Evolution of the microstructure and reflectance of the surface scattering layer on melting, level Arctic sea ice

The microstructure of the uppermost portions of a melting Arctic sea ice cover has a disproportionately large influence on how incident sunlight is reflected and absorbed in the ice/ocean system. The surface scattering layer (SSL) effectively backscatters solar radiation and keeps the surface albedo...

Full description

Saved in:
Bibliographic Details
Published inElementa (Washington, D.C.) Vol. 11; no. 1
Main Authors Macfarlane, Amy R., Dadic, Ruzica, Smith, Madison M., Light, Bonnie, Nicolaus, Marcel, Henna-Reetta, Hannula, Webster, Melinda, Linhardt, Felix, Hämmerle, Stefan, Schneebeli, Martin
Format Journal Article
LanguageEnglish
Published 06.04.2023
Online AccessGet full text

Cover

Loading…
Abstract The microstructure of the uppermost portions of a melting Arctic sea ice cover has a disproportionately large influence on how incident sunlight is reflected and absorbed in the ice/ocean system. The surface scattering layer (SSL) effectively backscatters solar radiation and keeps the surface albedo of melting ice relatively high compared to ice with the SSL manually removed. Measurements of albedo provide information on how incoming shortwave radiation is partitioned by the SSL and have been pivotal to improving climate model parameterizations. However, the relationship between the physical and optical properties of the SSL is still poorly constrained. Until now, radiative transfer models have been the only way to infer the microstructure of the SSL. During the MOSAiC expedition of 2019–2020, we took samples and, for the first time, directly measured the microstructure of the SSL on bare sea ice using X-ray micro-computed tomography. We show that the SSL has a highly anisotropic, coarse, and porous structure, with a small optical diameter and density at the surface, increasing with depth. As the melting surface ablates, the SSL regenerates, maintaining some aspects of its microstructure throughout the melt season. We used the microstructure measurements with a radiative transfer model to improve our understanding of the relationship between physical properties and optical properties at 850 nm wavelength. When the microstructure is used as model input, we see a 10–15% overestimation of the reflectance at 850 nm. This comparison suggests that either a) spatial variability at the meter scale is important for the two in situ optical measurements and therefore a larger sample size is needed to represent the microstructure or b) future work should investigate either i) using a ray-tracing approach instead of explicitly solving the radiative transfer equation or ii) using a more appropriate radiative transfer model.
AbstractList The microstructure of the uppermost portions of a melting Arctic sea ice cover has a disproportionately large influence on how incident sunlight is reflected and absorbed in the ice/ocean system. The surface scattering layer (SSL) effectively backscatters solar radiation and keeps the surface albedo of melting ice relatively high compared to ice with the SSL manually removed. Measurements of albedo provide information on how incoming shortwave radiation is partitioned by the SSL and have been pivotal to improving climate model parameterizations. However, the relationship between the physical and optical properties of the SSL is still poorly constrained. Until now, radiative transfer models have been the only way to infer the microstructure of the SSL. During the MOSAiC expedition of 2019–2020, we took samples and, for the first time, directly measured the microstructure of the SSL on bare sea ice using X-ray micro-computed tomography. We show that the SSL has a highly anisotropic, coarse, and porous structure, with a small optical diameter and density at the surface, increasing with depth. As the melting surface ablates, the SSL regenerates, maintaining some aspects of its microstructure throughout the melt season. We used the microstructure measurements with a radiative transfer model to improve our understanding of the relationship between physical properties and optical properties at 850 nm wavelength. When the microstructure is used as model input, we see a 10–15% overestimation of the reflectance at 850 nm. This comparison suggests that either a) spatial variability at the meter scale is important for the two in situ optical measurements and therefore a larger sample size is needed to represent the microstructure or b) future work should investigate either i) using a ray-tracing approach instead of explicitly solving the radiative transfer equation or ii) using a more appropriate radiative transfer model.
Author Henna-Reetta, Hannula
Nicolaus, Marcel
Smith, Madison M.
