Influence of B2O3 incorporation on the structural, mechanical and radiation shielding properties of TeO2 Based bioglasses
This study investigates the structural, mechanical, and radiation shielding properties of a series of novel bio glasses with the composition (55-x)TeO2-20Na2O-10CaO-15P2O5-xB2O3 (where x = 0, 3, 5, 10, and 20 mol%). The aim was to evaluate the effect of B2O3 addition on these properties. Empirical m...
Saved in:
Published in | Applied radiation and isotopes Vol. 221; p. 111799 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.07.2025
|
Subjects | |
Online Access | Get full text |
ISSN | 0969-8043 1872-9800 1872-9800 |
DOI | 10.1016/j.apradiso.2025.111799 |
Cover
Loading…
Abstract | This study investigates the structural, mechanical, and radiation shielding properties of a series of novel bio glasses with the composition (55-x)TeO2-20Na2O-10CaO-15P2O5-xB2O3 (where x = 0, 3, 5, 10, and 20 mol%). The aim was to evaluate the effect of B2O3 addition on these properties. Empirical methods were used for calculating the mechanical and elastic properties. XRD analysis confirmed the amorphous nature of the glasses, while FTIR spectroscopy revealed the presence of characteristic functional groups associated with TeO2 and B2O3. The results indicate that B2O3 incorporation significantly reduces the glass density (from 4.24 g/cm3 to 3.18 g/cm3) and enhances molar volume (from 29.963 cm3/mol to 34.302 cm3/mol), leading to a less compact glass structure. The mechanical properties were also affected, with fracture toughness decreasing (from 1.367 MPa m1/2 to 1.280 MPa m1/2) and hardness increasing (from 3.091 GPa to 3.207 GPa). Regarding radiation shielding performance, the Linear Attenuation Coefficient (LAC) values decreased with increasing B2O3 content, indicating a deterioration in shielding effectiveness due to the lower effective atomic number of B2O3 compared to TeO2. These findings demonstrate that while B2O3 improves mechanical hardness and molar volume, it compromises radiation shielding properties by reducing glass density and attenuation capacity.
•Bioactive glasses with (55-x)TeO2-20Na2O-10CaO-15P2O5-xB2O3 were studied for x values from 0 to 20 %.•XRD confirmed an amorphous structure; density decreased from 4.24 g/cm3 to 3.18 g/cm3 with increasing B2O3.•Fracture toughness decreased (1.367–1.280 MPa m0.5), while hardness increased (3.091–3.207 GPa).•LAC and MAC values decreased as B2O3 content increased consistent across empirical measurements and theoretical calculations. |
---|---|
AbstractList | This study investigates the structural, mechanical, and radiation shielding properties of a series of novel bio glasses with the composition (55-x)TeO2-20Na2O-10CaO-15P2O5-xB2O3 (where x = 0, 3, 5, 10, and 20 mol%). The aim was to evaluate the effect of B2O3 addition on these properties. Empirical methods were used for calculating the mechanical and elastic properties. XRD analysis confirmed the amorphous nature of the glasses, while FTIR spectroscopy revealed the presence of characteristic functional groups associated with TeO2 and B2O3. The results indicate that B2O3 incorporation significantly reduces the glass density (from 4.24 g/cm3 to 3.18 g/cm3) and enhances molar volume (from 29.963 cm3/mol to 34.302 cm3/mol), leading to a less compact glass structure. The mechanical properties were also affected, with fracture toughness decreasing (from 1.367 MPa m1/2 to 1.280 MPa m1/2) and hardness increasing (from 3.091 GPa to 3.207 GPa). Regarding radiation shielding performance, the Linear Attenuation Coefficient (LAC) values decreased with increasing B2O3 content, indicating a deterioration in shielding effectiveness due to the lower effective atomic number of B2O3 compared to TeO2. These findings demonstrate that while B2O3 improves mechanical hardness and molar volume, it compromises radiation shielding properties by reducing glass density and attenuation capacity.This study investigates the structural, mechanical, and radiation shielding properties of a series of novel bio glasses with the composition (55-x)TeO2-20Na2O-10CaO-15P2O5-xB2O3 (where x = 0, 3, 5, 10, and 20 mol%). The aim was to evaluate the effect of B2O3 addition on these properties. Empirical methods were used for calculating the mechanical and elastic properties. XRD analysis confirmed the amorphous nature of the glasses, while FTIR spectroscopy revealed the presence of characteristic functional groups associated with TeO2 and B2O3. The results indicate that B2O3 incorporation significantly reduces the glass density (from 4.24 g/cm3 to 3.18 g/cm3) and enhances molar volume (from 29.963 cm3/mol to 34.302 cm3/mol), leading to a less compact glass structure. The mechanical properties were also affected, with fracture toughness decreasing (from 1.367 MPa m1/2 to 1.280 MPa m1/2) and hardness increasing (from 3.091 GPa to 3.207 GPa). Regarding radiation shielding performance, the Linear Attenuation Coefficient (LAC) values decreased with increasing B2O3 content, indicating a deterioration in shielding effectiveness due to the lower effective atomic number of B2O3 compared to TeO2. These findings demonstrate that while B2O3 improves mechanical hardness and molar volume, it compromises radiation shielding properties by reducing glass density and attenuation capacity. This study investigates the structural, mechanical, and radiation shielding properties of a series of novel bio glasses with the composition (55-x)TeO2-20Na2O-10CaO-15P2O5-xB2O3 (where x = 0, 3, 5, 10, and 20 mol%). The aim was to evaluate the effect of B2O3 addition on these properties. Empirical methods were used for calculating the mechanical and elastic properties. XRD analysis confirmed the amorphous nature of the glasses, while FTIR spectroscopy revealed the presence of characteristic functional groups associated with TeO2 and B2O3. The results indicate that B2O3 incorporation significantly reduces the glass density (from 4.24 g/cm3 to 3.18 g/cm3) and enhances molar volume (from 29.963 cm3/mol to 34.302 cm3/mol), leading to a less compact glass structure. The mechanical properties were also affected, with fracture toughness decreasing (from 1.367 MPa m1/2 to 1.280 MPa m1/2) and hardness increasing (from 3.091 GPa to 3.207 GPa). Regarding radiation shielding performance, the Linear Attenuation Coefficient (LAC) values decreased with increasing B2O3 content, indicating a deterioration in shielding effectiveness due to the lower effective atomic number of B2O3 compared to TeO2. These findings demonstrate that while B2O3 improves mechanical hardness and molar volume, it compromises radiation shielding properties by reducing glass density and attenuation capacity. •Bioactive glasses with (55-x)TeO2-20Na2O-10CaO-15P2O5-xB2O3 were studied for x values from 0 to 20 %.