Multigranularity Decoupling Network With Pseudolabel Selection for Remote Sensing Image Scene Classification

The existing deep networks have shown excellent performance in remote sensing scene classification (RSSC), which generally requires a large amount of class-balanced training samples. However, deep networks will result in underfitting with imbalanced training samples since they can easily bias toward...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on geoscience and remote sensing Vol. 61; pp. 1 - 13
Main Authors Miao, Wang, Geng, Jie, Jiang, Wen
Format Journal Article
LanguageEnglish
Published New York IEEE 2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The existing deep networks have shown excellent performance in remote sensing scene classification (RSSC), which generally requires a large amount of class-balanced training samples. However, deep networks will result in underfitting with imbalanced training samples since they can easily bias toward the majority classes. To address these problems, a multigranularity decoupling network (MGDNet) is proposed for remote sensing image scene classification. To begin with, we design a multigranularity complementary feature representation (MGCFR) method to extract fine-grained features from remote sensing images, which utilizes region-level supervision to guide the attention of the decoupling network. Second, a class-imbalanced pseudolabel selection (CIPS) approach is proposed to evaluate the credibility of unlabeled samples. Finally, the diversity component feature (DCF) loss function is developed to force the local features to be more discriminative. Our model performs satisfactorily on three public datasets: UC Merced (UCM), NWPU-RESISC45, and Aerial Image Dataset (AID). Experimental results show that the proposed model yields superior performance compared with other state-of-the-art methods.
AbstractList The existing deep networks have shown excellent performance in remote sensing scene classification (RSSC), which generally requires a large amount of class-balanced training samples. However, deep networks will result in underfitting with imbalanced training samples since they can easily bias toward the majority classes. To address these problems, a multigranularity decoupling network (MGDNet) is proposed for remote sensing image scene classification. To begin with, we design a multigranularity complementary feature representation (MGCFR) method to extract fine-grained features from remote sensing images, which utilizes region-level supervision to guide the attention of the decoupling network. Second, a class-imbalanced pseudolabel selection (CIPS) approach is proposed to evaluate the credibility of unlabeled samples. Finally, the diversity component feature (DCF) loss function is developed to force the local features to be more discriminative. Our model performs satisfactorily on three public datasets: UC Merced (UCM), NWPU-RESISC45, and Aerial Image Dataset (AID). Experimental results show that the proposed model yields superior performance compared with other state-of-the-art methods.
Author Geng, Jie
Miao, Wang
Jiang, Wen
Author_xml – sequence: 1
  givenname: Wang
  surname: Miao
  fullname: Miao, Wang
  email: mw0638@mail.nwpu.edu.cn
  organization: School of Electronics and Information, Northwestern Polytechnical University, Xi'an, China
– sequence: 2
  givenname: Jie
  orcidid: 0000-0003-4858-823X
  surname: Geng
  fullname: Geng, Jie
  email: gengjie@nwpu.edu.cn
  organization: School of Electronics and Information, Northwestern Polytechnical University, Xi'an, China
