Ultrathin carbon layer coated MXene/PBO nanofiber films for excellent electromagnetic interference shielding and thermal stability

In this study, a carbon layer coated MXene/poly(p-phenylene-2,6-benzobisoxazole) nanofibers (PNFs) (MXene/PNF@C) EMI shielding composite film was obtained through polymer infiltration and pyrolysis (PIP) technique. The introduction of the carbon layer improved both the electrical and thermal conduct...

Full description

Saved in:
Bibliographic Details
Published inComposites. Part A, Applied science and manufacturing Vol. 176; p. 107857
Main Authors Gong, Kaijie, Peng, Yanmeng, Liu, An, Qi, Shuhua, Qiu, Hua
Format Journal Article
LanguageEnglish
Published 01.01.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this study, a carbon layer coated MXene/poly(p-phenylene-2,6-benzobisoxazole) nanofibers (PNFs) (MXene/PNF@C) EMI shielding composite film was obtained through polymer infiltration and pyrolysis (PIP) technique. The introduction of the carbon layer improved both the electrical and thermal conductive pathways of the film leading to the enhancement of its electrical conductivity(σ), thermal conductivity coefficient (λ) and EMI shielding effectiveness (SE). Meanwhile, thermal annealing reduced the defects of PBO molecular chains and improved the mechanical properties of the composite film. When the content of MXene is 50 wt% and the thickness of the film is only 37 μm, MP50@C-400 composite film has the best comprehensive properties, with the σ, λ, specific EMI SE (SEₜ) and tensile strength is 1760 S/m, 5.64 W/(m·K), 1108.1 dB/mm and 66.8 MPa, respectively, and its weight loss is only 24.1% at 800°C. The composite film provides important application prospects in 5G communication technology, wearable equipment and artificial intelligence.
AbstractList In this study, a carbon layer coated MXene/poly(p-phenylene-2,6-benzobisoxazole) nanofibers (PNFs) (MXene/PNF@C) EMI shielding composite film was obtained through polymer infiltration and pyrolysis (PIP) technique. The introduction of the carbon layer improved both the electrical and thermal conductive pathways of the film leading to the enhancement of its electrical conductivity(σ), thermal conductivity coefficient (λ) and EMI shielding effectiveness (SE). Meanwhile, thermal annealing reduced the defects of PBO molecular chains and improved the mechanical properties of the composite film. When the content of MXene is 50 wt% and the thickness of the film is only 37 μm, MP50@C-400 composite film has the best comprehensive properties, with the σ, λ, specific EMI SE (SEₜ) and tensile strength is 1760 S/m, 5.64 W/(m·K), 1108.1 dB/mm and 66.8 MPa, respectively, and its weight loss is only 24.1% at 800°C. The composite film provides important application prospects in 5G communication technology, wearable equipment and artificial intelligence.
ArticleNumber 107857
Author Peng, Yanmeng
Liu, An
Qiu, Hua
Qi, Shuhua
Gong, Kaijie
Author_xml – sequence: 1
  givenname: Kaijie
  surname: Gong
  fullname: Gong, Kaijie
– sequence: 2
  givenname: Yanmeng
  surname: Peng
  fullname: Peng, Yanmeng
– sequence: 3
  givenname: An
  surname: Liu
  fullname: Liu, An
– sequence: 4
  givenname: Shuhua
  surname: Qi
  fullname: Qi, Shuhua
– sequence: 5
  givenname: Hua
  orcidid: 0000-0003-1687-6966
  surname: Qiu
  fullname: Qiu, Hua
BookMark eNqNkE1LAzEQhnNQ0Kr_Id68tOZjd7M5iYpfoNSDgreQTWbblGxSkwj26i93Sz2IJ08DM-_7wDwTtBdiAIROKZlRQpvz1czEYR2zK5D1jBHGx71oa7GHDimv5bTl9dsBmuS8IoRwLukh-nr1JemydAEbnboYsNcbSNhEXcDipzcIcP58NcdBh9i7bjz1zg8Z9zFh-DTgPYSCwYMpKQ56EaA4g10okHpIEAzgvHTgrQsLrIPFZQlp0B7nojvnXdkco_1e-wwnP_MIvd7evFzfTx_ndw_Xl49Tw2RVplJaYQ1rraxEA7Q3oqkYFbUUrKEtt4y1FTOCt00nTFPVTWe1Acmh1daOXX6EznbcdYrvH5CLGlzePqADxI-sOK0r2tZEkjF6sYuaFHNO0Cvjii4uhlGW84oStTWuVuqXcbU1rnbGR4L8Q1gnN-i0-Uf3G7V4k5Y