Hämmerle, Stefan
Webster, Melinda
Light, Bonnie
Linhardt, Felix
Schneebeli, Martin
Macfarlane, Amy R.
Dadic, Ruzica
Author_xml – sequence: 1
  givenname: Amy R.
  surname: Macfarlane
  fullname: Macfarlane, Amy R.
– sequence: 2
  givenname: Ruzica
  surname: Dadic
  fullname: Dadic, Ruzica
– sequence: 3
  givenname: Madison M.
  surname: Smith
  fullname: Smith, Madison M.
– sequence: 4
  givenname: Bonnie
  surname: Light
  fullname: Light, Bonnie
– sequence: 5
  givenname: Marcel
  surname: Nicolaus
  fullname: Nicolaus, Marcel
– sequence: 6
  givenname: Hannula
  surname: Henna-Reetta
  fullname: Henna-Reetta, Hannula
– sequence: 7
  givenname: Melinda
  surname: Webster
  fullname: Webster, Melinda
– sequence: 8
  givenname: Felix
  surname: Linhardt
  fullname: Linhardt, Felix
– sequence: 9
  givenname: Stefan
  surname: Hämmerle
  fullname: Hämmerle, Stefan
– sequence: 10
  givenname: Martin
  surname: Schneebeli
  fullname: Schneebeli, Martin
BookMark eNpNkEFLw0AQhRepYK39BV72B5g6O2m2zbGUaoWCFz2HyWZWI5uk7G4K_fcmasHTmzc8HrzvVkzarmUh7hUsVIbZIztuuI20QEBcAChIr8QUU8wSBagn_-4bMQ_hC8bMCpeIU3HcnTrXx7prZWdl_GTZ1MZ3IfrexN6zpLaSnq1jE6k1fEmF3lsabDAUI_u6_ZCOzuzlUNSwi8PjQTo-sZMbb2JtZGCSteE7cW3JBZ7_6Uy8P-3etvvk8Pr8st0cEoP5MiYEYJAUKcxslVnQFdKyLAGqtcrVKrd2rS2WSpdQaoLcrjKyWlu1NqmCvEpnIv3tHdeEYUFx9HVD_lwoKEZuxYVbMXIrfril3zClZo8
CitedBy_id crossref_primary_10_1109_TGRS_2023_3334867
crossref_primary_10_1525_elementa_2023_00086
crossref_primary_10_5194_tc_17_5417_2023
crossref_primary_10_5194_tc_18_1185_2024
crossref_primary_10_5194_tc_18_273_2024
Cites_doi 10.4236/ijg.2012.35114
10.1038/s41558-019-0619-1
10.1029/98JC01264
10.17815/jlsrf-3-163
10.1029/2006JC003977
10.1016/S0022-4073(97)00221-5
10.1109/TGRS.2013.2280502
10.1175/1520-0469(1980)037<2712:AMFTSA>2.0.CO;2
10.1017/jog.2021.35
10.1029/JC086iC08p07447
10.1016/j.coldregions.2016.01.005
10.3189/S0022143000021122
10.3189/172756406781811763
10.1525/elementa.2021.000046
10.1046/j.1365-2818.1997.1340694.x
10.1525/elementa.2021.00023
10.1007/BF02247491
10.2139/ssrn.1911068
10.5194/tc-15-3897-2021
10.3189/172756506781828412
10.5194/tc-7-1803-2013
10.3189/S0022143000014076
10.1175/JCLI3624.1
10.1017/9781009157964
10.1029/JC076i006p01550
10.3189/2014JoG14J015
10.5194/tc-10-2541-2016
10.5194/amt-8-3297-2015
10.1016/j.jqsrt.2018.04.021
10.1002/2016JC011977
10.1002/2015JC011163
ContentType Journal Article
DBID AAYXX
CITATION
DOI 10.1525/elementa.2022.00103
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Geology
Sciences (General)
EISSN 2325-1026
ExternalDocumentID 10_1525_elementa_2022_00103
GroupedDBID 5VS
AAFWJ
AAPRH
AAYXX
ABJCF
ACCQO
ADBBV
AFKRA
AFPKN
AHJUD
ALMA_UNASSIGNED_HOLDINGS
ATCPS
BCNDV
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
CITATION
DOUXS
EBS
EDH
FRP
GROUPED_DOAJ
GX1
H13
HCIFZ
IAO
KQ8
M7S
M~E
OK1
PATMY
PCBAR
PIMPY
PTHSS
PYCSY
ID FETCH-LOGICAL-c294t-a00c2a1a125fd5f06d2a4bb00d819179ff86f2b16b0b6a09f75af66f18c3109d3
ISSN 2325-1026
IngestDate Fri Aug 23 02:48:44 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c294t-a00c2a1a125fd5f06d2a4bb00d819179ff86f2b16b0b6a09f75af66f18c3109d3
OpenAccessLink https://online.ucpress.edu/elementa/article-pdf/11/1/00103/775373/elementa.2022.00103.pdf