•XRD confirmed an amorphous structure; density decreased from 4.24 g/cm3 to 3.18 g/cm3 with increasing B2O3.•Fracture toughness decreased (1.367–1.280 MPa m0.5), while hardness increased (3.091–3.207 GPa).•LAC and MAC values decreased as B2O3 content increased consistent across empirical measurements and theoretical calculations. |
ArticleNumber | 111799 |
Author | Kavun, Yusuf Acikgoz, Abuzer Ulas, Esmanur Oruc Aktas, Bulent |
Author_xml | – sequence: 1 givenname: Esmanur Oruc orcidid: 0000-0002-7913-4604 surname: Ulas fullname: Ulas, Esmanur Oruc email: esmanuroruc@harran.edu.tr organization: Department of Mechanical Engineering, Harran University, Şanlıurfa, Turkey – sequence: 2 givenname: Abuzer surname: Acikgoz fullname: Acikgoz, Abuzer organization: Department of Mechanical Engineering, Harran University, Şanlıurfa, Turkey – sequence: 3 givenname: Bulent surname: Aktas fullname: Aktas, Bulent organization: Department of Mechanical Engineering, Harran University, Şanlıurfa, Turkey – sequence: 4 givenname: Yusuf surname: Kavun fullname: Kavun, Yusuf organization: Vocational School of Health Services, Dept. of Medical Imaging Techniques, Kahramanmaras Sütçü Imam University, Kahramanmaras, Turkey |
BookMark | eNqFkEtr5DAQhMWShZ1k8xeCjnuIJ5L8km55kBcE5pI9C1lqZTR4JK_aDuTfr42Tc6ChL1XVXd8pOYkpAiEXnG05483VYWuGbFzAtBVM1FvOeavUD7LhshWFkoydkA1TjSokq8pf5BTxwBirpBIb8vEcfT9BtECTp7diV9IQbcpDymYMKdJ5xj1QHPNkxymb_pIewe5NDNb01ERHl9urFvcBehfiGx1yGiCPAXCJfYWdoLcGwdEupLfeIAL-Jj-96RHOP_cZ-ftw_3r3VLzsHp_vbl4KK1Q1Fqpz0PrKeuFZq2RXW68Ya1pRt6zjXsi2ts462XDwpTS-rIF3pbdcdRJUpcoz8mfNnX_6NwGO-hjQQt-bCGlCXXJZMS4bUc3SZpXanBAzeD3kcDT5Q3OmF9b6oL9Y64W1XlnPxuvVCHOR9wBZow0LVBcy2FG7FL6L-A-uqY8C |
Cites_doi | 10.1016/j.optmat.2023.114558 10.1016/j.radphyschem.2018.11.012 10.1016/j.jnoncrysol.2020.120268 10.1016/j.ijleo.2024.171755 10.1103/PhysRevApplied.7.054011 10.1016/j.radphyschem.2019.108496 10.1016/j.matchemphys.2023.127833 10.3390/ma11020204 10.1016/j.msec.2021.111957 10.1016/j.solidstatesciences.2010.05.023 10.1111/j.1151-2916.1981.tb10320.x 10.1016/j.molstruc.2009.08.016 10.1016/j.jnoncrysol.2019.119648 10.1016/j.pnucene.2024.105330 10.1016/j.radphyschem.2023.111450 10.1007/s12043-023-02629-7 10.1016/j.matchemphys.2023.128672 10.1021/acs.jpcc.5b04074 10.3389/fmats.2021.738931 10.1016/j.jnoncrysol.2020.120207 10.1002/jbm.820050611 10.1016/j.ijleo.2021.167924 10.1016/j.jallcom.2023.172981 10.1021/acsami.6b12089 10.1016/j.biomaterials.2010.01.121 10.1016/0022-3093(75)90047-2 10.1016/j.apradiso.2023.110858 10.1016/j.jnoncrysol.2014.08.002 10.1007/s11664-018-6810-8 10.1111/cpr.12906 10.1007/s00339-019-3053-3 10.1007/s10854-008-9734-x 10.1016/j.ijleo.2021.168100 10.1088/2053-1591/ac55c5 10.1016/j.ceramint.2020.03.208 10.1016/j.optmat.2024.115032 10.1016/j.mseb.2021.115519 10.1016/j.jnucmat.2022.153619 10.1016/S0254-0584(03)00082-8 10.1016/j.ceramint.2023.02.130 10.1016/j.ceramint.2016.09.086 10.1021/acs.jpcc.7b08978 10.1016/j.optmat.2024.114941 10.1016/j.matchemphys.2024.129749 10.1016/j.apradiso.2023.111080 10.1016/j.jeurceramsoc.2017.11.001 10.1016/j.ceramint.2020.02.209 10.1016/j.optmat.2021.110881 10.1007/s10904-022-02349-2 10.1016/0022-3093(73)90053-7 10.1016/j.jnoncrysol.2021.121218 10.1016/j.ijleo.2022.170336 |
ContentType | Journal Article |
Copyright | 2025 Elsevier Ltd Copyright © 2025 Elsevier Ltd. All rights reserved. |
Copyright_xml | – notice: 2025 Elsevier Ltd – notice: Copyright © 2025 Elsevier Ltd. All rights reserved. |
DBID | AAYXX CITATION 7X8 |
DOI | 10.1016/j.apradiso.2025.111799 |
DatabaseName | CrossRef MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Physics |
EISSN | 1872-9800 |
ExternalDocumentID | 10_1016_j_apradiso_2025_111799 S0969804325001447 |
GroupedDBID | --- --K --M .55 .GJ .HR .~1 0R~ 1B1 1RT 1~. 1~5 23M 4.4 457 4G. 53G 5GY 5RE 5VS 7-5 71M 8P~ 9JN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYWO ABFNM ABJNI ABMAC ABNEU ABWVN ABXDB ACDAQ ACFVG ACGFS ACNNM ACRLP ACRPL ADBBV ADEZE ADMUD ADNMO AEBSH AEIPS AEKER AENEX AFJKZ AFTJW AGCQF AGHFR AGQPQ AGRNS AGUBO AGYEJ AHHHB AIEXJ AIIUN AIKHN AITUG AIVDX AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP ASPBG AVWKF AXJTR AZFZN BBWZM BKOJK BLXMC BNPGV CS3 EBS EFJIC EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA HMV HVGLF HZ~ IHE J1W KOM M38 M41 MO0 N9A NDZJH O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SPD SPG SSH SSQ SSZ T5K WH7 WUQ X7M XPP XUV ZMT ~02 ~G- AAYXX ACVFH ADCNI AEUPX AFPUW AIGII AKBMS AKYEP CITATION 7X8 AFXIZ |
ID | FETCH-LOGICAL-c294t-9bde7f4cf2f0798b5cf900672570b1f2875cdcd861ef38af35e1b3fc19b8e9493 |
IEDL.DBID | .~1 |
ISSN | 0969-8043 1872-9800 |
IngestDate | Fri Jul 11 18:50:58 EDT 2025 Tue Jul 01 05:09:23 EDT 2025 Sat May 24 17:05:40 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Bio-glass Boro-tellurite glass Gamma shielding Structural analysis |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c294t-9bde7f4cf2f0798b5cf900672570b1f2875cdcd861ef38af35e1b3fc19b8e9493 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-7913-4604 |
PQID | 3184018624 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_3184018624 crossref_primary_10_1016_j_apradiso_2025_111799 elsevier_sciencedirect_doi_10_1016_j_apradiso_2025_111799 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2025-07-01 |
PublicationDateYYYYMMDD | 2025-07-01 |
PublicationDate_xml | – month: 07 year: 2025 text: 2025-07-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Applied radiation and isotopes |