CitedBy_id crossref_primary_10_1016_j_mtphys_2024_101419
crossref_primary_10_1016_j_jmst_2024_08_059
crossref_primary_10_1002_app_56070
crossref_primary_10_1016_j_seppur_2025_132651
crossref_primary_10_1007_s10118_024_3112_x
crossref_primary_10_1016_j_jmst_2024_08_053
crossref_primary_10_1016_j_compositesb_2024_112011
crossref_primary_10_1016_j_jaap_2025_107041
crossref_primary_10_1016_j_jmst_2024_09_026
crossref_primary_10_1016_j_jmst_2024_01_064
crossref_primary_10_1016_j_jmst_2024_09_020
crossref_primary_10_1016_j_mtener_2024_101543
crossref_primary_10_1007_s40820_024_01381_w
crossref_primary_10_1016_j_mtphys_2024_101400
crossref_primary_10_1007_s10853_025_10649_4
crossref_primary_10_1007_s12274_024_6938_1
crossref_primary_10_1016_j_compositesa_2024_108372
crossref_primary_10_1016_j_apsusc_2024_161999
crossref_primary_10_1016_j_jmst_2024_08_065
crossref_primary_10_1016_j_cej_2024_154013
crossref_primary_10_1016_j_cej_2024_153202
crossref_primary_10_1016_j_inoche_2024_113434
crossref_primary_10_1016_j_jmst_2024_03_085
crossref_primary_10_1016_j_mtchem_2025_102644
crossref_primary_10_1016_j_coco_2024_101837
crossref_primary_10_1016_j_jmst_2024_03_010
crossref_primary_10_1002_sus2_245
crossref_primary_10_1016_j_coco_2025_102324
crossref_primary_10_1016_j_coco_2024_102247
crossref_primary_10_1016_j_cej_2024_158840
crossref_primary_10_1016_j_coco_2024_101954
crossref_primary_10_1002_adfm_202500304
crossref_primary_10_1002_adma_202415160
crossref_primary_10_1016_j_ijbiomac_2024_138720
crossref_primary_10_1016_j_carbon_2024_119156
crossref_primary_10_1016_j_mtnano_2025_100606
crossref_primary_10_1002_adem_202400515
crossref_primary_10_1016_j_apmt_2025_102669
crossref_primary_10_1016_j_mtphys_2024_101509
crossref_primary_10_1007_s40820_024_01590_3
crossref_primary_10_1016_j_compscitech_2025_111058
crossref_primary_10_1016_j_jmst_2024_03_028
crossref_primary_10_1016_j_mtphys_2024_101349
crossref_primary_10_1021_acsanm_3c06053
crossref_primary_10_1007_s40820_023_01257_5
crossref_primary_10_1016_j_ijbiomac_2024_130795
crossref_primary_10_1016_j_jmst_2024_08_044
crossref_primary_10_1007_s40820_024_01496_0
crossref_primary_10_1007_s40820_024_01527_w
crossref_primary_10_1016_j_jallcom_2024_177017
crossref_primary_10_1002_adma_202414085
crossref_primary_10_1016_j_jmst_2024_08_016
crossref_primary_10_1016_j_porgcoat_2024_108750
crossref_primary_10_1016_j_eurpolymj_2024_113236
crossref_primary_10_1016_j_jmst_2024_08_018
crossref_primary_10_1007_s40820_024_01454_w
crossref_primary_10_1016_j_cej_2024_151620
crossref_primary_10_1016_j_jallcom_2024_176754
crossref_primary_10_1002_smll_202405968
crossref_primary_10_1016_j_mtchem_2024_102492
crossref_primary_10_1016_j_jmst_2024_02_084
crossref_primary_10_1016_j_cej_2024_150144
crossref_primary_10_1016_j_mtphys_2024_101440
crossref_primary_10_1016_j_jmst_2024_08_022
crossref_primary_10_1002_adfm_202414910
crossref_primary_10_1016_j_jallcom_2024_174287
crossref_primary_10_1016_j_surfin_2024_105471
crossref_primary_10_1016_j_jallcom_2024_175016
crossref_primary_10_1007_s12274_023_6405_4
crossref_primary_10_1016_j_compositesa_2024_108129
crossref_primary_10_1016_j_materresbull_2024_112717
crossref_primary_10_20517_ss_2024_66
crossref_primary_10_1016_j_coco_2024_102047
crossref_primary_10_1016_j_jmst_2024_08_074
crossref_primary_10_1016_j_mtphys_2024_101434
crossref_primary_10_1016_j_ceramint_2024_11_192
crossref_primary_10_1016_j_jmst_2024_12_019
