Outage Analysis of Sparse Vector Coding-Based Downlink Multicarrier NOMA for URLLC

Ultrareliable and low-latency communication (uRLLC) is a promising use case in the fifth generation and beyond systems for critical and delay-sensitive applications with aid of short-packet transmission. Nevertheless, multicarrier nonorthogonal multiple access (MCNOMA) is a promising technique to ac...

Full description

Saved in:
Bibliographic Details
Published inIEEE internet of things journal Vol. 10; no. 14; pp. 12393 - 12400
Main Authors Sabapathy, Sundaresan, Maruthu, Surendar, Kumar, Lakshmi Sutha, Jayakody, Dushantha Nalin K.
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 15.07.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Ultrareliable and low-latency communication (uRLLC) is a promising use case in the fifth generation and beyond systems for critical and delay-sensitive applications with aid of short-packet transmission. Nevertheless, multicarrier nonorthogonal multiple access (MCNOMA) is a promising technique to achieve spectral efficiency and massive connectivity, however, intercarrier interference (ICI) stands out to be a major downside. Recently, sparse vector coding (SVC) is proposed to fulfill the tradeoff between reliability and latency, thereby achieving the benchmarks of uRLLC. In this article, SVC-based downlink MCNOMA (SVC-MCNOMA) system is considered and first it is shown that SVC-MCNOMA is free from ICI due to the sparse nature of the information. Further, compressed sensing (CS)-based recovery at the receiver end helps in reducing the latency as well as enhances reliability. Moreover, to study the system performance, this article derives the closed-form outage expressions of the SVC-MCNOMA system over the Rician fading channel, and through Monte Carlo simulation, the analytical results are validated. The analyses demonstrate that SVC-MCNOMA outperforms conventional MCNOMA (C-MCNOMA), thereby achieving spectral efficacy, ultrareliability with low latency, and eradicates the effect of ICI.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2327-4662
2327-4662
DOI:10.1109/JIOT.2023.3246300