– sequence: 3
  givenname: Wen
  orcidid: 0000-0001-5429-2748
  surname: Jiang
  fullname: Jiang, Wen
  email: jiangwen@nwpu.edu.cn
  organization: School of Electronics and Information, Northwestern Polytechnical University, Xi'an, China
BookMark eNp9kE9rGzEQxUVIIY7bD1DoYSHndfV3ZR2Dk7gGJy2JS4-LVjtylcgrR9JS_O27W_sQcuhpmOH95vHeJTrvQgcIfSZ4RghWXzfLx6cZxZTNGOVcVOIMTYgQ8xJXnJ-jCSaqKulc0Qt0mdIzxoQLIifI3_c-u23UXe91dPlQ3IAJ_d67bls8QP4T4kvxy-XfxY8EfRu8bsAXT-DBZBe6woZYPMIuZBiOXRqp1U5vh81AB8XC65ScdUaP6o_og9U-wafTnKKfd7ebxbdy_X25WlyvS0MVz6UCjQEwMZhS2VrZNky0hFHLGmVFVSlCpRjytBYLQ4wljWiYokxSLRkTFZuiq-PffQyvPaRcP4c-doNlTeUcqznhXA0qclSZGFKKYOt9dDsdDzXB9VhqPZZaj6XWp1IHRr5jjMv_suWonf8v-eVIOgB444Q5kxVmfwFTSoex
CODEN IGRSD2
CitedBy_id crossref_primary_10_1016_j_ins_2023_119107
crossref_primary_10_1038_s41598_024_77685_z
crossref_primary_10_1016_j_ins_2023_119744
crossref_primary_10_1109_ACCESS_2024_3459588
crossref_primary_10_1016_j_engappai_2023_106027
crossref_primary_10_3934_nhm_2023070
crossref_primary_10_1109_TGRS_2023_3285097
crossref_primary_10_1109_TGRS_2024_3407879
crossref_primary_10_3390_app132011374
crossref_primary_10_3390_rs15245706
crossref_primary_10_3390_app13158694
crossref_primary_10_1108_IJICC_07_2023_0198
crossref_primary_10_1016_j_ins_2023_119726
crossref_primary_10_1038_s41598_025_89735_1
crossref_primary_10_1109_JSTARS_2023_3284426
crossref_primary_10_1109_JSTARS_2024_3455438
crossref_primary_10_1109_TGRS_2023_3347618
crossref_primary_10_1007_s00500_023_08038_7
crossref_primary_10_1109_TCSVT_2023_3317937
crossref_primary_10_1016_j_ins_2023_119189
crossref_primary_10_1109_TGRS_2024_3374097
crossref_primary_10_3390_rs15071773
crossref_primary_10_1049_ipr2_13116
crossref_primary_10_1109_TGRS_2023_3330490
crossref_primary_10_1109_TGRS_2024_3360976
crossref_primary_10_1109_TCSVT_2024_3435858
crossref_primary_10_1016_j_chaos_2023_113542
crossref_primary_10_1108_IJWIS_10_2023_0192
crossref_primary_10_1109_TGRS_2023_3334699
crossref_primary_10_1109_TGRS_2024_3371541
crossref_primary_10_1007_s10489_023_05217_9
crossref_primary_10_3390_rs15112827
crossref_primary_10_1016_j_ins_2023_03_095
crossref_primary_10_1109_ACCESS_2023_3344773
crossref_primary_10_1109_TGRS_2024_3368091
crossref_primary_10_1109_TGRS_2024_3403268
crossref_primary_10_1016_j_imavis_2024_104948
crossref_primary_10_1007_s00500_023_08334_2
crossref_primary_10_1016_j_engappai_2024_109056
crossref_primary_10_1109_JSTARS_2023_3347561
crossref_primary_10_1109_TGRS_2023_3314452
crossref_primary_10_1109_TGRS_2024_3360103
crossref_primary_10_1109_TIP_2025_3526064
crossref_primary_10_1007_s10489_023_04919_4
crossref_primary_10_1016_j_ins_2023_119177
crossref_primary_10_1109_TGRS_2024_3434452
crossref_primary_10_1016_j_eswa_2023_122297
Cites_doi 10.1109/LGRS.2018.2886534
10.1109/LGRS.2021.3109728
10.1109/TGRS.2022.3151405
10.1109/TFUZZ.2019.2918999
10.1016/j.asoc.2017.04.008
10.1016/j.isprsjprs.2017.11.004
10.1109/TGRS.2021.3091482
10.1109/TCYB.2020.3028931
10.1109/TGRS.2022.3166252
10.1109/CVPR46437.2021.01036
10.1109/TGRS.2020.2964679
10.1609/aaai.v36i1.19938
10.1109/ICCV.2019.00342
10.1109/CVPR42600.2020.00974
10.1109/TIP.2021.3089936
10.1109/LGRS.2021.3080036
10.1109/TGRS.2019.2957251
10.12988/ams.2015.58562
10.1109/TIP.2022.3148874
10.1109/TGRS.2019.2917161
10.1109/TGRS.2022.3157671
10.1109/TGRS.2022.3194505
10.1007/s10994-019-05855-6
10.1007/978-3-030-58548-8_10
10.1109/TGRS.2022.3160492
10.1109/JSTARS.2020.3005403
10.1109/CVPR46437.2021.01071
10.1109/ICCV48922.2021.00685
10.1109/TSMCA.2009.2029559
10.1109/TNNLS.2019.2920374