crossref_primary_10_1016_j_jmst_2024_01_006
crossref_primary_10_1016_j_mtphys_2024_101430
crossref_primary_10_1016_j_seppur_2023_126193
crossref_primary_10_1016_j_jmst_2024_01_008
crossref_primary_10_1039_D3MA00919J
crossref_primary_10_1021_acs_langmuir_4c02829
crossref_primary_10_1002_marc_202300601
crossref_primary_10_1016_j_mtnano_2024_100560
crossref_primary_10_1016_j_mtphys_2024_101390
crossref_primary_10_1016_j_cej_2025_160168
crossref_primary_10_1002_pc_29412
crossref_primary_10_1016_j_jmst_2024_03_053
crossref_primary_10_1039_D5TA00458F
crossref_primary_10_1016_j_apmt_2024_102271
crossref_primary_10_1016_j_jmst_2024_08_004
crossref_primary_10_1016_j_jmst_2024_03_066
crossref_primary_10_1021_acsanm_4c03497
crossref_primary_10_1007_s12274_024_6939_0
crossref_primary_10_1016_j_jmst_2023_12_069
crossref_primary_10_1016_j_jmst_2024_04_011
crossref_primary_10_1016_j_jmst_2024_01_072
crossref_primary_10_1007_s42114_024_01097_w
crossref_primary_10_1016_j_matchemphys_2024_129153
crossref_primary_10_1021_acsnano_4c14912
Cites_doi 10.1016/j.compositesb.2019.107615
10.1021/acs.chemmater.7b02847
10.1016/j.carbon.2021.07.055
10.1016/j.carbon.2021.05.019
10.1039/C4RA15674A
10.1016/j.carbon.2019.04.038
10.1007/s42765-023-00298-0
10.1016/j.cej.2019.122475
10.1002/cey2.174
10.1016/j.carbon.2018.02.001
10.1002/smll.202101951
10.1002/adfm.202107767
10.1016/j.carbon.2022.07.017
10.1016/j.cej.2021.131937
10.1016/j.carbon.2021.02.047
10.1080/15583724.2018.1546737
10.1016/j.jmst.2021.06.039
10.1002/adfm.201903876
10.1021/acsami.6b06455
10.1177/0040517517703598
10.1016/j.polymdegradstab.2007.03.030
10.1016/j.polymdegradstab.2022.109896
10.1021/acsami.9b19768
10.1039/D3TA01369C
10.1002/batt.202000149
10.1016/j.compscitech.2022.109540
10.1002/adpr.202300224
10.1016/j.cej.2020.124608
10.1016/j.progpolymsci.2016.03.001
10.1016/j.compositesb.2018.05.027
10.1002/sus2.21
10.1016/j.compositesb.2020.108250
10.1016/j.carbon.2020.04.041
10.1016/j.carbon.2023.118035
10.1016/j.compositesa.2020.105927
10.1021/acsanm.2c01126
10.1016/j.carbon.2022.03.048
10.1002/mame.201800229
10.1016/j.carbon.2018.04.086
10.1016/j.compscitech.2023.110093
10.1016/j.compositesa.2020.105956
10.1007/s12221-018-8241-9
10.1021/acsmaterialslett.2c01177
10.1039/C9NR07331K
10.1016/j.carbon.2022.06.085
10.1016/j.compositesb.2020.107935
10.1021/acsanm.0c00835
ContentType Journal Article
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.compositesa.2023.107857
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
ExternalDocumentID 10_1016_j_compositesa_2023_107857
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
6TJ
7-5
71M
8P~
AABNK
AABXZ
AAEDT
AAEDW
AAEPC
AAHBH
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYWO
AAYXX
ABFNM
ABJNI
ABMAC
ABWVN
ABXDB
ABXRA
ACDAQ
ACGFS
ACNNM
ACRLP
ACRPL
ADBBV
ADEZE
ADIYS
ADMUD
ADNMO
AEBSH
AEIPS
AEKER
AEZYN
AFJKZ
AFRZQ
AFTJW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGRNS
AGUBO
AGYEJ
AIEXJ
AIIUN
AIKHN
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CITATION
CS3
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
KOM
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSH
SSM
SSZ
T5K
TN5
ZMT
~G-
7S9
EFKBS
L.6
ID FETCH-LOGICAL-c294t-99d7dc28d9476e1fc76421759726183d22842c7386b7c6456bdace93e8add9d73
ISSN 1359-835X
IngestDate Tue Aug 05 09:41:21 EDT 2025
Tue Jul 01 00:48:56 EDT 2025
Thu Apr 24 23:04:52 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c294t-99d7dc28d9476e1fc76421759726183d22842c7386b7c6456bdace93e8add9d73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-1687-6966
PQID 3154185090
PQPubID 24069
ParticipantIDs proquest_miscellaneous_3154185090