ParticipantIDs crossref_primary_10_1525_elementa_2022_00103
PublicationCentury 2000
PublicationDate 2023-04-06
PublicationDateYYYYMMDD 2023-04-06
PublicationDate_xml – month: 04
  year: 2023
  text: 2023-04-06
  day: 06
PublicationDecade 2020
PublicationTitle Elementa (Washington, D.C.)
PublicationYear 2023
References (2023040714422079000_) 2016; 121
(2023040714422079000_) 2003; 49
(2023040714422079000_) 1977; 18
(2023040714422079000_) 1971; 76
(2023040714422079000_) 1977; 33
(2023040714422079000_) 2002; 107
(2023040714422079000_) 2006; 78
(2023040714422079000_) 1992
(2023040714422079000_) 2003
(2023040714422079000_) 1981; 86
(2023040714422079000_) 2019; 13
2023040714422079000
(2023040714422079000_) 2006; 19
(2023040714422079000_) 2022; 68
(2023040714422079000_) 2020
(2023040714422079000_) 1961; 12
(2023040714422079000_) 2021
(2023040714422079000_) 2022
(2023040714422079000_) 2022; 49
(2023040714422079000_) 1991; 96
(2023040714422079000_) 2018; 45
(2023040714422079000_) 2013; 118
(2023040714422079000_) 2012; 39
(2023040714422079000_) 2006; 52
(2023040714422079000_) 1999; 61
(2023040714422079000_) 2014
(2023040714422079000_) 2017; 7
(2023040714422079000_) 2017
(2023040714422079000_) 2022; 10
(2023040714422079000_) 1980; 37
(2023040714422079000_) 2011; 4
(2023040714422079000_) 2008; 113
(2023040714422079000_) 2015; 8
(2023040714422079000_) 2010
References_xml – start-page: 1
  volume-title: Observing and modelling the surface scattering layer of first-year Arctic sea ice
  year: 2014
  ident: 2023040714422079000_
– volume: 7
  start-page: 289
  issue: 4
  year: 2017
  ident: 2023040714422079000_
  article-title: Influence of high-latitude atmospheric circulation changes on summertime Arctic sea ice
  publication-title: Nature Climate Change
– ident: 2023040714422079000_
  doi: 10.4236/ijg.2012.35114
– ident: 2023040714422079000_
  doi: 10.1038/s41558-019-0619-1
– ident: 2023040714422079000_
  doi: 10.1029/98JC01264
– ident: 2023040714422079000_
  doi: 10.17815/jlsrf-3-163
– ident: 2023040714422079000_
  doi: 10.1029/2006JC003977
– start-page: 1
  volume-title: Sea ice
  year: 2017
  ident: 2023040714422079000_
– volume: 61
  start-page: 273
  issue: 3
  year: 1999
  ident: 2023040714422079000_
  article-title: A model for the bidirectional polarized reflectance of snow
  publication-title: Journal of Quantitative Spectroscopy and Radiative Transfer
  doi: 10.1016/S0022-4073(97)00221-5
– ident: 2023040714422079000_
  doi: 10.1109/TGRS.2013.2280502
– volume: 37
  start-page: 2712
  issue: 12
  year: 1980
  ident: 2023040714422079000_
  article-title: A model for the spectral albedo of snow. I: Pure snow
  publication-title: Journal of Atmospheric Sciences
  doi: 10.1175/1520-0469(1980)037<2712:AMFTSA>2.0.CO;2
– ident: 2023040714422079000_
  doi: 10.1017/jog.2021.35
– volume: 86
  start-page: 7447
  issue: C8
  year: 1981
  ident: 2023040714422079000_
  article-title: Radiation absorption coefficients of polycrystalline ice from 400–1400 nm
  publication-title: Journal of Geophysical Research: Oceans
  doi: 10.1029/JC086iC08p07447
– ident: 2023040714422079000_