PublicationYear | 2025 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Ahmadi, Vahid, Darush (bib4) 2024; 217 Lakshminarayana, Sayyed, Baki, Lira, Dong, Bashar, Kityk, Mahdi (bib39) 2018; 48 Aktas, Yalcin, Dogru, Uzunoglu, Yilmaz (bib5) 2019; 156 Srinivas, Bhogi, Naresh, Hameed, Chary, Shareefuddin (bib57) 2022; 575 Ersundu, Ersundu, Gedikoğlu, Şakar, Büyükyıldız, Kurudirek (bib22) 2019; 524 Kilinç, Toplan (bib34) 2023; 6 Al-Buriahi, Rashad, Alalawi, Sayyed (bib7) 2020; 46 Elkhoshkhany, El-Mallawany, Syala (bib21) 2016; 42 Solak, Aktas, Yilmaz, Kalecik, Yalcin, Acikgoz, Demircan (bib56) 2024; 312 Anstis, Chantikul, Lawn, Marshall (bib11) 1981; 64 Issa, Rashad, Hanafy, Saddeek (bib31) 2020; 544 Al-Hadeethi, Sayyed, Kaewkhao, Raffah, Almalki, Rajaramakrishna (bib8) 2019; 125 Abdelghany, Diab, Madbouly, Ezz-ElDin (bib1) 2022; 32 Cannillo V, Pawlowski L, Fiorilli S and Bernardo E (2021) Editorial: Bioceramics and/or Bioactive Glass-Based Composites. Front. Mater. 8:738931. doi: 10.3389/fmats.2021.738931C. V., P. L., F. S., B. E., 2021. Editorial: bioceramics and/or bioactive glass-based composites. Front. Mater. doi:10.3389/fmats.2021.738931. Rasul, Aktas, Rustum, Yalcin, Fahad, Acikgoz, Ceyhan (bib51) 2024 Yan, Li, Xia (bib59) 2020; 53 Tamam, Al Huwayz, Alrowaili, Alwadai, Katubi, Alqahtani, Olarinoye, Al-Buriahi (bib58) 2024; 203 Yorulmaz, Yasar, Acikgoz, Kavun, Demircan, Kamislioglu, Aktas, Ulas (bib60) 2024; 149 Makishima, Mackenzie (bib41) 1973; 12 (bib16) 2019 Singh, Singh, Kaur, Kaur, Arora, Kaur, Singh (bib54) 2020; 546 Larink, Rinke, Eckert (bib40) 2015; 119 Arul raja sekaran, Vijayakumar, Suriyamurthy, Alqahtani, Marimuthu (bib12) 2024; 175 Acikgoz, Demircan, Yılmaz, Aktas, Yalcin, Yorulmaz (bib2) 2022; 276 Morshidy, Abd El-Fattah, Abul-Magd, Hassan, Mohamed (bib48) 2021; 113 Elbatal, Azooz, Khalil, Monem, Hamdy (bib20) 2003; 80 Hench, Splinter, Allen, Greenlee (bib28) 1971; 5 Rada, Culea, Rada, Pascuta, Maties, Culea (bib50) 2009; 937 Saddeek, Yahia, Aly, Dobrowolski (bib52) 2010; 12 Mhareb, Alsharhan, Sayyed, Alajerami, Alqahtani, Alayed, Almurayshid (bib45) 2021; 247 Eskalen, Kavun, Kavgacı (bib23) 2023; 198 Imheidat, Hamad, Sayyed, Alajerami, Prabhu, Kamath, Flaifel, Mhareb (bib29) 2023; 272 Indhrapriyadarshini, Naseer, Poojha, Marimuthu, Sayyed, Alqahtani (bib30) 2024; 304 Chung, Cho, Kang, Seo, Lee (bib19) 2024 Kapoor, Guo, Youngman, Hogue, Mauro, Rzoska, Bockowski, Jensen, Smedskjaer (bib32) 2017; 7 Fidan, Acikgoz, Demircan, Yilmaz, Aktas (bib24) 2021; 163 Mastelaro, Zanotto (bib44) 2018; 11 Alajerami, Mhareb, Sayyed, Hamad, Abuelhia, Alshamari, Alqahtani, Imheidat (bib9) 2024; 147 Aşkın (bib13) 2020; 46 Balasubramanian, Büttner, Miguez Pacheco, Boccaccini (bib14) 2018; 38 Soğuksu, Kerli, Kavun, Alver (bib55) 2024; 148 Berger, Hubbell (bib15) 1987 Miola, Massera, Cochis, Kumar, Rimondini, Vernè (bib46) 2021; 123 Şakar, Özpolat, Alım, Sayyed, Kurudirek (bib53) 2020; 166 Kocak (bib36) 2020 Chromčíková, Svoboda, Hruška, Pecušová, Nowicka (bib18) 2023; 304 Garaga, Werner-Zwanziger, Zwanziger, Deceanne, Hauke, Bozer, Feller (bib26) 2017; 121 Pascuta, Borodi, Culea (bib49) 2008; 20 Kim, El-Fiqi, Kim (bib35) 2017; 9 Kumar, Dixit, Sinha (bib37) 2023; 49 Ali, Tufail, Kim, Jeong, Iqbal, Rehman (bib10) 2024; 325 Kaur, Khanna (bib33) 2014; 404 Fidan, Acikgoz, Yılmaz, Demircan, Kalecik, Aktas, Isgor (bib25) 2024; 976 Makishima, Mackenzie (bib42) 1975; 17 Gentleman, Fredholm, Jell, Lotfibakhshaiesh, O'Donnell, Hill, Stevens (bib27) 2010; 31 Acikgoz, Aladailah, Tashlykov, Demircan, Kamislioglu, Yaşar, Özdoğan, Yorulmaz (bib3) 2023; 97 Aktas, Acikgoz, Yilmaz, Yalcin, Dogru, Yorulmaz (bib6) 2022; 563 Marzuki, Ega, Saraswati (bib43) 2022; 9 Laariedh, Prabhu, Sayyed, Kumar, Alfadhli, Kamath (bib38) 2021; 248 10.1016/j.apradiso.2025.111799_bib17 Ersundu (10.1016/j.apradiso.2025.111799_bib22) 2019; 524 Fidan (10.1016/j.apradiso.2025.111799_bib24) 2021; 163 Chromčíková (10.1016/j.apradiso.2025.111799_bib18) 2023; 304 Mastelaro (10.1016/j.apradiso.2025.111799_bib44) 2018; 11 Kocak (10.1016/j.apradiso.2025.111799_bib36) 2020 Lakshminarayana (10.1016/j.apradiso.2025.111799_bib39) 2018; 48 Şakar (10.1016/j.apradiso.2025.111799_bib53) 2020; 166 Yorulmaz (10.1016/j.apradiso.2025.111799_bib60) 2024; 149 Morshidy (10.1016/j.apradiso.2025.111799_bib48) 2021; 113 Elkhoshkhany (10.1016/j.apradiso.2025.111799_bib21) 2016; 42 Alajerami (10.1016/j.apradiso.2025.111799_bib9) 2024; 147 Solak (10.1016/j.apradiso.2025.111799_bib56) 2024; 312 Srinivas (10.1016/j.apradiso.2025.111799_bib57) 2022; 575 Gentleman (10.1016/j.apradiso.2025.111799_bib27) 2010; 31 Miola (10.1016/j.apradiso.2025.111799_bib46) 2021; 123 Fidan (10.1016/j.apradiso.2025.111799_bib25) 2024; 976 Makishima (10.1016/j.apradiso.2025.111799_bib41) 1973; 12 Kapoor (10.1016/j.apradiso.2025.111799_bib32) 2017; 7 Indhrapriyadarshini (10.1016/j.apradiso.2025.111799_bib30) 2024; 304 Soğuksu (10.1016/j.apradiso.2025.111799_bib55) 2024; 148 Eskalen (10.1016/j.apradiso.2025.111799_bib23) 2023; 198 Kaur (10.1016/j.apradiso.2025.111799_bib33) 2014; 404 Arul raja sekaran (10.1016/j.apradiso.2025.111799_bib12) 2024; 175 Aşkın (10.1016/j.apradiso.2025.111799_bib13) 2020; 46 Mhareb (10.1016/j.apradiso.2025.111799_bib45) 2021; 247 Yan (10.1016/j.apradiso.2025.111799_bib59) 2020; 53 Marzuki (10.1016/j.apradiso.2025.111799_bib43) 2022; 9 Tamam (10.1016/j.apradiso.2025.111799_bib58) 2024; 203 Hench (10.1016/j.apradiso.2025.111799_bib28) 1971; 5 Berger (10.1016/j.apradiso.2025.111799_bib15) 1987 Garaga (10.1016/j.apradiso.2025.111799_bib26) 2017; 121 Issa (10.1016/j.apradiso.2025.111799_bib31) 2020; 544 Rasul (10.1016/j.apradiso.2025.111799_bib51) 2024 Singh (10.1016/j.apradiso.2025.111799_bib54) 2020; 546 Imheidat (10.1016/j.apradiso.2025.111799_bib29) 2023; 272 (10.1016/j.apradiso.2025.111799_bib16) 2019 Laariedh (10.1016/j.apradiso.2025.111799_bib38) 2021; 248 Makishima (10.1016/j.apradiso.2025.111799_bib42) 1975; 17 Aktas (10.1016/j.apradiso.2025.111799_bib6) 2022; 563 Elbatal (10.1016/j.apradiso.2025.111799_bib20) 2003; 80 Chung (10.1016/j.apradiso.2025.111799_bib19) 2024 Saddeek (10.1016/j.apradiso.2025.111799_bib52) 2010; 12 Abdelghany (10.1016/j.apradiso.2025.111799_bib1) 2022; 32 Al-Hadeethi (10.1016/j.apradiso.2025.111799_bib8) 2019; 125 Kim (10.1016/j.apradiso.2025.111799_bib35) 2017; 9 Aktas (10.1016/j.apradiso.2025.111799_bib5) 2019; 156 Kumar (10.1016/j.apradiso.2025.111799_bib37) 2023; 49 Pascuta (10.1016/j.apradiso.2025.111799_bib49) 2008; 20 Acikgoz (10.1016/j.apradiso.2025.111799_bib3) 2023; 97 Anstis (10.1016/j.apradiso.2025.111799_bib11) 1981; 64 Rada (10.1016/j.apradiso.2025.111799_bib50) 2009; 937 Balasubramanian (10.1016/j.apradiso.2025.111799_bib14) 2018; 38 Ali (10.1016/j.apradiso.2025.111799_bib10) 2024; 325 Kilinç (10.1016/j.apradiso.2025.111799_bib34) 2023; 6 Ahmadi (10.1016/j.apradiso.2025.111799_bib4) 2024; 217 Larink (10.1016/j.apradiso.2025.111799_bib40) 2015; 119 Al-Buriahi (10.1016/j.apradiso.2025.111799_bib7) 2020; 46 Acikgoz (10.1016/j.apradiso.2025.111799_bib2) 2022; 276 |