crossref_citationtrail_10_1016_j_compositesa_2023_107857
crossref_primary_10_1016_j_compositesa_2023_107857
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-01-00
20240101
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – month: 01
  year: 2024
  text: 2024-01-00
PublicationDecade 2020
PublicationTitle Composites. Part A, Applied science and manufacturing
PublicationYear 2024
References Singh (10.1016/j.compositesa.2023.107857_b0010) 2018; 149
Bai (10.1016/j.compositesa.2023.107857_b0110) 2018; 88
Wang (10.1016/j.compositesa.2023.107857_b0020) 2020; 136
Zhou (10.1016/j.compositesa.2023.107857_b0065) 2020; 12
Li (10.1016/j.compositesa.2023.107857_b0055) 2022; 197
Chen (10.1016/j.compositesa.2023.107857_b0070) 2022; 103
Jiang (10.1016/j.compositesa.2023.107857_b0005) 2019; 59
Xu (10.1016/j.compositesa.2023.107857_b0170) 2023; 5
Agnihotri (10.1016/j.compositesa.2023.107857_b0175) 2015; 5
Cao (10.1016/j.compositesa.2023.107857_b0195) 2019; 11
Mk (10.1016/j.compositesa.2023.107857_b0120) 2016; 8
Lu (10.1016/j.compositesa.2023.107857_b0185) 2018; 136
Qian (10.1016/j.compositesa.2023.107857_b0050) 2021; 4
Jiao (10.1016/j.compositesa.2023.107857_b0200) 2022; 198
Zeng (10.1016/j.compositesa.2023.107857_b0075) 2022; 14
Yang (10.1016/j.compositesa.2023.107857_b0230) 2023; 240
Nguyen (10.1016/j.compositesa.2023.107857_b0035) 2020; 393
Jin (10.1016/j.compositesa.2023.107857_b0030) 2020; 380
Zhang (10.1016/j.compositesa.2023.107857_bib251) 2023
Weng (10.1016/j.compositesa.2023.107857_b0090) 2020; 135
Hao (10.1016/j.compositesa.2023.107857_b0140) 2022; 199
Zhao (10.1016/j.compositesa.2023.107857_b0125) 2021; 181
Li (10.1016/j.compositesa.2023.107857_b0145) 2020; 190
Chen (10.1016/j.compositesa.2023.107857_b0135) 2018; 303
Chen (10.1016/j.compositesa.2023.107857_b0235) 2016; 59
Ma (10.1016/j.compositesa.2023.107857_b0165) 2022; 226
Xie (10.1016/j.compositesa.2023.107857_b0215) 2019; 11
Liu (10.1016/j.compositesa.2023.107857_b0100) 2023; 5
Peng (10.1016/j.compositesa.2023.107857_b0225) 2023; 11
Chin (10.1016/j.compositesa.2023.107857_b0250) 2007; 92
Li (10.1016/j.compositesa.2023.107857_b0205) 2023; 2350051
Li (10.1016/j.compositesa.2023.107857_b0150) 2022; 427
Chu (10.1016/j.compositesa.2023.107857_b0085) 2022; 5
Wang (10.1016/j.compositesa.2023.107857_b0105) 2022; 4
Wang (10.1016/j.compositesa.2023.107857_b0095) 2019; 29
Chen (10.1016/j.compositesa.2023.107857_b0025) 2023; 210
Ji (10.1016/j.compositesa.2023.107857_b0130) 2020; 165
Kang (10.1016/j.compositesa.2023.107857_b0245) 2018; 19
Xing (10.1016/j.compositesa.2023.107857_b0155) 2018; 132
Li (10.1016/j.compositesa.2023.107857_b0180) 2020; 182
Jia (10.1016/j.compositesa.2023.107857_b0080) 2020; 198
Jia (10.1016/j.compositesa.2023.107857_b0040) 2020; 3
Li (10.1016/j.compositesa.2023.107857_b0210) 2022; 194
Zou (10.1016/j.compositesa.2023.107857_b0240) 2019; 149
Wang (10.1016/j.compositesa.2023.107857_b0015) 2021; 177
Wang (10.1016/j.compositesa.2023.107857_b0045) 2021; 1
Alhabeb (10.1016/j.compositesa.2023.107857_b0060) 2017; 29
Yu (10.1016/j.compositesa.2023.107857_b0160) 2021; 183
Li (10.1016/j.compositesa.2023.107857_b0220) 2022; 32
Zhang (10.1016/j.compositesa.2023.107857_b0190) 2021; 17
Liu (10.1016/j.compositesa.2023.107857_b0115) 2023; 2303561
References_xml – volume: 182
  year: 2020
  ident: 10.1016/j.compositesa.2023.107857_b0180
  article-title: Self-templating graphene network composites by flame carbonization for excellent electromagnetic interference shielding
  publication-title: Compos B Eng
  doi: 10.1016/j.compositesb.2019.107615
– volume: 29
  start-page: 7633
  issue: 18