  doi: 10.1016/j.coldregions.2016.01.005
– volume: 18
  start-page: 445
  issue: 80
  year: 1977
  ident: 2023040714422079000_
  article-title: The optical properties of ice and snow in the Arctic Basin
  publication-title: Journal of Glaciology
  doi: 10.3189/S0022143000021122
– start-page: 10
  volume-title: Proceedings from a symposium: Snow science: Reflections on the past, perspectives on the future
  year: 1992
  ident: 2023040714422079000_
– volume: 113
  start-page: C09024
  issue: C9
  year: 2008
  ident: 2023040714422079000_
  article-title: Inference of optical properties from radiation profiles within melting landfast sea ice
  publication-title: Journal of Geophysical Research: Oceans
– ident: 2023040714422079000_
  doi: 10.3189/172756406781811763
– volume: 45
  start-page: 11
  issue: 20
  year: 2018
  ident: 2023040714422079000_
  article-title: Tropical decadal variability and the rate of Arctic sea ice decrease
  publication-title: Geophysical Research Letters
– ident: 2023040714422079000_
  doi: 10.1525/elementa.2021.000046
– year: 2022
  ident: 2023040714422079000_
  article-title: Snowpit stable isotope profiles during the MOSAiC expedition [dataset]
  publication-title: PANGAEA
– ident: 2023040714422079000_
  doi: 10.1046/j.1365-2818.1997.1340694.x
– ident: 2023040714422079000_
  doi: 10.1525/elementa.2021.00023
– volume: 12
  start-page: 151
  issue: 2
  year: 1961
  ident: 2023040714422079000_
  article-title: On the mass and heat budget of Arctic sea ice
  publication-title: Archiv für Meteorologie, Geophysik und Bioklimatologie Serie A
  doi: 10.1007/BF02247491
– ident: 2023040714422079000_
  doi: 10.2139/ssrn.1911068
– year: 2022
  ident: 2023040714422079000_
  article-title: Snowpit MicroCT profiles during the MOSAiC expedition [dataset]
  publication-title: PANGAEA
– start-page: 22
  volume-title: Sea ice: An introduction to its physics, chemistry, biology and geology
  year: 2003
  ident: 2023040714422079000_
– volume: 10
  start-page: 000103
  issue: 1
  year: 2022
  ident: 2023040714422079000_
  article-title: Arctic sea ice albedo: Spectral composition, spatial heterogeneity, and temporal evolution observed during the MOSAiC drift
  publication-title: Elementa: Science of the Anthropocene
– volume: 49
  issue: 9
  year: 2022
  ident: 2023040714422079000_
  article-title: Sensitivity of the Arctic sea ice cover to the summer surface scattering layer
  publication-title: Geophysical Research Letters
– start-page: 23
  volume-title: Sea ice
  year: 2010
  ident: 2023040714422079000_
– ident: 2023040714422079000_
  doi: 10.5194/tc-15-3897-2021
– volume: 107
  issue: C10
  year: 2002
  ident: 2023040714422079000_
  article-title: Seasonal evolution of the albedo of multi-year Arctic sea ice
  publication-title: Journal of Geophysical Research: Oceans
– volume: 52
  start-page: 558
  issue: 179
  year: 2006
  ident: 2023040714422079000_
  article-title: Measuring specific surface area of snow by near-infrared photography
  publication-title: Journal of Glaciology
  doi: 10.3189/172756506781828412
– ident: 2023040714422079000_
– volume: 39
  start-page: L08501
  issue: 8
  year: 2012