References_xml | – volume: 48 start-page: 930 year: 2018 end-page: 941 ident: bib39 article-title: Borotellurite glasses for gamma-ray shielding: an Exploration of photon attenuation Coefficients and structural and thermal properties publication-title: J. Electron. Mater. – year: 2019 ident: bib16 article-title: Therapeutic and Clinical Applications of Bioactive Glasses – volume: 175 year: 2024 ident: bib12 article-title: Investigations of substantial effect on physical, structural, optical and radiation shielding properties of nitrates integrated alkaline oxyfluro phospho-silicate glasses publication-title: Prog. Nucl. Energy – volume: 312 year: 2024 ident: bib56 article-title: Exploring the radiation shielding properties of B2O3-PbO-TeO2-CeO2-WO3 glasses: a comprehensive study on structural, mechanical, gamma, and neutron attenuation characteristics publication-title: Mater. Chem. Phys. – volume: 31 start-page: 3949 year: 2010 end-page: 3956 ident: bib27 article-title: The effects of strontium-substituted bioactive glasses on osteoblasts and osteoclasts in vitro publication-title: Biomaterials – volume: 64 start-page: 533 year: 1981 end-page: 538 ident: bib11 article-title: A critical evaluation of indentation techniques for measuring fracture toughness: I, direct crack measurements publication-title: J. Am. Ceram. Soc. – volume: 404 start-page: 116 year: 2014 end-page: 123 ident: bib33 article-title: Structural characterization of borotellurite and alumino-borotellurite glasses publication-title: J. Non-Cryst. Solids – volume: 147 year: 2024 ident: bib9 article-title: Physical and radiation shielding properties for borate, boro-tellurite, and tellurite glass system modified with different modifiers: comparative study publication-title: Opt. Mater. – volume: 276 year: 2022 ident: bib2 article-title: Structural, mechanical, radiation shielding properties and albedo parameters of alumina borate glasses: role of CeO2 and Er2O3 publication-title: Mater. Sci. Eng. B – volume: 20 start-page: 360 year: 2008 end-page: 365 ident: bib49 article-title: Structural investigation of bismuth borate glass ceramics containing gadolinium ions by X-ray diffraction and FTIR spectroscopy publication-title: J. Mater. Sci. Mater. Electron. – volume: 575 year: 2022 ident: bib57 article-title: Effect of SrO and TeO2 on the physical and spectral properties of strontium tellurite boro-titanate glasses doped with Cu2+ ions publication-title: J. Non-Cryst. Solids – volume: 524 year: 2019 ident: bib22 article-title: Physical, mechanical and gamma-ray shielding properties of highly transparent ZnO-MoO3-TeO2 glasses publication-title: J. Non-Cryst. Solids – volume: 80 start-page: 599 year: 2003 end-page: 609 ident: bib20 article-title: Characterization of some bioglass-ceramics publication-title: Mater. Chem. Phys. – volume: 272 year: 2023 ident: bib29 article-title: Correlation between mechanical, gamma shielding features and tellurium oxide concentrations in molybdenum aluminum strontium borate glass publication-title: Optik – volume: 5 start-page: 117 year: 1971 end-page: 141 ident: bib28 article-title: Bonding mechanisms at the interface of ceramic prosthetic materials publication-title: J. Biomed. Mater. Res. – volume: 304 year: 2023 ident: bib18 article-title: Thermo-kinetic and structural characterization of Ce-doped glasses based on Bioglass 45S5 publication-title: Mater. Chem. Phys. – volume: 563 year: 2022 ident: bib6 article-title: The role of TeO2 insertion on the radiation shielding, structural and physical properties of borosilicate glasses publication-title: J. Nucl. Mater. – volume: 121 start-page: 28117 year: 2017 end-page: 28124 ident: bib26 article-title: Short-range structure of TeO2 glass publication-title: J. Phys. Chem. C – volume: 203 year: 2024 ident: bib58 article-title: Radiation attenuation of boro-tellurite glasses for efficient shielding applications publication-title: Appl. Radiat. Isot. – volume: 12 start-page: 35 year: 1973 end-page: 45 ident: bib41 article-title: Direct calculation of Young's moidulus of glass publication-title: J. Non-Cryst. Solids – year: 2024 ident: bib19 article-title: Comparison of fusion rate, radiologic and clinical outcome between CaO-SiO2-P2O5-B2O3 bioactive glass-ceramics 7 (BGS-7) spacer and allograft spacer with iliac bone graft in multilevel ACDF publication-title: Eur. Spine J. – year: 2020 ident: bib36 article-title: Pirinc kabugu kulu ikameli cimentoların fiziksel ve mekanik ozelliklerinin arastirilmasi publication-title: El-Cezeri Fen Ve Mühendislik Derg – volume: 304 year: 2024 ident: bib30 article-title: Significance of multicomponent modifiers incited Dy3+ ions doped boro-phosphate glasses for radiation shielding applications publication-title: Optik – volume: 119 start-page: 17539 year: 2015 end-page: 17551 ident: bib40 article-title: Mixed network former effects in tellurite glass systems: structure/property correlations in the system (Na2O)1/3[(2TeO2)x(P2O5)1-x]2/3 publication-title: J. Phys. Chem. C – volume: 46 start-page: 16452 year: 2020 end-page: 16458 ident: bib7 article-title: Effect of Bi2O3 on mechanical features and radiation shielding properties of boro-tellurite glass system publication-title: Ceram. Int. – volume: 46 start-page: 14090 year: 2020 end-page: 14096 ident: bib13 article-title: Assesment of the gamma and neutron shielding capabilities of the boro-tellurite glass quaternary containing heavy metal oxide using