  year: 2017
  ident: 10.1016/j.compositesa.2023.107857_b0060
  article-title: Guidelines for Synthesis and Processing of Two-Dimensional Titanium Carbide (Ti3C2Tx MXene)
  publication-title: Chem Mater
  doi: 10.1021/acs.chemmater.7b02847
– volume: 183
  start-page: 600
  year: 2021
  ident: 10.1016/j.compositesa.2023.107857_b0160
  article-title: Free-standing laser-induced graphene films for high-performance electromagnetic interference shielding
  publication-title: Carbon
  doi: 10.1016/j.carbon.2021.07.055
– volume: 181
  start-page: 40
  year: 2021
  ident: 10.1016/j.compositesa.2023.107857_b0125
  article-title: Bioinspired modified graphite film with superb mechanical and thermoconductive properties
  publication-title: Carbon
  doi: 10.1016/j.carbon.2021.05.019
– volume: 5
  start-page: 43765
  issue: 54
  year: 2015
  ident: 10.1016/j.compositesa.2023.107857_b0175
  article-title: Highly efficient electromagnetic interference shielding using graphite nanoplatelet/poly(3,4-ethylenedioxythiophene)–poly(styrenesulfonate) composites with enhanced thermal conductivity
  publication-title: RSC Adv
  doi: 10.1039/C4RA15674A
– volume: 149
  start-page: 173
  year: 2019
  ident: 10.1016/j.compositesa.2023.107857_b0240
  article-title: Carbonized polydopamine nanoparticle reinforced graphene films with superior thermal conductivity
  publication-title: Carbon
  doi: 10.1016/j.carbon.2019.04.038
– volume: 5
  start-page: 1657
  year: 2023
  ident: 10.1016/j.compositesa.2023.107857_b0100
  article-title: Mechanically strong and flame-retardant PBO/BN/MXene nanocomposite paper with low thermal expansion coefficient, for efficient emi shielding and heat dissipation
  publication-title: Adv Fiber Mater
  doi: 10.1007/s42765-023-00298-0
– volume: 380
  year: 2020
  ident: 10.1016/j.compositesa.2023.107857_b0030
  article-title: Flame-retardant poly(vinyl alcohol)/MXene multilayered films with outstanding electromagnetic interference shielding and thermal conductive performances
  publication-title: Chem Eng J
  doi: 10.1016/j.cej.2019.122475
– volume: 4
  start-page: 200
  issue: 2
  year: 2022
  ident: 10.1016/j.compositesa.2023.107857_b0105
  article-title: Mechanically strong and folding-endurance Ti3C2Tx MXene/PBO nanofiber films for efficient electromagnetic interference shielding and thermal management
  publication-title: Carbon Energy
  doi: 10.1002/cey2.174
– volume: 132
  start-page: 32
  year: 2018
  ident: 10.1016/j.compositesa.2023.107857_b0155
  article-title: Highly flexible and ultra-thin Ni-plated carbon-fabric/polycarbonate film for enhanced electromagnetic interference shielding
  publication-title: Carbon
  doi: 10.1016/j.carbon.2018.02.001
– volume: 14
  start-page: 59
  issue: 1
  year: 2022
  ident: 10.1016/j.compositesa.2023.107857_b0075
  article-title: Porous and Ultra-Flexible Crosslinked MXene/Polyimide Composites for Multifunctional Electromagnetic Interference Shielding
  publication-title: Nanomicro Lett
– volume: 2350051
  year: 2023
  ident: 10.1016/j.compositesa.2023.107857_b0205
  article-title: Self-assembling ultrathin MXene/cellulose nanofiber/MXene composite film for high-performance electromagnetic interference shielding
  publication-title: Nano
– volume: 17
  start-page: 2101951
  issue: 42
  year: 2021
  ident: 10.1016/j.compositesa.2023.107857_b0190
  article-title: Flexible sandwich-structured electromagnetic interference shielding nanocomposite films with excellent thermal conductivities
  publication-title: Small
  doi: 10.1002/smll.202101951
– volume: 32
  start-page: 2107767
  issue: 4
  year: 2022
