An Adaptive Prediction Model for the Remaining Life of an Li-Ion Battery Based on the Fusion of the Two-Phase Wiener Process and an Extreme Learning Machine

Lithium-ion batteries (LiBs) are the most important part of electric vehicle (EV) systems. Because there are two different degradation rates during LiB degradation, there are many two-phase models for LiBs. However, most of these methods do not consider the randomness of the changing point in the tw...

Full description

Saved in:
Bibliographic Details
Published inElectronics (Basel) Vol. 10; no. 5; p. 540
Main Authors Chen, Xiaowu, Liu, Zhen, Wang, Jingyuan, Yang, Chenglin, Long, Bing, Zhou, Xiuyun
Format Journal Article
LanguageEnglish
Published 01.03.2021
Online AccessGet full text

Cover

Loading…
Abstract Lithium-ion batteries (LiBs) are the most important part of electric vehicle (EV) systems. Because there are two different degradation rates during LiB degradation, there are many two-phase models for LiBs. However, most of these methods do not consider the randomness of the changing point in the two-phase model and cannot update the change time in real time. Therefore, this paper proposes a method based on the combination of the two-phase Wiener model and an extreme learning machine (ELM). The two-phase Wiener model is used to derive the mathematical expression of the remaining useful life (RUL), and the ELM is implemented to adaptively detect the changing point. Based on the Poisson distribution, the distribution of the changing time is derived as a gamma distribution. To evaluate the theoretical results and practicality of the proposed method, we perform both numerical and practical simulations. The results of the simulations show that due to the precise and adaptive detection of changing points, the proposed method produces a more accurate RUL prediction than existing methods. The error of our method for detecting the changing point is about 4% and the mean prediction error of RUL in the second phase is improved from 4.39 cycles to 1.61 cycles.
AbstractList Lithium-ion batteries (LiBs) are the most important part of electric vehicle (EV) systems. Because there are two different degradation rates during LiB degradation, there are many two-phase models for LiBs. However, most of these methods do not consider the randomness of the changing point in the two-phase model and cannot update the change time in real time. Therefore, this paper proposes a method based on the combination of the two-phase Wiener model and an extreme learning machine (ELM). The two-phase Wiener model is used to derive the mathematical expression of the remaining useful life (RUL), and the ELM is implemented to adaptively detect the changing point. Based on the Poisson distribution, the distribution of the changing time is derived as a gamma distribution. To evaluate the theoretical results and practicality of the proposed method, we perform both numerical and practical simulations. The results of the simulations show that due to the precise and adaptive detection of changing points, the proposed method produces a more accurate RUL prediction than existing methods. The error of our method for detecting the changing point is about 4% and the mean prediction error of RUL in the second phase is improved from 4.39 cycles to 1.61 cycles.