10.1109/TGRS.2022.3140485
10.1109/TGRS.2022.3152566
10.1109/TIP.2020.2983560
10.1109/TSMCB.2008.2007853
10.1109/IJCBS.2009.22
10.1109/LGRS.2018.2799877
10.1109/tnnls.2021.3136503
10.1007/978-3-030-58526-6_41
10.1109/TCYB.2020.2989241
10.1109/TGRS.2018.2848473
10.1109/TGRS.2020.3048024
10.1109/TGRS.2018.2864987
10.1109/TGRS.2022.3192321
10.1109/TIP.2020.2992883
10.1109/IGARSS.2019.8898387
10.1016/j.ijar.2018.09.001
10.1109/CVPR46437.2021.00378
10.1109/ICCV48922.2021.00855
10.1109/ICCV48922.2021.00863
10.1109/TNNLS.2020.3042276
10.1109/TGRS.2022.3197445
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
RIA
RIE
AAYXX
CITATION
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
DOI 10.1109/TGRS.2023.3244565
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore
CrossRef
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Water Resources Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList
Aerospace Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1558-0644
EndPage 13
ExternalDocumentID 10_1109_TGRS_2023_3244565
10043760
Genre orig-research
GrantInformation_xml – fundername: National Key Research and Development Program of China
  grantid: 2021YFB3900502
  funderid: 10.13039/501100012166
– fundername: Shaanxi Key Research and Development Program
  grantid: 2023-YBGY-220
– fundername: National Natural Science Foundation of China
  grantid: 62271396
  funderid: 10.13039/501100001809
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AETIX
AFRAH
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IBMZZ
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
RXW
TAE
TN5
VH1
Y6R
AAYOK
AAYXX
CITATION
RIG
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
ID FETCH-LOGICAL-c294t-9ea0ee01c0227df7db35d132f3b9f56691275196df05c1cf1b5b392372a733563
IEDL.DBID RIE
ISSN 0196-2892
IngestDate Mon Jun 30 10:16:52 EDT 2025
Tue Jul 01 02:15:06 EDT 2025
Thu Apr 24 22:55:44 EDT 2025
Wed Aug 27 02:14:19 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c294t-9ea0ee01c0227df7db35d132f3b9f56691275196df05c1cf1b5b392372a733563
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-5429-2748
0000-0003-4858-823X
PQID 2780981449
PQPubID 85465
PageCount 13
ParticipantIDs crossref_primary_10_1109_TGRS_2023_3244565
ieee_primary_10043760
proquest_journals_2780981449
crossref_citationtrail_10_1109_TGRS_2023_3244565
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20230000
2023-00-00
20230101
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – year: 2023
  text: 20230000
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on geoscience and remote sensing
PublicationTitleAbbrev TGRS
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
Zhang (ref19) 2021
ref15
ref59
ref14
ref53
ref52
ref11
ref55
ref10
ref54
ref17
ref16
ref18
ref51
ref50
Li (ref58) 2020
ref46
ref45
ref42
Kim (ref49); 33
ref8
ref7
ref9
ref4
ref3
ref6
ref5
Berthelot (ref33); 32
Sohn (ref48); 33
ref34
ref37
ref36
ref31
ref30
ref32
Kurakin (ref43)
ref2
ref1
Kang (ref40) 2019
Lee (ref24); 34
ref39
ref38
Arazo (ref61)
Kini (ref41); 34
ref23
Ren (ref35); 33
ref26
ref25
ref20
Loshchilov (ref44)
ref64
ref63
ref22
ref66
ref21
ref65
Zhang (ref56)
ref28
ref27
Natarajan (ref57); 26
ref29
Berthelot (ref47) 2019
ref60
ref62
References_xml – ident: ref31
  doi: 10.1109/LGRS.2018.2886534
– volume: 33
  start-page: 14567
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref49
  article-title: Distribution aligning refinery of pseudo-label for imbalanced semi-supervised learning
– ident: ref28
  doi: 10.1109/LGRS.2021.3109728
– start-page: 1
  volume-title: Proc. Int. Conf. Learn. Represent.