  ident: 10.1016/j.compositesa.2023.107857_b0220
  article-title: Electrically conductive, optically responsive, and highly orientated Ti3C2Tx MXene aerogel fibers
  publication-title: Adv Funct Mater
  doi: 10.1002/adfm.202107767
– volume: 198
  start-page: 179
  year: 2022
  ident: 10.1016/j.compositesa.2023.107857_b0200
  article-title: Photothermal healable, stretchable, and conductive MXene composite films for efficient electromagnetic interference shielding
  publication-title: Carbon
  doi: 10.1016/j.carbon.2022.07.017
– volume: 427
  year: 2022
  ident: 10.1016/j.compositesa.2023.107857_b0150
  article-title: Multifunctional carbon fiber@NiCo/polyimide films with outstanding electromagnetic interference shielding performance
  publication-title: Chem Eng J
  doi: 10.1016/j.cej.2021.131937
– volume: 177
  start-page: 377
  year: 2021
  ident: 10.1016/j.compositesa.2023.107857_b0015
  article-title: Construction, mechanism and prospective of conductive polymer composites with multiple interfaces for electromagnetic interference shielding: A review
  publication-title: Carbon
  doi: 10.1016/j.carbon.2021.02.047
– volume: 2303561
  year: 2023
  ident: 10.1016/j.compositesa.2023.107857_b0115
  article-title: Polymer films with metal-like thermal conductivity, excellent stability, and flame retardancy
  publication-title: Adv Funct Mater
– volume: 59
  start-page: 280
  issue: 2
  year: 2019
  ident: 10.1016/j.compositesa.2023.107857_b0005
  article-title: Electromagnetic Interference Shielding Polymers and Nanocomposites - A Review
  publication-title: Polym Rev
  doi: 10.1080/15583724.2018.1546737
– volume: 103
  start-page: 98
  year: 2022
  ident: 10.1016/j.compositesa.2023.107857_b0070
  article-title: Biomass-based aligned carbon networks with double-layer construction for tunable electromagnetic shielding with ultra-low reflectivity
  publication-title: J Mater Sci Technol
  doi: 10.1016/j.jmst.2021.06.039
– volume: 29
  start-page: 1903876
  issue: 38
  year: 2019
  ident: 10.1016/j.compositesa.2023.107857_b0095
  article-title: Unprecedentedly tough, folding-endurance, and multifunctional graphene-based artificial nacre with predesigned 3D nanofiber network as matrix
  publication-title: Adv Funct Mater
  doi: 10.1002/adfm.201903876
– volume: 8
  start-page: 21011
  issue: 32
  year: 2016
  ident: 10.1016/j.compositesa.2023.107857_b0120
  article-title: Ti3C2 MXenes with modified surface for high-performance electromagnetic absorption and shielding in the X-Band
  publication-title: ACS Appl Mater Inter
  doi: 10.1021/acsami.6b06455
– volume: 88
  start-page: 1559
  issue: 13
  year: 2018
  ident: 10.1016/j.compositesa.2023.107857_b0110
  article-title: Preparation of poly-p-phenylenebenzobisoxazole (PBO) fibrillated pulp and dielectric properties of carbon fiber/PBO wet-laid nonwoven fabric
  publication-title: Text Res J
  doi: 10.1177/0040517517703598
– volume: 92
  start-page: 1234
  issue: 7
  year: 2007
  ident: 10.1016/j.compositesa.2023.107857_b0250
  article-title: Temperature and humidity aging of poly(p-phenylene-2,6-benzobisoxazole) fibers: Chemical and physical characterization
  publication-title: Polym Degrad Stab
  doi: 10.1016/j.polymdegradstab.2007.03.030
– volume: 199
  year: 2022
  ident: 10.1016/j.compositesa.2023.107857_b0140
  article-title: Facile preparation of ultraviolet resistant “hard armors” on poly(p-phenylene benzobisoxazole) fibers through heat-induced surface treatment
  publication-title: Polym Degrad Stab
  doi: 10.1016/j.polymdegradstab.2022.109896
– volume: 12
  start-page: 4895
  issue: 4
  year: 2020