  ident: 2023040714422079000_
  article-title: Albedo evolution of seasonal Arctic sea ice
  publication-title: Geophysical Research Letters
– volume: 118
  start-page: 1658
  issue: 3
  year: 2013
  ident: 2023040714422079000_
  article-title: Effects of bubbles, cracks, and volcanic tephra on the spectral albedo of bare ice near the Transantarctic Mountains: Implications for sea glaciers on Snowball Earth
  publication-title: Journal of Geophysical Research: Earth Surface
– ident: 2023040714422079000_
  doi: 10.5194/tc-7-1803-2013
– ident: 2023040714422079000_
  doi: 10.3189/S0022143000014076
– volume: 19
  start-page: 359
  issue: 3
  year: 2006
  ident: 2023040714422079000_
  article-title: Surface albedo feedback estimates for the AR4 climate models
  publication-title: Journal of Climate
  doi: 10.1175/JCLI3624.1
– ident: 2023040714422079000_
  doi: 10.1017/9781009157964
– volume: 78
  start-page: 695
  issue: 3
  year: 2006
  ident: 2023040714422079000_
  article-title: The physics of premelted ice and its geophysical consequences
  publication-title: Reviews of Modern Physics
– volume: 76
  start-page: 1550
  issue: 6
  year: 1971
  ident: 2023040714422079000_
  article-title: Some results from a time-dependent thermodynamic model of sea ice
  publication-title: Journal of Geophysical Research
  doi: 10.1029/JC076i006p01550
– volume: 118
  start-page: 2827
  year: 2013
  ident: 2023040714422079000_
  article-title: Surface albedo feedbacks from climate variability and change
  publication-title: Journal of Geophysical Research: Atmosphere
– volume: 33
  start-page: 2452
  issue: 12
  year: 1977
  ident: 2023040714422079000_
  article-title: The Delta-Eddington approximation for radiative flux transfer
  publication-title: Journal of Atmospheric Sciences
– volume: 49
  start-page: 349
  issue: 166
  year: 2003
  ident: 2023040714422079000_
  article-title: Meltwater circulation and permeability of Arctic summer sea ice derived from hydrological field experiments
  publication-title: Journal of Glaciology
– ident: 2023040714422079000_
  doi: 10.3189/2014JoG14J015
– start-page: 110
  volume-title: Sea ice
  year: 2017
  ident: 2023040714422079000_
– volume: 96
  start-page: 16991
  issue: C9
  year: 1991
  ident: 2023040714422079000_
  article-title: A radiative transfer model for sea ice with vertical structure variations
  publication-title: Journal of Geophysical Research: Oceans
– volume: 4
  start-page: 151
  year: 2011
  ident: 2023040714422079000_
  article-title: Radiative forcing and albedo feedback from the Northern Hemisphere cryosphere between 1979 and 2008
  publication-title: Nature Geoscience
– ident: 2023040714422079000_
  doi: 10.5194/tc-10-2541-2016
– volume: 68
  start-page: 833
  issue: 271
  year: 2022
  ident: 2023040714422079000_
  article-title: Seasonal evolution of granular and columnar sea ice pore microstructure and pore network connectivity
  publication-title: Journal of Glaciology
– volume: 13
  start-page: 775
  issue: 3
  year: 2019
  ident: 2023040714422079000_
  article-title: Physical and optical characteristics of heavily melted “rotten” Arctic sea ice
