Multigranularity Decoupling Network With Pseudolabel Selection for Remote Sensing Image Scene Classification
The existing deep networks have shown excellent performance in remote sensing scene classification (RSSC), which generally requires a large amount of class-balanced training samples. However, deep networks will result in underfitting with imbalanced training samples since they can easily bias toward...
Saved in:
Published in | IEEE transactions on geoscience and remote sensing Vol. 61; pp. 1 - 13 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The existing deep networks have shown excellent performance in remote sensing scene classification (RSSC), which generally requires a large amount of class-balanced training samples. However, deep networks will result in underfitting with imbalanced training samples since they can easily bias toward the majority classes. To address these problems, a multigranularity decoupling network (MGDNet) is proposed for remote sensing image scene classification. To begin with, we design a multigranularity complementary feature representation (MGCFR) method to extract fine-grained features from remote sensing images, which utilizes region-level supervision to guide the attention of the decoupling network. Second, a class-imbalanced pseudolabel selection (CIPS) approach is proposed to evaluate the credibility of unlabeled samples. Finally, the diversity component feature (DCF) loss function is developed to force the local features to be more discriminative. Our model performs satisfactorily on three public datasets: UC Merced (UCM), NWPU-RESISC45, and Aerial Image Dataset (AID). Experimental results show that the proposed model yields superior performance compared with other state-of-the-art methods. |
---|---|
AbstractList | The existing deep networks have shown excellent performance in remote sensing scene classification (RSSC), which generally requires a large amount of class-balanced training samples. However, deep networks will result in underfitting with imbalanced training samples since they can easily bias toward the majority classes. To address these problems, a multigranularity decoupling network (MGDNet) is proposed for remote sensing image scene classification. To begin with, we design a multigranularity complementary feature representation (MGCFR) method to extract fine-grained features from remote sensing images, which utilizes region-level supervision to guide the attention of the decoupling network. Second, a class-imbalanced pseudolabel selection (CIPS) approach is proposed to evaluate the credibility of unlabeled samples. Finally, the diversity component feature (DCF) loss function is developed to force the local features to be more discriminative. Our model performs satisfactorily on three public datasets: UC Merced (UCM), NWPU-RESISC45, and Aerial Image Dataset (AID). Experimental results show that the proposed model yields superior performance compared with other state-of-the-art methods. |
Author | Geng, Jie Miao, Wang Jiang, Wen |
Author_xml | – sequence: 1 givenname: Wang surname: Miao fullname: Miao, Wang email: mw0638@mail.nwpu.edu.cn organization: School of Electronics and Information, Northwestern Polytechnical University, Xi'an, China – sequence: 2 givenname: Jie orcidid: 0000-0003-4858-823X surname: Geng fullname: Geng, Jie email: gengjie@nwpu.edu.cn organization: School of Electronics and Information, Northwestern Polytechnical University, Xi'an, China – sequence: 3 givenname: Wen orcidid: 0000-0001-5429-2748 surname: Jiang fullname: Jiang, Wen email: jiangwen@nwpu.edu.cn organization: School of Electronics and Information, Northwestern Polytechnical University, Xi'an, China |