Author Yang, Chenglin
Wang, Jingyuan
Zhou, Xiuyun
Liu, Zhen
Long, Bing
Chen, Xiaowu
Author_xml – sequence: 1
  givenname: Xiaowu
  orcidid: 0000-0002-6673-9225
  surname: Chen
  fullname: Chen, Xiaowu
– sequence: 2
  givenname: Zhen
  orcidid: 0000-0003-3406-0039
  surname: Liu
  fullname: Liu, Zhen
– sequence: 3
  givenname: Jingyuan
  surname: Wang
  fullname: Wang, Jingyuan
– sequence: 4
  givenname: Chenglin
  surname: Yang
  fullname: Yang, Chenglin
– sequence: 5
  givenname: Bing
  surname: Long
  fullname: Long, Bing
– sequence: 6
  givenname: Xiuyun
  surname: Zhou
  fullname: Zhou, Xiuyun
BookMark eNp9UMtOAjEUbQwmIvIFbvoDo51py0yXSEBJhkgMxuWkdG6lBlrS1gf_4sfaURfGGO_m3Mc55ybnFPWss4DQeU4uKBXkEragonfWqJATwgln5Aj1C1KKTBSi6P3oT9AwhCeSSuS0oqSP3scWj1u5j-YF8NJDa1Q0zuKFa2GLtfM4bgDfwU4aa-wjro0G7DSWNrXZPDGvZIzgDwkDtDgtOsHsOXQuidhNq1eXLTfpjh8MWPDpkVMQQnJpO6fpW_SwA1yD9J9fFlJtjIUzdKzlNsDwGwfofjZdTW6y-vZ6PhnXmSoEi5kcjfSIr0vJeMkY8EqVRLWVapUo2JoDy0FTpSkpE5-XtAAhNVcsJwVwoSs6QPTLV3kXggfd7L3ZSX9octJ0GTd_ZJxU4pdKmSi79KKXZvuv9gMu64k5
CitedBy_id crossref_primary_10_1016_j_est_2022_106457
crossref_primary_10_1109_ACCESS_2024_3374776
crossref_primary_10_3390_s24010165
crossref_primary_10_1002_qre_3234
crossref_primary_10_1007_s10800_024_02217_6
crossref_primary_10_1007_s11581_023_05152_2
crossref_primary_10_2139_ssrn_3997554
crossref_primary_10_3390_wevj15050177
crossref_primary_10_3390_electronics11213528
crossref_primary_10_1016_j_est_2024_112947
crossref_primary_10_1016_j_est_2023_110376
crossref_primary_10_1016_j_est_2023_110248
crossref_primary_10_3390_app14020698
crossref_primary_10_3390_en14164787
crossref_primary_10_1016_j_heliyon_2024_e34625
crossref_primary_10_3389_fenrg_2022_973487
crossref_primary_10_1016_j_jpowsour_2023_233760
crossref_primary_10_1016_j_jechem_2023_03_026
crossref_primary_10_1016_j_est_2023_109798
crossref_primary_10_1016_j_ress_2022_108651
crossref_primary_10_1109_TIM_2025_3541667
Cites_doi 10.1016/j.rser.2019.109405
10.20964/2019.08.44
10.1016/j.physa.2011.01.024
10.1016/j.jpowsour.2018.06.104
10.1109/ACCESS.2018.2817655
10.1109/TIA.2019.2902532
10.1016/j.ejor.2014.11.029
10.1109/TR.2018.2829844
10.1016/j.ymssp.2005.09.012
10.1002/qre.1504
10.1109/TVT.2018.2864688
10.1109/MIE.2013.2250351
10.3390/electronics8101190
10.1016/j.microrel.2012.12.003
10.3390/en7020520
10.1016/j.ress.2017.09.027
10.1109/TR.2017.2785978
10.1109/EuroSimE.2019.8724567
10.1109/ACCESS.2019.2962502
10.1016/j.jpowsour.2014.01.085
10.1016/j.apenergy.2016.04.057
10.1016/j.jpowsour.2011.08.040
10.1007/s10462-013-9405-z
10.1007/s12206-014-0904-x
10.3390/electronics9091546
10.1109/ACCESS.2018.2858856
10.1016/j.jpowsour.2020.228581
10.1109/TR.2017.2711621
10.1016/j.jpowsour.2008.12.123
10.1142/S0218213018500367
ContentType Journal Article
DBID AAYXX
CITATION
DOI 10.3390/electronics10050540
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2079-9292
ExternalDocumentID 10_3390_electronics10050540
GroupedDBID 5VS
8FE
8FG
AAYXX
ADMLS
AFKRA
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BENPR
BGLVJ
CCPQU
CITATION
HCIFZ
IAO
KQ8
MODMG
M~E
OK1
P62
PHGZM
PHGZT
PIMPY
PROAC
ID FETCH-LOGICAL-c294t-a66f65b7a45744e58c70cd8cdc924b5e41ef3cf307c295732e9af5c4102e59f83
ISSN 2079-9292
IngestDate Thu Apr 24 22:56:11 EDT 2025