  ident: 10.1016/j.compositesa.2023.107857_b0065
  article-title: Flexible, Robust, and Multifunctional Electromagnetic Interference Shielding Film with Alternating Cellulose Nanofiber and MXene Layers
  publication-title: ACS Appl Mater Inter
  doi: 10.1021/acsami.9b19768
– volume: 11
  start-page: 10857
  issue: 20
  year: 2023
  ident: 10.1016/j.compositesa.2023.107857_b0225
  article-title: Absorption-dominated electromagnetic interference shielding composite foam based on porous and bi-conductive network structures
  publication-title: J Mater Chem A
  doi: 10.1039/D3TA01369C
– volume: 4
  start-page: 39
  issue: 1
  year: 2021
  ident: 10.1016/j.compositesa.2023.107857_b0050
  article-title: Designing Ceramic/Polymer Composite as Highly Ionic Conductive Solid-State Electrolytes
  publication-title: Batteries Supercaps
  doi: 10.1002/batt.202000149
– volume: 226
  year: 2022
  ident: 10.1016/j.compositesa.2023.107857_b0165
  article-title: Construction of gradient conductivity cellulose nanofiber/MXene composites with efficient electromagnetic interference shielding and excellent mechanical properties
  publication-title: Compos Sci Technol
  doi: 10.1016/j.compscitech.2022.109540
– start-page: 2300224
  year: 2023
  ident: 10.1016/j.compositesa.2023.107857_bib251
  article-title: Recent Advances of MXenes-Based Optical Functional Materials
  publication-title: Adv Photonics Res
  doi: 10.1002/adpr.202300224
– volume: 393
  year: 2020
  ident: 10.1016/j.compositesa.2023.107857_b0035
  article-title: MXene(Ti3C2TX)/graphene/PDMS composites for multifunctional broadband electromagnetic interference shielding skins
  publication-title: Chem Eng J
  doi: 10.1016/j.cej.2020.124608
– volume: 59
  start-page: 41
  year: 2016
  ident: 10.1016/j.compositesa.2023.107857_b0235
  article-title: Thermal conductivity of polymer-based composites: Fundamentals and applications
  publication-title: Prog Polym Sci
  doi: 10.1016/j.progpolymsci.2016.03.001
– volume: 149
  start-page: 188
  year: 2018
  ident: 10.1016/j.compositesa.2023.107857_b0010
  article-title: A review of porous lightweight composite materials for electromagnetic interference shielding
  publication-title: Compos B Eng
  doi: 10.1016/j.compositesb.2018.05.027
– volume: 1
  start-page: 413
  issue: 3
  year: 2021
  ident: 10.1016/j.compositesa.2023.107857_b0045
  article-title: Polymer-based EMI shielding composites with 3D conductive networks: A mini-review
  publication-title: Susmat
  doi: 10.1002/sus2.21
– volume: 198
  year: 2020
  ident: 10.1016/j.compositesa.2023.107857_b0080
  article-title: Waterproof MXene-decorated wood-pulp fabrics for high-efficiency electromagnetic interference shielding and Joule heating
  publication-title: Compos B Eng
  doi: 10.1016/j.compositesb.2020.108250
– volume: 165
  start-page: 150
  year: 2020
  ident: 10.1016/j.compositesa.2023.107857_b0130
  article-title: Electromagnetic shielding behavior of heat-treated Ti3C2TX MXene accompanied by structural and phase changes
  publication-title: Carbon
  doi: 10.1016/j.carbon.2020.04.041
– volume: 210
  year: 2023
  ident: 10.1016/j.compositesa.2023.107857_b0025
  article-title: Biomass-based Co/C@Carbon composites derived from MOF-modified cotton fibers for enhanced electromagnetic attenuation
  publication-title: Carbon
  doi: 10.1016/j.carbon.2023.118035
– volume: 135
  year: 2020
  ident: 10.1016/j.compositesa.2023.107857_b0090
  article-title: Mechanically robust ANF/MXene composite films with tunable electromagnetic interference shielding performance
  publication-title: Compos A Appl Sci Manuf