  publication-title: The Cryosphere
– year: 2021
  ident: 2023040714422079000_
  article-title: The MOSAiC sea ice albedo record: Its context and role for informing improved surface radiative budgets in a climate model
  publication-title: EGU General Assembly Conference Abstracts
– volume: 8
  start-page: 3297
  issue: 8
  year: 2015
  ident: 2023040714422079000_
  article-title: Next-generation angular distribution models for top-of-atmosphere radiative flux calculation from CERES instruments: Validation
  publication-title: Atmospheric Measurement Techniques
  doi: 10.5194/amt-8-3297-2015
– ident: 2023040714422079000_
  doi: 10.1016/j.jqsrt.2018.04.021
– volume: 121
  start-page: 7308
  issue: 10
  year: 2016
  ident: 2023040714422079000_
  article-title: Variability, trends, and predictability of seasonal sea ice retreat and advance in the Chukchi Sea
  publication-title: Journal of Geophysical Research: Oceans
  doi: 10.1002/2016JC011977
– volume-title: Arctic report card 2020: Sea ice
  year: 2020
  ident: 2023040714422079000_
– ident: 2023040714422079000_
  doi: 10.1002/2015JC011163
– year: 2021
  ident: 2023040714422079000_
  article-title: MOSAiC extended acknowledgement
  publication-title: Zenodo
SSID ssj0001072422
Score 2.2928686
Snippet The microstructure of the uppermost portions of a melting Arctic sea ice cover has a disproportionately large influence on how incident sunlight is reflected...
SourceID crossref
SourceType Aggregation Database
Title Evolution of the microstructure and reflectance of the surface scattering layer on melting, level Arctic sea ice
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6rIngRn_gmBw_K2jVN27Q9rrIq4noQBW8lTRoQdruiu4L-Ff-skzR9qIuol1JCOrSdj8mXyTwQ2g9jzn2feI4Soef4Mo2cSHLPkUAmRMAzRolOFO5fs4s7__I-uG-13htRS5Nx2hFvU_NK_qNVGAO96izZP2i2EgoDcA_6hStoGK6_0nHvxYovT_qHOryuKAlbHgzACqg98yYzwM56njwprkvLClNcUzsLBhyotz44GGaDsW1zMtDxRO3uk86iapuMSvEpbqhnI881Sa16MhVGrHPaabgY-lyoOqq2OwTa36k95PLBNFm_mbw1woYqh0-fm3indr964qp0J5yM8vwha7otqGeiXVht3YDJ6RKo1NbBnjJWmmf3Kwy_Wf2ihVNmvxo2_VRXYXWJVy9y5cH-l7WvikjUeyEQk5RCEi0kMUJm0BwN4yBs7NeNA4-EQG-oaV5oX9tWtQI5x1NepsF8GhTmdgkt2r0H7hZAWkatLF9B8-emt_PrClq2dv4ZH9hi5Ier6LHCGB4pDOjBnzGGAWO4gbFylsUYrjGGDcYwCLIYO8IGYbhAGAaEYUDYGro7692eXji2S4cjaOyPHU6IoNzlwJSVDBRhknI_BWsujS8gVipiiqYuS0nKOIlVGHDFmHIjoavSSm8dzeajPNtAOAhhux7FEZMREM1Ycj9UHklV5LoihtVmEx2VfzB5LIqxJD8obutv07fRQg3UHTQLPzLbBcY5TveM5j8At8-BVw
link.rule.ids 315,786,790,870,27957,27958
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evolution+of+the+microstructure+and+reflectance+of+the+surface+scattering+layer+on+melting%2C+level+Arctic+sea+ice&rft.jtitle=Elementa+%28Washington%2C+D.C.%29&rft.au=Macfarlane%2C+Amy+R.&rft.au=Dadic%2C+Ruzica&rft.au=Smith%2C+Madison+M.&rft.au=Light%2C+Bonnie&rft.date=2023-04-06&rft.issn=2325-1026&rft.eissn=2325-1026&rft.volume=11&rft.issue=1&rft_id=info:doi/10.1525%2Felementa.2022.00103&rft.externalDBID=n%2Fa&rft.externalDocID=10_1525_elementa_2022_00103
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2325-1026&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2325-1026&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2325-1026&client=summon