Tue Jul 01 02:00:20 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c294t-a66f65b7a45744e58c70cd8cdc924b5e41ef3cf307c295732e9af5c4102e59f83
ORCID 0000-0002-6673-9225
0000-0003-3406-0039
OpenAccessLink https://www.mdpi.com/2079-9292/10/5/540/pdf?version=1614930096
ParticipantIDs crossref_primary_10_3390_electronics10050540
crossref_citationtrail_10_3390_electronics10050540
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-03-01
PublicationDateYYYYMMDD 2021-03-01
PublicationDate_xml – month: 03
  year: 2021
  text: 2021-03-01
  day: 01
PublicationDecade 2020
PublicationTitle Electronics (Basel)
PublicationYear 2021
References Xiong (ref_4) 2019; 68
Zhang (ref_20) 2019; 68
Li (ref_21) 2020; 8
Wu (ref_8) 2016; 173
Ding (ref_11) 2013; 44
Ren (ref_9) 2018; 6
Hannan (ref_2) 2018; 6
Chen (ref_18) 2015; 243
Molini (ref_31) 2011; 390
ref_19
Wang (ref_30) 2014; 30
Wang (ref_25) 2018; 170
Rezvanizaniani (ref_6) 2014; 256
Hannan (ref_13) 2019; 55
Peng (ref_17) 2014; 28
Meng (ref_5) 2019; 116
Chemali (ref_10) 2018; 400
Ma (ref_15) 2020; 476
He (ref_28) 2011; 196
Xing (ref_29) 2013; 53
Wang (ref_24) 2018; 67
ref_1
Tang (ref_22) 2014; 7
Jardine (ref_16) 2006; 20
Ojha (ref_3) 2013; 7
ref_27
Chakrabarti (ref_12) 2018; 27
Burgess (ref_23) 2009; 191
Kong (ref_26) 2017; 66
ref_7
Ma (ref_14) 2019; 14
References_xml – volume: 116
  start-page: 109405
  year: 2019
  ident: ref_5
  article-title: A review on prognostics and health management (PHM) methods of lithium-ion batteries
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2019.109405
– volume: 14
  start-page: 7737
  year: 2019
  ident: ref_14
  article-title: The Remaining Useful Life Estimation of Lithium-ion Batteries Based on the HKA -ML-ELM Algorithm
  publication-title: Int. J. Electrochem. Sci.
  doi: 10.20964/2019.08.44
– volume: 390
  start-page: 1841
  year: 2011
  ident: ref_31
  article-title: First passage time statistics of Brownian motion with purely time dependent drift and diffusion
  publication-title: Phys. A Stat. Mech. Its Appl.
  doi: 10.1016/j.physa.2011.01.024
– volume: 400
  start-page: 242
  year: 2018
  ident: ref_10
  article-title: State-of-charge estimation of Li-ion batteries using deep neural networks: A machine learning approach
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2018.06.104
– volume: 6
  start-page: 19362
  year: 2018
  ident: ref_2
  article-title: State-of-the-Art and Energy Management System of Lithium-Ion Batteries in Electric Vehicle Applications: Issues and Recommendations
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2817655
– volume: 55
  start-page: 4225
  year: 2019
  ident: ref_13
  article-title: Extreme Learning Machine Model for State-of-Charge Estimation of Lithium-Ion Battery Using Gravitational Search Algorithm
  publication-title: IEEE Trans. Ind. Appl.
  doi: 10.1109/TIA.2019.2902532
– volume: 243
  start-page: 190
  year: 2015
  ident: ref_18
  article-title: Condition-based maintenance using the inverse Gaussian degradation model
  publication-title: Eur. J. Oper. Res.
  doi: 10.1016/j.ejor.2014.11.029
– volume: 68
  start-page: 689
  year: 2019
  ident: ref_20
  article-title: A Novel Lifetime Estimation Method for Two-Phase Degrading Systems
  publication-title: IEEE Trans. Reliab.