  ident: ref44
  article-title: Fixing weight decay regularization in Adam
– ident: ref14
  doi: 10.1109/TGRS.2022.3151405
– ident: ref26
  doi: 10.1109/TFUZZ.2019.2918999
– ident: ref21
  doi: 10.1016/j.asoc.2017.04.008
– ident: ref32
  doi: 10.1016/j.isprsjprs.2017.11.004
– ident: ref29
  doi: 10.1109/TGRS.2021.3091482
– ident: ref46
  doi: 10.1109/TCYB.2020.3028931
– ident: ref4
  doi: 10.1109/TGRS.2022.3166252
– ident: ref20
  doi: 10.1109/CVPR46437.2021.01036
– ident: ref3
  doi: 10.1109/TGRS.2020.2964679
– volume: 33
  start-page: 4175
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref35
  article-title: Balanced meta-softmax for long-tailed visual recognition
– ident: ref55
  doi: 10.1609/aaai.v36i1.19938
– ident: ref62
  doi: 10.1109/ICCV.2019.00342
– volume: 34
  start-page: 1
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref41
  article-title: Label-imbalanced and group-sensitive classification under overparameterization
– volume: 33
  start-page: 596
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref48
  article-title: Fixmatch: Simplifying semi-supervised learning with consistency and confidence
– ident: ref17
  doi: 10.1109/CVPR42600.2020.00974
– ident: ref6
  doi: 10.1109/TIP.2021.3089936
– ident: ref9
  doi: 10.1109/LGRS.2021.3080036
– ident: ref45
  doi: 10.1109/TGRS.2019.2957251
– ident: ref63
  doi: 10.12988/ams.2015.58562
– ident: ref7
  doi: 10.1109/TIP.2022.3148874
– ident: ref5
  doi: 10.1109/TGRS.2019.2917161
– ident: ref52
  doi: 10.1109/TGRS.2022.3157671
– ident: ref50
  doi: 10.1109/TGRS.2022.3194505
– ident: ref42
  doi: 10.1007/s10994-019-05855-6
– ident: ref34
  doi: 10.1007/978-3-030-58548-8_10
– ident: ref11
  doi: 10.1109/TGRS.2022.3160492
– ident: ref1
  doi: 10.1109/JSTARS.2020.3005403
– ident: ref23
  doi: 10.1109/CVPR46437.2021.01071
– ident: ref39
  doi: 10.1109/ICCV48922.2021.00685
– ident: ref66
  doi: 10.1109/TSMCA.2009.2029559
– ident: ref10
  doi: 10.1109/TNNLS.2019.2920374
– ident: ref25
  doi: 10.1109/TGRS.2022.3140485
– volume: 26
  start-page: 1
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref57
  article-title: Learning with noisy labels
– year: 2020
  ident: ref58
  article-title: DivideMix: Learning with noisy labels as semi-supervised learning
  publication-title: arXiv:2002.07394
– year: 2019
  ident: ref47
  article-title: Remixmatch: Semi-supervised learning with distribution alignment and augmentation anchoring
  publication-title: arXiv:1911.09785
– ident: ref54
  doi: 10.1109/TGRS.2022.3152566
– start-page: 312
  volume-title: Proc. 36th Int. Conf. Mach. Learn.
  ident: ref61
  article-title: Unsupervised label noise modeling and loss correction
– ident: ref13
  doi: 10.1109/TIP.2020.2983560
– ident: ref36
  doi: 10.1109/TSMCB.2008.2007853
– ident: ref65
  doi: 10.1109/IJCBS.2009.22
– ident: ref2
  doi: 10.1109/LGRS.2018.2799877
– ident: ref22
  doi: 10.1109/tnnls.2021.3136503
– ident: ref37
  doi: 10.1007/978-3-030-58526-6_41
– ident: ref8
  doi: 10.1109/TCYB.2020.2989241
– ident: ref16
  doi: 10.1109/TGRS.2018.2848473
– year: 2019
  ident: ref40
  article-title: Decoupling representation and classifier for long-tailed recognition
  publication-title: arXiv:1910.09217
– ident: ref12
  doi: 10.1109/TGRS.2020.3048024
– start-page: 1
  volume-title: Proc. 6th Int. Conf. Learn. Represent. (ICLR)
  ident: ref56
  article-title: Mixup: Beyond empirical risk management
– ident: ref64
  doi: 10.1109/TGRS.2018.2864987
– year: 2021
  ident: ref19
  article-title: Deep long-tailed learning: A survey
  publication-title: arXiv:2110.04596
– volume: 32
  start-page: 5049
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref33
  article-title: MixMatch: A holistic approach to semi-supervised learning
– ident: ref51
  doi: 10.1109/TGRS.2022.3192321
– ident: ref27
  doi: 10.1109/TIP.2020.2992883
– start-page: 1
  volume-title: Proc. Int. Conf. Learn. Represent.