Geant4 and Phy-X/PSD database publication-title: Ceram. Int. – volume: 32 start-page: 3204 year: 2022 end-page: 3219 ident: bib1 article-title: Inspection of radiation shielding proficiency and effect of gamma-ray on ESR and thermal characteristics of copper oxide modified borate bioglasses publication-title: J. Inorg. Organomet. Polym. Mater. – volume: 198 year: 2023 ident: bib23 article-title: Preparation and study of radiation shielding features of ZnO nanoparticle reinforced borate glasses publication-title: Appl. Radiat. Isot. – volume: 42 start-page: 19218 year: 2016 end-page: 19224 ident: bib21 article-title: Mechanical and thermal properties of TeO2–Bi2O3–V2O5–Na2O–TiO2 glass system publication-title: Ceram. Int. – volume: 12 start-page: 1426 year: 2010 end-page: 1434 ident: bib52 article-title: Spectroscopic, mechanical and magnetic characterization of some bismuth borate glasses containing gadolinium ions publication-title: Solid State Sci. – volume: 546 year: 2020 ident: bib54 article-title: Comparison of structural, physical and optical properties of Na2O-B2O3 and Li2O-B2O3 glasses to find an advantageous host for CeO2 based optical and photonic applications publication-title: J. Non-Cryst. Solids – volume: 156 start-page: 144 year: 2019 end-page: 149 ident: bib5 article-title: Structural and radiation shielding properties of chromium oxide doped borosilicate glass publication-title: Radiat. Phys. Chem. – volume: 49 start-page: 17639 year: 2023 end-page: 17649 ident: bib37 article-title: Fabrication and characterization of additively manufactured CNT-bioglass composite scaffolds coated with cellulose nanowhiskers for bone tissue engineering publication-title: Ceram. Int. – volume: 149 year: 2024 ident: bib60 article-title: Influence of Gd2O3 on structural, optical, radiation shielding, and mechanical properties of borate glasses publication-title: Opt. Mater. – volume: 166 year: 2020 ident: bib53 article-title: Phy-X/PSD: development of a user friendly online software for calculation of parameters relevant to radiation shielding and dosimetry publication-title: Radiat. Phys. Chem. – volume: 6 start-page: 89 year: 2023 end-page: 110 ident: bib34 article-title: Biyoaktif cam ve cam seramikler, kocaeli üniversitesi fen bilim publication-title: Derg – volume: 247 year: 2021 ident: bib45 article-title: The impact of TeO2 on physical, structural, optical and radiation shielding features for borate glass samples publication-title: Optik – volume: 163 year: 2021 ident: bib24 article-title: Optical, structural, physical, and nuclear shielding properties, and albedo parameters of TeO2–BaO–B2O3–PbO–V2O5 glasses publication-title: J. Phys. Chem. Solid. – volume: 97 year: 2023 ident: bib3 article-title: Influence of Nd2O3 on radiation shielding and elastic properties of TeO2–MgO–Na2O glasses: a simulation study by PHITS and MCNP publication-title: Pramana – volume: 7 year: 2017 ident: bib32 article-title: Network glasses under pressure: permanent densification in modifier-free Al2 O3- B2 O3- P2 O5-SiO2 systems publication-title: Phys. Rev. Appl. – volume: 38 start-page: 855 year: 2018 end-page: 869 ident: bib14 article-title: Boron-containing bioactive glasses in bone and soft tissue engineering publication-title: J. Eur. Ceram. Soc. – volume: 9 start-page: 2059 year: 2017 end-page: 2073 ident: bib35 article-title: Synergetic cues of bioactive nanoparticles and nanofibrous structure in bone scaffolds to stimulate osteogenesis and angiogenesis publication-title: ACS Appl. Mater. Interfaces – volume: 17 start-page: 147 year: 1975 end-page: 157 ident: bib42 article-title: Calculation of bulk modulus, shear modulus and Poisson's ratio of glass publication-title: J. Non-Cryst. Solids – volume: 123 year: 2021 ident: bib46 article-title: Tellurium: a new active element for innovative multifunctional bioactive glasses publication-title: Mater. Sci. Eng. C – volume: 53 year: 2020 ident: bib59 article-title: Bioglass could increase cell membrane fluidity with ion products to develop its bioactivity publication-title: Cell Prolif. – volume: 544 year: 2020 ident: bib31 article-title: Experimental investigations on elastic and radiation shielding parameters of WO3-B2O3-TeO2 glasses publication-title: J. Non-Cryst. Solids – volume: 937 start-page: 70 year: 2009 end-page: 74 ident: bib50 article-title: The double role played by the Gd2O3 in the gadolinium–aluminum–borate–bismuthate quaternary glass forming tendency. GdBO3 crystalline phase publication-title: J. Mol. Struct. – volume: 148 year: 2024 ident: bib55 article-title: Synthesis and characterizations of Ce-doped ZnO thin films for radiation shielding publication-title: Opt. Mater. – reference: Cannillo V, Pawlowski L, Fiorilli S and Bernardo E (2021) Editorial: Bioceramics and/or Bioactive Glass-Based Composites. Front. Mater. 8:738931. doi: 10.3389/fmats.2021.738931C. V., P. L., F. S., B. E., 2021. Editorial: bioceramics and/or bioactive glass-based composites. Front. Mater. doi:10.3389/fmats.2021.738931. – year: 2024 ident: bib51 article-title: Role of HfO2 on modifying the structural, optical, elastic, and mechanical features of boro tellurite glasses publication-title: Opt. Mater. – volume: 325 year: 2024 ident: bib10 article-title: Thermal, surface, and structure analysis of molybdenum substituted bioactive glass ceramics SiO2-CaO- MoO3-P2O5 publication-title: Mater. Chem. Phys. – volume: 976 year: 2024 ident: bib25 article-title: Investigation of the structural, mechanical, radiation and neutron shielding properties of the TeO2-B2O3-Li2O-MoO3-CuO glass system publication-title: J. Alloys Compd. – volume: 11 start-page: 204 year: 2018 ident: bib44 article-title: X-ray Absorption Fine Structure (XAFS) studies of oxide glasses-A 45-year overview publication-title: Materials – volume: 113 year: 2021 ident: bib48 article-title: Reevaluation of Cr6+ optical transitions through Gd2O3 doping of chromium-borate glasses publication-title: Opt. Mater. – volume: 125 year: 2019 ident: bib8 article-title: An extensive investigation of physical, optical and radiation shielding properties for borate glasses modified with gadolinium oxide publication-title: Appl. Phys. A – year: 1987 ident: bib15 article-title: XCOM: Photon Cross Sections on a Personal Computer – volume: 9 year: 2022 ident: bib43 article-title: Effect of B2O3 addition on thermal and optical properties of TeO2–ZnO–Bi2O3–TiO2 glasses publication-title: Mater. Res. Express – volume: 248 year: 2021 ident: bib38 article-title: Impact of replacement of B2O3 by TeO2 on the physical, optical and gamma ray shielding characteristics of Pb-free B2O3-TeO2-ZnO-Al2O3-Li2O-MgO glass system publication-title: Optik – volume: 217 year: 2024 ident: bib4 article-title: Investigated mechanical, physical parameters and Gamma-Neutron radiation shielding of the rare earth (Er2O3/CeO2) doped barium borate glass: role of the melting time and temperature publication-title: Radiat. Phys. Chem. – volume: 147 year: 2024 ident: 10.1016/j.apradiso.2025.111799_bib9 article-title: Physical and radiation shielding properties for borate, boro-tellurite, and tellurite glass system modified with different modifiers: comparative study publication-title: Opt. Mater. doi: 10.1016/j.optmat.2023.114558 – volume: 156 start-page: 144 year: 2019 ident: 10.1016/j.apradiso.2025.111799_bib5 article-title: Structural and radiation shielding properties of chromium oxide doped borosilicate glass publication-title: Radiat. Phys. Chem. doi: 10.1016/j.radphyschem.2018.11.012 – volume: 546 year: 2020 ident: 10.1016/j.apradiso.2025.111799_bib54 article-title: Comparison of structural, physical and optical properties of Na2O-B2O3 and Li2O-B2O3 glasses to find an advantageous host for CeO2 based optical and photonic applications publication-title: J. Non-Cryst. Solids doi: 10.1016/j.jnoncrysol.2020.120268 – volume: 304 year: 2024 ident: 10.1016/j.apradiso.2025.111799_bib30 article-title: Significance of multicomponent modifiers incited Dy3+ ions doped boro-phosphate glasses for radiation shielding applications publication-title: Optik doi: 10.1016/j.ijleo.2024.171755 – volume: 7 year: 2017 ident: 10.1016/j.apradiso.2025.111799_bib32 article-title: Network glasses under pressure: permanent densification in modifier-free Al2 O3- B2 O3- P2 O5-SiO2 systems publication-title: Phys. Rev. Appl. doi: 10.1103/PhysRevApplied.7.054011 – volume: 166 year: 2020 ident: 10.1016/j.apradiso.2025.111799_bib53 article-title: Phy-X/PSD: development of a user friendly online software for calculation of parameters relevant to radiation shielding and dosimetry publication-title: Radiat. Phys. Chem. doi: 10.1016/j.radphyschem.2019.108496 – year: 2024 ident: 10.1016/j.apradiso.2025.111799_bib19 article-title: Comparison of fusion rate, radiologic and clinical outcome between CaO-SiO2-P2O5-B2O3 bioactive glass-ceramics 7 (BGS-7) spacer and allograft spacer with iliac bone graft in multilevel ACDF publication-title: Eur. Spine J. – year: 2024 ident: 10.1016/j.apradiso.2025.111799_bib51 article-title: Role of HfO2 on modifying the structural, optical, elastic, and mechanical features of boro tellurite glasses publication-title: Opt. Mater. – volume: 304 year: 2023 ident: 10.1016/j.apradiso.2025.111799_bib18 article-title: Thermo-kinetic and structural characterization of Ce-doped glasses based on Bioglass 45S5 publication-title: Mater. Chem. Phys. doi: 10.1016/j.matchemphys.2023.127833 – volume: 163 year: 2021 ident: 10.1016/j.apradiso.2025.111799_bib24 article-title: Optical, structural, physical, and nuclear shielding properties, and albedo parameters of TeO2–BaO–B2O3–PbO–V2O5 glasses publication-title: J. Phys. Chem. Solid. – volume: 11 start-page: 204 year: 2018 ident: 10.1016/j.apradiso.2025.111799_bib44 article-title: X-ray Absorption Fine Structure (XAFS) studies of oxide glasses-A 45-year overview publication-title: Materials doi: 10.3390/ma11020204 – volume: 123 year: 2021 ident: 10.1016/j.apradiso.2025.111799_bib46 article-title: Tellurium: a new active element for innovative multifunctional bioactive glasses publication-title: Mater. Sci. Eng. C doi: 10.1016/j.msec.2021.111957 – volume: 12 start-page: 1426 year: 2010 ident: 10.1016/j.apradiso.2025.111799_bib52 article-title: Spectroscopic, mechanical and magnetic characterization of some bismuth borate glasses containing gadolinium ions publication-title: Solid State Sci. doi: 10.1016/j.solidstatesciences.2010.05.023 – volume: 64 start-page: 533 year: 1981 ident: 10.1016/j.apradiso.2025.111799_bib11 article-title: A critical evaluation of indentation techniques for measuring fracture toughness: I, direct crack measurements publication-title: J. Am. Ceram. Soc. doi: 10.1111/j.1151-2916.1981.tb10320.x – year: 2020 ident: 10.1016/j.apradiso.2025.111799_bib36 article-title: Pirinc kabugu kulu ikameli cimentoların fiziksel ve mekanik ozelliklerinin arastirilmasi – volume: 937 start-page: 70 year: 2009 ident: 10.1016/j.apradiso.2025.111799_bib50 article-title: The double role played by the Gd2O3 in the gadolinium–aluminum–borate–bismuthate quaternary glass forming tendency. GdBO3 crystalline phase publication-title: J. Mol. Struct. doi: 10.1016/j.molstruc.2009.08.016 – volume: 524 year: 2019 ident: 10.1016/j.apradiso.2025.111799_bib22 article-title: Physical, mechanical and gamma-ray shielding properties of highly transparent ZnO-MoO3-TeO2 glasses publication-title: J. Non-Cryst. Solids doi: 10.1016/j.jnoncrysol.2019.119648 – volume: 175 year: 2024 ident: 10.1016/j.apradiso.2025.111799_bib12 article-title: Investigations of substantial effect on physical, structural, optical and radiation shielding properties of nitrates integrated alkaline oxyfluro phospho-silicate glasses publication-title: Prog. Nucl. Energy doi: 10.1016/j.pnucene.2024.105330 – volume: 217 year: 2024 ident: 10.1016/j.apradiso.2025.111799_bib4 article-title: Investigated mechanical, physical parameters and Gamma-Neutron radiation shielding of the rare earth (Er2O3/CeO2) doped barium borate glass: role of the melting time and temperature publication-title: Radiat. Phys. Chem. doi: 10.1016/j.radphyschem.2023.111450 – volume: 97 year: 2023 ident: 10.1016/j.apradiso.2025.111799_bib3 article-title: Influence of Nd2O3 on radiation shielding and elastic properties of TeO2–MgO–Na2O glasses: a simulation study by PHITS and MCNP publication-title: Pramana