  doi: 10.1109/TR.2018.2829844
– volume: 20
  start-page: 1483
  year: 2006
  ident: ref_16
  article-title: A review on machinery diagnostics and prognostics implementing condition-based maintenance
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2005.09.012
– volume: 30
  start-page: 513
  year: 2014
  ident: ref_30
  article-title: Real-time Reliability Evaluation for an Individual Product Based on Change-point Gamma and Wiener Process
  publication-title: Qual. Reliab. Eng. Int.
  doi: 10.1002/qre.1504
– volume: 68
  start-page: 4110
  year: 2019
  ident: ref_4
  article-title: Lithium-Ion Battery Health Prognosis Based on a Real Battery Management System Used in Electric Vehicles
  publication-title: IEEE Trans. Veh. Technol.
  doi: 10.1109/TVT.2018.2864688
– volume: 7
  start-page: 4
  year: 2013
  ident: ref_3
  article-title: Battery Management System: An Overview of Its Application in the Smart Grid and Electric Vehicles
  publication-title: IEEE Ind. Electron. Mag.
  doi: 10.1109/MIE.2013.2250351
– ident: ref_1
  doi: 10.3390/electronics8101190
– volume: 53
  start-page: 811
  year: 2013
  ident: ref_29
  article-title: An ensemble model for predicting the remaining useful performance of lithium-ion batteries
  publication-title: Microelectron. Reliab.
  doi: 10.1016/j.microrel.2012.12.003
– ident: ref_27
– volume: 7
  start-page: 520
  year: 2014
  ident: ref_22
  article-title: Remaining Useful Life Prediction of Lithium-Ion Batteries Based on the Wiener Process with Measurement Error
  publication-title: Energies
  doi: 10.3390/en7020520
– volume: 170
  start-page: 244
  year: 2018
  ident: ref_25
  article-title: Bayesian analysis of two-phase degradation data based on change-point Wiener process
  publication-title: Reliab. Eng. Syst. Saf.
  doi: 10.1016/j.ress.2017.09.027
– volume: 67
  start-page: 688
  year: 2018
  ident: ref_24
  article-title: Bayesian Approach for Two-Phase Degradation Data Based on Change-Point Wiener Process with Measurement Errors
  publication-title: IEEE Trans. Reliab.
  doi: 10.1109/TR.2017.2785978
– ident: ref_19
  doi: 10.1109/EuroSimE.2019.8724567
– volume: 8
  start-page: 5471
  year: 2020
  ident: ref_21
  article-title: A Sequential Bayesian Updated Wiener Process Model for Remaining Useful Life Prediction
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2962502
– volume: 256
  start-page: 110
  year: 2014
  ident: ref_6
  article-title: Review and recent advances in battery health monitoring and prognostics technologies for electric vehicle (EV) safety and mobility
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2014.01.085
– volume: 173
  start-page: 134
  year: 2016
  ident: ref_8
  article-title: An online method for lithium-ion battery remaining useful life estimation using importance sampling and neural networks
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2016.04.057
– volume: 196
  start-page: 10314
  year: 2011
  ident: ref_28
  article-title: Prognostics of lithium-ion batteries based on Dempster–Shafer theory and the Bayesian Monte Carlo method
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2011.08.040
– volume: 44
  start-page: 103
  year: 2013
  ident: ref_11
  article-title: Extreme learning machine: Algorithm, theory and applications
  publication-title: Artif. Intell. Rev.
  doi: 10.1007/s10462-013-9405-z
– volume: 28
  start-page: 3937
  year: 2014
  ident: ref_17
  article-title: A Bayesian optimal design for degradation tests based on the inverse Gaussian process
  publication-title: J. Mech. Sci. Technol.
  doi: 10.1007/s12206-014-0904-x
– ident: ref_7
  doi: 10.3390/electronics9091546
– volume: 6
  start-page: 50587
  year: 2018
  ident: ref_9
  article-title: Remaining Useful Life Prediction for Lithium-Ion Battery: A Deep Learning Approach
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2858856
– volume: 476
  start-page: 228581
  year: 2020
  ident: ref_15
  article-title: The capacity estimation and cycle life prediction of lithium-ion batteries using a new broad extreme learning machine approach
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2020.228581
– volume: 66
  start-page: 1345
  year: 2017
  ident: ref_26
  article-title: Two-Phase Degradation Process Model with Abrupt Jump at Change Point Governed by Wiener Process
  publication-title: IEEE Trans. Reliab.