BookMark | eNp9kE9rGzEQxUVIIY7bD1DoYSHndfV3ZR2Dk7gGJy2JS4-LVjtylcgrR9JS_O27W_sQcuhpmOH95vHeJTrvQgcIfSZ4RghWXzfLx6cZxZTNGOVcVOIMTYgQ8xJXnJ-jCSaqKulc0Qt0mdIzxoQLIifI3_c-u23UXe91dPlQ3IAJ_d67bls8QP4T4kvxy-XfxY8EfRu8bsAXT-DBZBe6woZYPMIuZBiOXRqp1U5vh81AB8XC65ScdUaP6o_og9U-wafTnKKfd7ebxbdy_X25WlyvS0MVz6UCjQEwMZhS2VrZNky0hFHLGmVFVSlCpRjytBYLQ4wljWiYokxSLRkTFZuiq-PffQyvPaRcP4c-doNlTeUcqznhXA0qclSZGFKKYOt9dDsdDzXB9VhqPZZaj6XWp1IHRr5jjMv_suWonf8v-eVIOgB444Q5kxVmfwFTSoex |
CODEN | IGRSD2 |
CitedBy_id | crossref_primary_10_1016_j_ins_2023_119107 crossref_primary_10_1038_s41598_024_77685_z crossref_primary_10_1016_j_ins_2023_119744 crossref_primary_10_1109_ACCESS_2024_3459588 crossref_primary_10_1016_j_engappai_2023_106027 crossref_primary_10_3934_nhm_2023070 crossref_primary_10_1109_TGRS_2023_3285097 crossref_primary_10_1109_TGRS_2024_3407879 crossref_primary_10_3390_app132011374 crossref_primary_10_3390_rs15245706 crossref_primary_10_3390_app13158694 crossref_primary_10_1108_IJICC_07_2023_0198 crossref_primary_10_1016_j_ins_2023_119726 crossref_primary_10_1038_s41598_025_89735_1 crossref_primary_10_1109_JSTARS_2023_3284426 crossref_primary_10_1109_JSTARS_2024_3455438 crossref_primary_10_1109_TGRS_2023_3347618 crossref_primary_10_1007_s00500_023_08038_7 crossref_primary_10_1109_TCSVT_2023_3317937 crossref_primary_10_1016_j_ins_2023_119189 crossref_primary_10_1109_TGRS_2024_3374097 crossref_primary_10_3390_rs15071773 crossref_primary_10_1049_ipr2_13116 crossref_primary_10_1109_TGRS_2023_3330490 crossref_primary_10_1109_TGRS_2024_3360976 crossref_primary_10_1109_TCSVT_2024_3435858 crossref_primary_10_1016_j_chaos_2023_113542 crossref_primary_10_1108_IJWIS_10_2023_0192 crossref_primary_10_1109_TGRS_2023_3334699 crossref_primary_10_1109_TGRS_2024_3371541 crossref_primary_10_1007_s10489_023_05217_9 crossref_primary_10_3390_rs15112827 crossref_primary_10_1016_j_ins_2023_03_095 crossref_primary_10_1109_ACCESS_2023_3344773 crossref_primary_10_1109_TGRS_2024_3368091 crossref_primary_10_1109_TGRS_2024_3403268 crossref_primary_10_1016_j_imavis_2024_104948 crossref_primary_10_1007_s00500_023_08334_2 crossref_primary_10_1016_j_engappai_2024_109056 crossref_primary_10_1109_JSTARS_2023_3347561 crossref_primary_10_1109_TGRS_2023_3314452 crossref_primary_10_1109_TGRS_2024_3360103 crossref_primary_10_1109_TIP_2025_3526064 crossref_primary_10_1007_s10489_023_04919_4 crossref_primary_10_1016_j_ins_2023_119177 crossref_primary_10_1109_TGRS_2024_3434452 crossref_primary_10_1016_j_eswa_2023_122297 |
Cites_doi | 10.1109/LGRS.2018.2886534 10.1109/LGRS.2021.3109728 10.1109/TGRS.2022.3151405 10.1109/TFUZZ.2019.2918999 10.1016/j.asoc.2017.04.008 10.1016/j.isprsjprs.2017.11.004 10.1109/TGRS.2021.3091482 10.1109/TCYB.2020.3028931 10.1109/TGRS.2022.3166252 10.1109/CVPR46437.2021.01036 10.1109/TGRS.2020.2964679 10.1609/aaai.v36i1.19938 10.1109/ICCV.2019.00342 10.1109/CVPR42600.2020.00974 10.1109/TIP.2021.3089936 10.1109/LGRS.2021.3080036 10.1109/TGRS.2019.2957251 10.12988/ams.2015.58562 10.1109/TIP.2022.3148874 10.1109/TGRS.2019.2917161 10.1109/TGRS.2022.3157671 10.1109/TGRS.2022.3194505 10.1007/s10994-019-05855-6 10.1007/978-3-030-58548-8_10 10.1109/TGRS.2022.3160492 10.1109/JSTARS.2020.3005403 10.1109/CVPR46437.2021.01071 10.1109/ICCV48922.2021.00685 10.1109/TSMCA.2009.2029559 10.1109/TNNLS.2019.2920374 10.1109/TGRS.2022.3140485 10.1109/TGRS.2022.3152566 10.1109/TIP.2020.2983560 10.1109/TSMCB.2008.2007853 10.1109/IJCBS.2009.22 10.1109/LGRS.2018.2799877 10.1109/tnnls.2021.3136503 10.1007/978-3-030-58526-6_41 10.1109/TCYB.2020.2989241 10.1109/TGRS.2018.2848473 10.1109/TGRS.2020.3048024 10.1109/TGRS.2018.2864987 10.1109/TGRS.2022.3192321 10.1109/TIP.2020.2992883 10.1109/IGARSS.2019.8898387 10.1016/j.ijar.2018.09.001 10.1109/CVPR46437.2021.00378 10.1109/ICCV48922.2021.00855 10.1109/ICCV48922.2021.00863 10.1109/TNNLS.2020.3042276 10.1109/TGRS.2022.3197445 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
