |
Snippet | Lithium-ion batteries (LiBs) are the most important part of electric vehicle (EV) systems. Because there are two different degradation rates during LiB... |
SourceID | crossref |
SourceType | Enrichment Source Index Database |
StartPage | 540 |
Title | An Adaptive Prediction Model for the Remaining Life of an Li-Ion Battery Based on the Fusion of the Two-Phase Wiener Process and an Extreme Learning Machine |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaW7QUOiKcoL_nAbQnkYedxjEqrUgGqYCuW08p2nO5KS7bqJirlt_BX-G_MxI4TqlVFuWQ33slEyXxrj8fjbwh5JaK4lKWvPClE5DGYY3gyYNrLcIlPR0pkJtviU3x4wo5mfDYa_R5kLTW1fKN-bt1X8j9WhTawK-6SvYFlnVJogO9gXziCheH4TzbOq0leiLM2--f4HJdcWmtifbOVyx_8rL-bKhAw_y7bCAFW6l1670HSsGtewucGHE-zbjA5aDbWi8Sz6cXaO17A79CBIEV1t7XAsrxO9n_UGGLsiFpPsZTRolus70L-rtZOG-PFu60GIYg9u0NkthTri8alCC2bduVk0W9W-2qD20dwn8umx_U3246KTleWS9yGMsJBLpfp8UI_yRAlpnvWW9q6LtsfQJMP-l9uuJ-ujgtRlGEiZV9ZaBO0JfyM9N8s3FdGR5ezCLMlVDPfouQW2QlhlhKOyU7-7uOHLy7Ih6SraVvvxj2GYb5CTW-3aBp4RwM3Z3qP3LXzE5obsN0nI109IHcGrJUPya-8oh3saA872sKOAuwo4IY62FGEHV2XVFTUwI5a2NEWdhQa8AIDOxTEMwc7amBHLexAS4GaLOxoBztqYfeInBzsT_cOPVvkw1NhxmpPxHEZc5kIxhPGNE9V4iNfRaGykEmuWaDLSJUwFIE8T6JQZ6LkioFjrHlWptFjMq7WlX5CaMBk7GslJAsLFjIts0AV4J_Diw1EmupdEnYvd64sAz4WYlnNr7HtLnntLjozBDDXiT-9mfgzcrv_Izwn4_q80S_Ay63lS4ulPzM9rNU |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Adaptive+Prediction+Model+for+the+Remaining+Life+of+an+Li-Ion+Battery+Based+on+the+Fusion+of+the+Two-Phase+Wiener+Process+and+an+Extreme+Learning+Machine&rft.jtitle=Electronics+%28Basel%29&rft.au=Chen%2C+Xiaowu&rft.au=Liu%2C+Zhen&rft.au=Wang%2C+Jingyuan&rft.au=Yang%2C+Chenglin&rft.date=2021-03-01&rft.issn=2079-9292&rft.eissn=2079-9292&rft.volume=10&rft.issue=5&rft.spage=540&rft_id=info:doi/10.3390%2Felectronics10050540&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_electronics10050540 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2079-9292&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2079-9292&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2079-9292&client=summon |