  ident: ref43
  article-title: RemixMatch: Semi-supervised learning with distribution matching and augmentation anchoring
– ident: ref30
  doi: 10.1109/IGARSS.2019.8898387
– ident: ref18
  doi: 10.1016/j.ijar.2018.09.001
– volume: 34
  start-page: 1
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref24
  article-title: ABC: Auxiliary balanced classifier for class-imbalanced semi-supervised learning
– ident: ref38
  doi: 10.1109/CVPR46437.2021.00378
– ident: ref59
  doi: 10.1109/ICCV48922.2021.00855
– ident: ref60
  doi: 10.1109/ICCV48922.2021.00863
– ident: ref15
  doi: 10.1109/TNNLS.2020.3042276
– ident: ref53
  doi: 10.1109/TGRS.2022.3197445
SSID ssj0014517
Score 2.61759
Snippet The existing deep networks have shown excellent performance in remote sensing scene classification (RSSC), which generally requires a large amount of...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Classification
Data models
Datasets
Decoupling
Feature extraction
Image classification
Imbalanced learning (IL)
Remote sensing
remote sensing image
scene classification
Semisupervised learning
semisupervised learning (SSL)
Tail
Task analysis
Training
Title Multigranularity Decoupling Network With Pseudolabel Selection for Remote Sensing Image Scene Classification
URI https://ieeexplore.ieee.org/document/10043760
https://www.proquest.com/docview/2780981449
Volume 61
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bS8MwFA46EPTBy1ScTsmDT0Jrb2mbR_E2BYdsDn0rbXI6xbmJa1_89Z6TdsMLim9tSUrol558X3IujB0GPuiIvBq1UIACJXCtOIzAEo4CEQLgDQU433TDziC4fhAPdbC6iYUBAON8BjZdmrN8PVElbZUduyYTT4gKfRGVWxWsNT8yCIRbx0aHFqoIrz7CdB15fHfZ69tUJ9xG-kAU5ssiZKqq_DDFZn25WGPd2cgqt5JnuywyW71_S9r476Gvs9WaafKTampssAUYN9nKp_yDTbZk_D_VdJONTCDuEBcucktFZs7PUJeWFK475N3KVZzfPxWP_HYKpUY9nMGI900RHUSWI_XlPUDYAR-Oaf-BX72gqeJ9hcaUm9Kb5JRk5sEWG1yc3512rLoQg6U8GRSWhNQBcFxF-QZ1HunMFxplbO5nMkc-KClLPH53nTtCuSp3M5Eh7_IjL418X4T-NmuMJ2PYYVwESkqUoGho0iBKc-nqLPekF6tQgdJhizkzZBJVZymnYhmjxKgVRyYEZkJgJjWYLXY07_Japej4q_EWgfOpYYVLi7Vn-Cf1XzxNvCh2ZIySU-7-0m2PLdPbqz2ZNmsUbyXsI0spsgMzOz8Ac_Di5Q
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1JT-MwFH5CjBBwGHZNh80HTkgJ2ZzUxxFQylYhWgS3qLFfCppSEE0u8-vnPSetWATilkS2YuVznr_PfgvAXhSiSdir0UiNJFAi32nGCTrS0yhjRLrhAOfLTty-ic7u5F0drG5jYRDROp-hy5f2LN886ZK3yg58m4knJoX-gxZ-GVThWtNDg0j6dXR07JCOCOpDTN9TB72T667LlcJdIhBMYt4sQ7auygdjbFeY1hJ0JmOrHEv-umWRufrfu7SN3x78Mvysuab4U02OFZjB0SosvspAuApz1gNUj9dgaENxB7R0sWMqcXNxRMq05IDdgehUzuLi9qG4F1djLA0p4gyHomvL6BC2gsivuEYCHunhiHcgxOkjGSvR1WROhS2-yW5Jdiasw03ruHfYdupSDI4OVFQ4Cvseoudrzjho8sRkoTQkZPMwUzkxQsV54um7m9yT2te5n8mMmFeYBP0kDGUcbsDs6GmEv0DISCtFIpRMTT9K-rnyTZYHKmjqWKM2cQO8CTKprvOUc7mMYWr1iqdSBjNlMNMazAbsT7s8V0k6vmq8zuC8aljh0oCtCf5p_R-P0yBpeqpJolP9_qTbLsy3e5cX6cVp53wTFvhN1Q7NFswWLyVuE2cpsh07U_8DdGvmLw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multigranularity+Decoupling+Network+With+Pseudolabel+Selection+for+Remote+Sensing+Image+Scene+Classification&rft.jtitle=IEEE+transactions+on+geoscience+and+remote+sensing&rft.au=Miao%2C+Wang&rft.au=Geng%2C+Jie&rft.au=Jiang%2C+Wen&rft.date=2023&rft.issn=0196-2892&rft.eissn=1558-0644&rft.volume=61&rft.spage=1&rft.epage=13&rft_id=info:doi/10.1109%2FTGRS.2023.3244565&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TGRS_2023_3244565
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0196-2892&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0196-2892&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0196-2892&client=summon