  doi: 10.1109/TR.2017.2711621
– volume: 191
  start-page: 16
  year: 2009
  ident: ref_23
  article-title: Valve Regulated Lead Acid battery float service life estimation using a Kalman filter
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2008.12.123
– volume: 27
  start-page: 1850036
  year: 2018
  ident: ref_12
  article-title: Extreme Learning Machine Based Prognostics of Battery Life
  publication-title: Int. J. Artif. Intell. Tools
  doi: 10.1142/S0218213018500367
SSID ssj0000913830
Score 2.3026407
Snippet Lithium-ion batteries (LiBs) are the most important part of electric vehicle (EV) systems. Because there are two different degradation rates during LiB...
SourceID crossref
SourceType Enrichment Source
Index Database
StartPage 540
Title An Adaptive Prediction Model for the Remaining Life of an Li-Ion Battery Based on the Fusion of the Two-Phase Wiener Process and an Extreme Learning Machine
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaW7QUOiKcoL_nAbQnkYedxjEqrUgGqYCuW08p2nO5KS7bqJirlt_BX-G_MxI4TqlVFuWQ33slEyXxrj8fjbwh5JaK4lKWvPClE5DGYY3gyYNrLcIlPR0pkJtviU3x4wo5mfDYa_R5kLTW1fKN-bt1X8j9WhTawK-6SvYFlnVJogO9gXziCheH4TzbOq0leiLM2--f4HJdcWmtifbOVyx_8rL-bKhAw_y7bCAFW6l1670HSsGtewucGHE-zbjA5aDbWi8Sz6cXaO17A79CBIEV1t7XAsrxO9n_UGGLsiFpPsZTRolus70L-rtZOG-PFu60GIYg9u0NkthTri8alCC2bduVk0W9W-2qD20dwn8umx_U3246KTleWS9yGMsJBLpfp8UI_yRAlpnvWW9q6LtsfQJMP-l9uuJ-ujgtRlGEiZV9ZaBO0JfyM9N8s3FdGR5ezCLMlVDPfouQW2QlhlhKOyU7-7uOHLy7Ih6SraVvvxj2GYb5CTW-3aBp4RwM3Z3qP3LXzE5obsN0nI109IHcGrJUPya-8oh3saA872sKOAuwo4IY62FGEHV2XVFTUwI5a2NEWdhQa8AIDOxTEMwc7amBHLexAS4GaLOxoBztqYfeInBzsT_cOPVvkw1NhxmpPxHEZc5kIxhPGNE9V4iNfRaGykEmuWaDLSJUwFIE8T6JQZ6LkioFjrHlWptFjMq7WlX5CaMBk7GslJAsLFjIts0AV4J_Diw1EmupdEnYvd64sAz4WYlnNr7HtLnntLjozBDDXiT-9mfgzcrv_Izwn4_q80S_Ay63lS4ulPzM9rNU
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Adaptive+Prediction+Model+for+the+Remaining+Life+of+an+Li-Ion+Battery+Based+on+the+Fusion+of+the+Two-Phase+Wiener+Process+and+an+Extreme+Learning+Machine&rft.jtitle=Electronics+%28Basel%29&rft.au=Chen%2C+Xiaowu&rft.au=Liu%2C+Zhen&rft.au=Wang%2C+Jingyuan&rft.au=Yang%2C+Chenglin&rft.date=2021-03-01&rft.issn=2079-9292&rft.eissn=2079-9292&rft.volume=10&rft.issue=5&rft.spage=540&rft_id=info:doi/10.3390%2Felectronics10050540&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_electronics10050540
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2079-9292&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2079-9292&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2079-9292&client=summon