DBID | 97E RIA RIE AAYXX CITATION 7UA 8FD C1K F1W FR3 H8D H96 KR7 L.G L7M |
DOI | 10.1109/TGRS.2023.3244565 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Xplore CrossRef Water Resources Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Water Resources Abstracts Environmental Sciences and Pollution Management |
DatabaseTitleList | Aerospace Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE/IET Electronic Library url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 1558-0644 |
EndPage | 13 |
ExternalDocumentID | 10_1109_TGRS_2023_3244565 10043760 |
Genre | orig-research |
GrantInformation_xml | – fundername: National Key Research and Development Program of China grantid: 2021YFB3900502 funderid: 10.13039/501100012166 – fundername: Shaanxi Key Research and Development Program grantid: 2023-YBGY-220 – fundername: National Natural Science Foundation of China grantid: 62271396 funderid: 10.13039/501100001809 |
GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT AENEX AETIX AFRAH AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IBMZZ ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS RXW TAE TN5 VH1 Y6R AAYOK AAYXX CITATION RIG 7UA 8FD C1K F1W FR3 H8D H96 KR7 L.G L7M |
ID | FETCH-LOGICAL-c294t-9ea0ee01c0227df7db35d132f3b9f56691275196df05c1cf1b5b392372a733563 |
IEDL.DBID | RIE |
ISSN | 0196-2892 |
IngestDate | Mon Jun 30 10:16:52 EDT 2025 Tue Jul 01 02:15:06 EDT 2025 Thu Apr 24 22:55:44 EDT 2025 Wed Aug 27 02:14:19 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c294t-9ea0ee01c0227df7db35d132f3b9f56691275196df05c1cf1b5b392372a733563 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-5429-2748 0000-0003-4858-823X |
PQID | 2780981449 |
PQPubID | 85465 |
PageCount | 13 |
ParticipantIDs | crossref_primary_10_1109_TGRS_2023_3244565 ieee_primary_10043760 proquest_journals_2780981449 crossref_citationtrail_10_1109_TGRS_2023_3244565 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20230000 2023-00-00 20230101 |
PublicationDateYYYYMMDD | 2023-01-01 |
PublicationDate_xml | – year: 2023 text: 20230000 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on geoscience and remote sensing |
PublicationTitleAbbrev | TGRS |
PublicationYear | 2023 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref12 Zhang (ref19) 2021 ref15 ref59 ref14 ref53 ref52 ref11 ref55 ref10 ref54 ref17 ref16 ref18 ref51 ref50 Li (ref58) 2020 ref46 ref45 ref42 Kim (ref49); 33 ref8 ref7 ref9 ref4 ref3 ref6 ref5 Berthelot (ref33); 32 Sohn (ref48); 33 ref34 ref37 ref36 ref31 ref30 ref32 Kurakin (ref43) ref2 ref1 Kang (ref40) 2019 Lee (ref24); 34 ref39 ref38 Arazo (ref61) Kini (ref41); 34 ref23 Ren (ref35); 33 ref26 ref25 ref20 Loshchilov (ref44) ref64 ref63 ref22 ref66 ref21 ref65 Zhang (ref56) ref28 ref27 Natarajan (ref57); 26 ref29 Berthelot (ref47) 2019 ref60 ref62 |