doi: 10.1007/s12043-023-02629-7 – volume: 312 year: 2024 ident: 10.1016/j.apradiso.2025.111799_bib56 article-title: Exploring the radiation shielding properties of B2O3-PbO-TeO2-CeO2-WO3 glasses: a comprehensive study on structural, mechanical, gamma, and neutron attenuation characteristics publication-title: Mater. Chem. Phys. doi: 10.1016/j.matchemphys.2023.128672 – volume: 119 start-page: 17539 year: 2015 ident: 10.1016/j.apradiso.2025.111799_bib40 article-title: Mixed network former effects in tellurite glass systems: structure/property correlations in the system (Na2O)1/3[(2TeO2)x(P2O5)1-x]2/3 publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.5b04074 – ident: 10.1016/j.apradiso.2025.111799_bib17 doi: 10.3389/fmats.2021.738931 – volume: 544 year: 2020 ident: 10.1016/j.apradiso.2025.111799_bib31 article-title: Experimental investigations on elastic and radiation shielding parameters of WO3-B2O3-TeO2 glasses publication-title: J. Non-Cryst. Solids doi: 10.1016/j.jnoncrysol.2020.120207 – volume: 5 start-page: 117 year: 1971 ident: 10.1016/j.apradiso.2025.111799_bib28 article-title: Bonding mechanisms at the interface of ceramic prosthetic materials publication-title: J. Biomed. Mater. Res. doi: 10.1002/jbm.820050611 – volume: 247 year: 2021 ident: 10.1016/j.apradiso.2025.111799_bib45 article-title: The impact of TeO2 on physical, structural, optical and radiation shielding features for borate glass samples publication-title: Optik doi: 10.1016/j.ijleo.2021.167924 – volume: 976 year: 2024 ident: 10.1016/j.apradiso.2025.111799_bib25 article-title: Investigation of the structural, mechanical, radiation and neutron shielding properties of the TeO2-B2O3-Li2O-MoO3-CuO glass system publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2023.172981 – volume: 9 start-page: 2059 year: 2017 ident: 10.1016/j.apradiso.2025.111799_bib35 article-title: Synergetic cues of bioactive nanoparticles and nanofibrous structure in bone scaffolds to stimulate osteogenesis and angiogenesis publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b12089 – volume: 31 start-page: 3949 year: 2010 ident: 10.1016/j.apradiso.2025.111799_bib27 article-title: The effects of strontium-substituted bioactive glasses on osteoblasts and osteoclasts in vitro publication-title: Biomaterials doi: 10.1016/j.biomaterials.2010.01.121 – year: 1987 ident: 10.1016/j.apradiso.2025.111799_bib15 – volume: 17 start-page: 147 year: 1975 ident: 10.1016/j.apradiso.2025.111799_bib42 article-title: Calculation of bulk modulus, shear modulus and Poisson's ratio of glass publication-title: J. Non-Cryst. Solids doi: 10.1016/0022-3093(75)90047-2 – volume: 198 year: 2023 ident: 10.1016/j.apradiso.2025.111799_bib23 article-title: Preparation and study of radiation shielding features of ZnO nanoparticle reinforced borate glasses publication-title: Appl. Radiat. Isot. doi: 10.1016/j.apradiso.2023.110858 – volume: 404 start-page: 116 year: 2014 ident: 10.1016/j.apradiso.2025.111799_bib33 article-title: Structural characterization of borotellurite and alumino-borotellurite glasses publication-title: J. Non-Cryst. Solids doi: 10.1016/j.jnoncrysol.2014.08.002 – volume: 48 start-page: 930 year: 2018 ident: 10.1016/j.apradiso.2025.111799_bib39 article-title: Borotellurite glasses for gamma-ray shielding: an Exploration of photon attenuation Coefficients and structural and thermal properties publication-title: J. Electron. Mater. doi: 10.1007/s11664-018-6810-8 – volume: 53 year: 2020 ident: 10.1016/j.apradiso.2025.111799_bib59 article-title: Bioglass could increase cell membrane fluidity with ion products to develop its bioactivity publication-title: Cell Prolif. doi: 10.1111/cpr.12906 – volume: 6 start-page: 89 year: 2023 ident: 10.1016/j.apradiso.2025.111799_bib34 article-title: Biyoaktif cam ve cam seramikler, kocaeli üniversitesi fen bilim publication-title: Derg – volume: 125 year: 2019 ident: 10.1016/j.apradiso.2025.111799_bib8 article-title: An extensive investigation of physical, optical and radiation shielding properties for borate glasses modified with gadolinium oxide publication-title: Appl. Phys. A doi: 10.1007/s00339-019-3053-3 – volume: 20 start-page: 360 year: 2008 ident: 10.1016/j.apradiso.2025.111799_bib49 article-title: Structural investigation of bismuth borate glass ceramics containing gadolinium ions by X-ray diffraction and FTIR spectroscopy publication-title: J. Mater. Sci. Mater. Electron. doi: 10.1007/s10854-008-9734-x – volume: 248 year: 2021 ident: 10.1016/j.apradiso.2025.111799_bib38 article-title: Impact of replacement of B2O3 by TeO2 on the physical, optical and gamma ray shielding characteristics of Pb-free B2O3-TeO2-ZnO-Al2O3-Li2O-MgO glass system publication-title: Optik doi: 10.1016/j.ijleo.2021.168100 – volume: 9 year: 2022 ident: 10.1016/j.apradiso.2025.111799_bib43 article-title: Effect of B2O3 addition on thermal and optical properties of TeO2–ZnO–Bi2O3–TiO2 glasses publication-title: Mater. Res. Express doi: 10.1088/2053-1591/ac55c5 – volume: 46 start-page: 16452 year: 2020 ident: 10.1016/j.apradiso.2025.111799_bib7 article-title: Effect of Bi2O3 on mechanical features and radiation shielding properties of boro-tellurite glass system publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2020.03.208 – year: 2019 ident: 10.1016/j.apradiso.2025.111799_bib16 – volume: 149 year: 2024 ident: 10.1016/j.apradiso.2025.111799_bib60 article-title: Influence of Gd2O3 on structural, optical, radiation shielding, and mechanical properties of borate glasses publication-title: Opt. Mater. doi: 10.1016/j.optmat.2024.115032 – volume: 276 year: 2022 ident: 10.1016/j.apradiso.2025.111799_bib2 article-title: Structural, mechanical, radiation shielding properties and albedo parameters of alumina borate glasses: role of CeO2 and Er2O3 publication-title: Mater. Sci. Eng. B doi: 10.1016/j.mseb.2021.115519 – volume: 563 year: 2022 ident: 10.1016/j.apradiso.2025.111799_bib6 article-title: The role of TeO2 insertion on the radiation shielding, structural and physical properties of borosilicate glasses publication-title: J. Nucl. Mater. doi: 10.1016/j.jnucmat.2022.153619 – volume: 80 start-page: 599 year: 2003 ident: 10.1016/j.apradiso.2025.111799_bib20 article-title: Characterization of some bioglass-ceramics publication-title: Mater. Chem. Phys. doi: 10.1016/S0254-0584(03)00082-8 – volume: 49 start-page: 17639 year: 2023 ident: 10.1016/j.apradiso.2025.111799_bib37 article-title: Fabrication and characterization of additively manufactured CNT-bioglass composite scaffolds coated with cellulose nanowhiskers for bone tissue engineering publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2023.02.130 – volume: 42 start-page: 19218 year: 2016 ident: 10.1016/j.apradiso.2025.111799_bib21 article-title: Mechanical and thermal properties of TeO2–Bi2O3–V2O5–Na2O–TiO2 glass system publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2016.09.086 – volume: 121 start-page: 28117 year: 2017 ident: 10.1016/j.apradiso.2025.111799_bib26 article-title: Short-range structure of TeO2 glass publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.7b08978 – volume: 148 year: 2024 ident: 10.1016/j.apradiso.2025.111799_bib55 article-title: Synthesis and characterizations of Ce-doped ZnO thin films for radiation shielding publication-title: Opt. Mater. doi: 10.1016/j.optmat.2024.114941 – volume: 325 year: 2024 ident: 10.1016/j.apradiso.2025.111799_bib10 article-title: Thermal, surface, and structure analysis of molybdenum substituted bioactive glass ceramics SiO2-CaO- MoO3-P2O5 publication-title: Mater. Chem. Phys. doi: 10.1016/j.matchemphys.2024.129749 – volume: 203 year: 2024 ident: 10.1016/j.apradiso.2025.111799_bib58 article-title: Radiation attenuation of boro-tellurite glasses for efficient shielding applications publication-title: Appl. Radiat. Isot. doi: 10.1016/j.apradiso.2023.111080 – volume: 38 start-page: 855 year: 2018 ident: 10.1016/j.apradiso.2025.111799_bib14 article-title: Boron-containing bioactive glasses in bone and soft tissue engineering publication-title: J. Eur. Ceram. Soc. doi: 10.1016/j.jeurceramsoc.2017.11.001 – volume: 46 start-page: 14090 year: 2020 ident: 10.1016/j.apradiso.2025.111799_bib13 article-title: Assesment of the gamma and neutron shielding capabilities of the boro-tellurite glass quaternary containing heavy metal oxide using Geant4 and Phy-X/PSD database publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2020.02.209 – volume: 113 year: 2021 ident: 10.1016/j.apradiso.2025.111799_bib48 article-title: Reevaluation of Cr6+ optical transitions through Gd2O3 doping of chromium-borate glasses publication-title: Opt. Mater. doi: 10.1016/j.optmat.2021.110881 – volume: 32 start-page: 3204 year: 2022 ident: 10.1016/j.apradiso.2025.111799_bib1 article-title: Inspection of radiation shielding proficiency and effect of gamma-ray on ESR and thermal characteristics of copper oxide modified borate bioglasses publication-title: J. Inorg. Organomet. Polym. Mater. doi: 10.1007/s10904-022-02349-2 – volume: 12 start-page: 35 year: 1973 ident: 10.1016/j.apradiso.2025.111799_bib41 article-title: Direct calculation of Young's moidulus of glass publication-title: J. Non-Cryst. Solids doi: 10.1016/0022-3093(73)90053-7 – volume: 575 year: 2022 ident: 10.1016/j.apradiso.2025.111799_bib57 article-title: Effect of SrO and TeO2 on the physical and spectral properties of strontium tellurite boro-titanate glasses doped with Cu2+ ions publication-title: J. Non-Cryst. Solids doi: 10.1016/j.jnoncrysol.2021.121218 – volume: 272 year: 2023 ident: 10.1016/j.apradiso.2025.111799_bib29 article-title: Correlation between mechanical, gamma shielding features and tellurium oxide concentrations in molybdenum aluminum strontium borate glass publication-title: Optik doi: 10.1016/j.ijleo.2022.170336 |
SSID | ssj0004892 |
Score | 2.507246 |
Snippet | This study investigates the structural, mechanical, and radiation shielding properties of a series of novel bio glasses with the composition... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 111799 |
SubjectTerms | Bio-glass Boro-tellurite glass Gamma shielding Structural analysis |
Title | Influence of B2O3 incorporation on the structural, mechanical and radiation shielding properties of TeO2 Based bioglasses |
URI | https://dx.doi.org/10.1016/j.apradiso.2025.111799 https://www.proquest.com/docview/3184018624 |
Volume | 221 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NS8MwFA9DUbyITsVvIni0bm2Stjk6UTZl86CCt9B84QZ2w-nBi3-776UtfiB4EEqhJQ0hv_S9X5L3fiHkOLWxduD6IpM4G3GTmUiDY42EzUXXC57GQXh-OEr79_zqQTy0yHmTC4NhlbXtr2x6sNb1m07dm53ZeNy5BfItc1SUE8jzOWaUwx1H-en7Z5gHz8PByFg4wtJfsoQnp8XsucCoHZgnJgKtRxY0YH91UD9MdfA_l2tktSaO9Kxq2zppubJNlof11nibLIVYTjPfIG-D5uAROvW0l9wwihIMlWIxwEDhAtpHK-lYlN04oU8OM4ARMFqUlmJ7q7LzRwxxA_9GZ7hs_4z6q1jtnbtJaA9coKV6PA0c3M03yf3lxd15P6pPWABoJH-JpLYu89z4xHczmWthvAybsyLr6tjDbEoYa2yexs6zvPBMuFgzb2Kpcye5ZFtkoZyWbptQB06uywyLgW_wpGA6tUAdM2mZtF7zYod0mm5Vs0pIQzURZhPVAKEQCFUBsUNk0_vq25BQYO3__PaogUvB_4KbIEXppq9zxXBKG2NazO4_6t8jK_hUxe3ukwUAzB0AO3nRh2H4HZLFs8F1f_QBqhnlZw |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LTxsxEB7RINpeENCipuVhJI5sk13bu-sjIKIESDgQJG7W-iWCxCYicODfd2YfKkVIPSDtade2LH_emc_2zGeAw9TFxqPri2ziXSRsZiODjjWSLpf9IEUaV8Lz40k6vBHnt_J2BU7bXBgKq2xsf23TK2vdvOk1o9lbzGa9ayTfKidFOUk8X2SfYJXUqWQHVo9HF8PJ3_TIvLobmcpHVOFVovD972LxWFDgDi4VE0kGJKtkYN_1UW-sdeWCBhuw3nBHdlx3bxNWfLkFn8fN6fgWrFXhnHb5DV5G7d0jbB7YSXLFGakw1KLFiATDB5kfq9VjSXnjiD14SgImzFhROkb9rcsu7yjKDV0cW9DO_SNJsFKzU3-VsBP0go6Z2byi4X75HW4GZ9PTYdRcsoDoKPEUKeN8FoQNSehnKjfSBlWdz8qsb-KACyppnXV5GvvA8yJw6WPDg42Vyb0Sim9Dp5yX_gcwj36uzy2PkXKIpOAmdcgeM-W4csGIogu9dlj1otbS0G2Q2b1ugdAEhK6B6IJqR1__Mys0Gvz_1j1o4dL4y9A5SFH6-fNSc1rVxpQZ8_MD7e_Dl-F0fKkvR5OLX_CVvtRhvDvQQfD8LpKVJ7PXTMY_ihjoGA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Influence+of+B2O3+incorporation+on+the+structural%2C+mechanical+and+radiation+shielding+properties+of+TeO2+Based+bioglasses&rft.jtitle=Applied+radiation+and+isotopes&rft.au=Ulas%2C+Esmanur+Oruc&rft.au=Acikgoz%2C+Abuzer&rft.au=Aktas%2C+Bulent&rft.au=Kavun%2C+Yusuf&rft.date=2025-07-01&rft.issn=1872-9800&rft.eissn=1872-9800&rft.volume=221&rft.spage=111799&rft_id=info:doi/10.1016%2Fj.apradiso.2025.111799&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0969-8043&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0969-8043&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0969-8043&client=summon |