References_xml | – ident: ref31 doi: 10.1109/LGRS.2018.2886534 – volume: 33 start-page: 14567 volume-title: Proc. Adv. Neural Inf. Process. Syst. ident: ref49 article-title: Distribution aligning refinery of pseudo-label for imbalanced semi-supervised learning – ident: ref28 doi: 10.1109/LGRS.2021.3109728 – start-page: 1 volume-title: Proc. Int. Conf. Learn. Represent. ident: ref44 article-title: Fixing weight decay regularization in Adam – ident: ref14 doi: 10.1109/TGRS.2022.3151405 – ident: ref26 doi: 10.1109/TFUZZ.2019.2918999 – ident: ref21 doi: 10.1016/j.asoc.2017.04.008 – ident: ref32 doi: 10.1016/j.isprsjprs.2017.11.004 – ident: ref29 doi: 10.1109/TGRS.2021.3091482 – ident: ref46 doi: 10.1109/TCYB.2020.3028931 – ident: ref4 doi: 10.1109/TGRS.2022.3166252 – ident: ref20 doi: 10.1109/CVPR46437.2021.01036 – ident: ref3 doi: 10.1109/TGRS.2020.2964679 – volume: 33 start-page: 4175 volume-title: Proc. Adv. Neural Inf. Process. Syst. ident: ref35 article-title: Balanced meta-softmax for long-tailed visual recognition – ident: ref55 doi: 10.1609/aaai.v36i1.19938 – ident: ref62 doi: 10.1109/ICCV.2019.00342 – volume: 34 start-page: 1 volume-title: Proc. Adv. Neural Inf. Process. Syst. ident: ref41 article-title: Label-imbalanced and group-sensitive classification under overparameterization – volume: 33 start-page: 596 volume-title: Proc. Adv. Neural Inf. Process. Syst. ident: ref48 article-title: Fixmatch: Simplifying semi-supervised learning with consistency and confidence – ident: ref17 doi: 10.1109/CVPR42600.2020.00974 – ident: ref6 doi: 10.1109/TIP.2021.3089936 – ident: ref9 doi: 10.1109/LGRS.2021.3080036 – ident: ref45 doi: 10.1109/TGRS.2019.2957251 – ident: ref63 doi: 10.12988/ams.2015.58562 – ident: ref7 doi: 10.1109/TIP.2022.3148874 – ident: ref5 doi: 10.1109/TGRS.2019.2917161 – ident: ref52 doi: 10.1109/TGRS.2022.3157671 – ident: ref50 doi: 10.1109/TGRS.2022.3194505 – ident: ref42 doi: 10.1007/s10994-019-05855-6 – ident: ref34 doi: 10.1007/978-3-030-58548-8_10 – ident: ref11 doi: 10.1109/TGRS.2022.3160492 – ident: ref1 doi: 10.1109/JSTARS.2020.3005403 – ident: ref23 doi: 10.1109/CVPR46437.2021.01071 – ident: ref39 doi: 10.1109/ICCV48922.2021.00685 – ident: ref66 doi: 10.1109/TSMCA.2009.2029559 – ident: ref10 doi: 10.1109/TNNLS.2019.2920374 – ident: ref25 doi: 10.1109/TGRS.2022.3140485 – volume: 26 start-page: 1 volume-title: Proc. Adv. Neural Inf. Process. Syst. ident: ref57 article-title: Learning with noisy labels – year: 2020 ident: ref58 article-title: DivideMix: Learning with noisy labels as semi-supervised learning publication-title: arXiv:2002.07394 – year: 2019 ident: ref47 article-title: Remixmatch: Semi-supervised learning with distribution alignment and augmentation anchoring publication-title: arXiv:1911.09785 – ident: ref54 doi: 10.1109/TGRS.2022.3152566 – start-page: 312 volume-title: Proc. 36th Int. Conf. Mach. Learn. ident: ref61 article-title: Unsupervised label noise modeling and loss correction – ident: ref13 doi: 10.1109/TIP.2020.2983560 – ident: ref36 doi: 10.1109/TSMCB.2008.2007853 – ident: ref65 doi: 10.1109/IJCBS.2009.22 – ident: ref2 doi: 10.1109/LGRS.2018.2799877 – ident: ref22 doi: 10.1109/tnnls.2021.3136503 – ident: ref37 doi: 10.1007/978-3-030-58526-6_41 – ident: ref8 doi: 10.1109/TCYB.2020.2989241 – ident: ref16 doi: 10.1109/TGRS.2018.2848473 – year: 2019 ident: ref40 article-title: Decoupling representation and classifier for long-tailed recognition publication-title: arXiv:1910.09217 – ident: ref12 doi: 10.1109/TGRS.2020.3048024 – start-page: 1 volume-title: Proc. 6th Int. Conf. Learn. Represent. (ICLR) ident: ref56 article-title: Mixup: Beyond empirical risk management – ident: ref64 doi: 10.1109/TGRS.2018.2864987 – year: 2021 ident: ref19 article-title: Deep long-tailed learning: A survey publication-title: arXiv:2110.04596 – volume: 32 start-page: 5049 volume-title: Proc. Adv. Neural Inf. Process. Syst. ident: ref33 article-title: MixMatch: A holistic approach to semi-supervised learning – ident: ref51 doi: 10.1109/TGRS.2022.3192321 – ident: ref27 doi: 10.1109/TIP.2020.2992883 – start-page: 1 volume-title: Proc. Int. Conf. Learn. Represent. ident: ref43 article-title: RemixMatch: Semi-supervised learning with distribution matching and augmentation anchoring – ident: ref30 doi: 10.1109/IGARSS.2019.8898387 – ident: ref18 doi: 10.1016/j.ijar.2018.09.001 – volume: 34 start-page: 1 volume-title: Proc. Adv. Neural Inf. Process. Syst. ident: ref24 article-title: ABC: Auxiliary balanced classifier for class-imbalanced semi-supervised learning – ident: ref38 doi: 10.1109/CVPR46437.2021.00378 – ident: ref59 doi: 10.1109/ICCV48922.2021.00855 – ident: ref60 doi: 10.1109/ICCV48922.2021.00863 – ident: ref15 doi: 10.1109/TNNLS.2020.3042276 – ident: ref53 doi: 10.1109/TGRS.2022.3197445 |
SSID | ssj0014517 |
Score | 2.61759 |
Snippet | The existing deep networks have shown excellent performance in remote sensing scene classification (RSSC), which generally requires a large amount of... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1 |
SubjectTerms | Classification Data models Datasets Decoupling Feature extraction Image classification Imbalanced learning (IL) Remote sensing remote sensing image scene classification Semisupervised learning semisupervised learning (SSL) Tail Task analysis Training |
Title | Multigranularity Decoupling Network With Pseudolabel Selection for Remote Sensing Image Scene Classification |
URI | https://ieeexplore.ieee.org/document/10043760 https://www.proquest.com/docview/2780981449 |
Volume | 61 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bS8MwFA46EPTBy1ScTsmDT0Jrb2mbR_E2BYdsDn0rbXI6xbmJa1_89Z6TdsMLim9tSUrol558X3IujB0GPuiIvBq1UIACJXCtOIzAEo4CEQLgDQU433TDziC4fhAPdbC6iYUBAON8BjZdmrN8PVElbZUduyYTT4gKfRGVWxWsNT8yCIRbx0aHFqoIrz7CdB15fHfZ69tUJ9xG-kAU5ssiZKqq_DDFZn25WGPd2cgqt5JnuywyW71_S9r476Gvs9WaafKTampssAUYN9nKp_yDTbZk_D_VdJONTCDuEBcucktFZs7PUJeWFK475N3KVZzfPxWP_HYKpUY9nMGI900RHUSWI_XlPUDYAR-Oaf-BX72gqeJ9hcaUm9Kb5JRk5sEWG1yc3512rLoQg6U8GRSWhNQBcFxF-QZ1HunMFxplbO5nMkc-KClLPH53nTtCuSp3M5Eh7_IjL418X4T-NmuMJ2PYYVwESkqUoGho0iBKc-nqLPekF6tQgdJhizkzZBJVZymnYhmjxKgVRyYEZkJgJjWYLXY07_Japej4q_EWgfOpYYVLi7Vn-Cf1XzxNvCh2ZIySU-7-0m2PLdPbqz2ZNmsUbyXsI0spsgMzOz8Ac_Di5Q |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1JT-MwFH5CjBBwGHZNh80HTkgJ2ZzUxxFQylYhWgS3qLFfCppSEE0u8-vnPSetWATilkS2YuVznr_PfgvAXhSiSdir0UiNJFAi32nGCTrS0yhjRLrhAOfLTty-ic7u5F0drG5jYRDROp-hy5f2LN886ZK3yg58m4knJoX-gxZ-GVThWtNDg0j6dXR07JCOCOpDTN9TB72T667LlcJdIhBMYt4sQ7auygdjbFeY1hJ0JmOrHEv-umWRufrfu7SN3x78Mvysuab4U02OFZjB0SosvspAuApz1gNUj9dgaENxB7R0sWMqcXNxRMq05IDdgehUzuLi9qG4F1djLA0p4gyHomvL6BC2gsivuEYCHunhiHcgxOkjGSvR1WROhS2-yW5Jdiasw03ruHfYdupSDI4OVFQ4Cvseoudrzjho8sRkoTQkZPMwUzkxQsV54um7m9yT2te5n8mMmFeYBP0kDGUcbsDs6GmEv0DISCtFIpRMTT9K-rnyTZYHKmjqWKM2cQO8CTKprvOUc7mMYWr1iqdSBjNlMNMazAbsT7s8V0k6vmq8zuC8aljh0oCtCf5p_R-P0yBpeqpJolP9_qTbLsy3e5cX6cVp53wTFvhN1Q7NFswWLyVuE2cpsh07U_8DdGvmLw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multigranularity+Decoupling+Network+With+Pseudolabel+Selection+for+Remote+Sensing+Image+Scene+Classification&rft.jtitle=IEEE+transactions+on+geoscience+and+remote+sensing&rft.au=Miao%2C+Wang&rft.au=Geng%2C+Jie&rft.au=Jiang%2C+Wen&rft.date=2023&rft.issn=0196-2892&rft.eissn=1558-0644&rft.volume=61&rft.spage=1&rft.epage=13&rft_id=info:doi/10.1109%2FTGRS.2023.3244565&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TGRS_2023_3244565 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0196-2892&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0196-2892&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0196-2892&client=summon |