  doi: 10.1016/j.compositesa.2020.105927
– volume: 5
  start-page: 7217
  issue: 5
  year: 2022
  ident: 10.1016/j.compositesa.2023.107857_b0085
  article-title: Cellulose Nanofiber/Graphene Nanoplatelet/MXene Nanocomposites for Enhanced Electromagnetic Shielding and High In-Plane Thermal Conductivity
  publication-title: ACS Appl Nano Mater
  doi: 10.1021/acsanm.2c01126
– volume: 194
  start-page: 127
  year: 2022
  ident: 10.1016/j.compositesa.2023.107857_b0210
  article-title: Ultra-thin broadband terahertz absorption and electromagnetic shielding properties of MXene/rGO composite film
  publication-title: Carbon
  doi: 10.1016/j.carbon.2022.03.048
– volume: 303
  start-page: 1800229
  issue: 10
  year: 2018
  ident: 10.1016/j.compositesa.2023.107857_b0135
  article-title: “Zylon” Aerogels
  publication-title: Macromol Mater Eng
  doi: 10.1002/mame.201800229
– volume: 136
  start-page: 387
  year: 2018
  ident: 10.1016/j.compositesa.2023.107857_b0185
  article-title: Flexible, mechanically resilient carbon nanotube composite films for high-efficiency electromagnetic interference shielding
  publication-title: Carbon
  doi: 10.1016/j.carbon.2018.04.086
– volume: 240
  year: 2023
  ident: 10.1016/j.compositesa.2023.107857_b0230
  article-title: Construction of in-situ grid conductor skeleton and magnet core in biodegradable poly (butyleneadipate-co-terephthalate) for efficient electromagnetic interference shielding and low reflection
  publication-title: Compos Sci Technol
  doi: 10.1016/j.compscitech.2023.110093
– volume: 136
  year: 2020
  ident: 10.1016/j.compositesa.2023.107857_b0020
  article-title: Recent advances in MXenes composites for electromagnetic interference shielding and microwave absorption
  publication-title: Compos A Appl Sci Manuf
  doi: 10.1016/j.compositesa.2020.105956
– volume: 19
  start-page: 1626
  issue: 8
  year: 2018
  ident: 10.1016/j.compositesa.2023.107857_b0245
  article-title: Effects of drawing and heat-treatment conditions on the structure and mechanical properties of polyhydroxyamide and polybenzoxazole fibers
  publication-title: Fibers Polym
  doi: 10.1007/s12221-018-8241-9
– volume: 5
  start-page: 421
  issue: 2
  year: 2023
  ident: 10.1016/j.compositesa.2023.107857_b0170
  article-title: A proof-of-concept study of auxetic composite foams with negative poisson’s ratio for enhanced strain-stable performance of electromagnetic shielding
  publication-title: ACS Materials Lett
  doi: 10.1021/acsmaterialslett.2c01177
– volume: 11
  start-page: 72
  issue: 1
  year: 2019
  ident: 10.1016/j.compositesa.2023.107857_b0195
  article-title: Ultrathin and flexible CNTs/MXene/cellulose nanofibrils composite paper for electromagnetic interference shielding
  publication-title: Nanomicro Lett
– volume: 11
  start-page: 23382
  issue: 48
  year: 2019
  ident: 10.1016/j.compositesa.2023.107857_b0215
  article-title: Ultrathin MXene/aramid nanofiber composite paper with excellent mechanical properties for efficient electromagnetic interference shielding
  publication-title: Nanoscale
  doi: 10.1039/C9NR07331K
– volume: 197
  start-page: 508
  year: 2022
  ident: 10.1016/j.compositesa.2023.107857_b0055
  article-title: Controllable growth of NiCo compounds with different morphologies and structures on carbon fabrics as EMI shields with improved absorptivity
  publication-title: Carbon
  doi: 10.1016/j.carbon.2022.06.085
– volume: 190
  year: 2020
  ident: 10.1016/j.compositesa.2023.107857_b0145
  article-title: Ultrathin and flexible biomass-derived C@CoFe nanocomposite films for efficient electromagnetic interference shielding
  publication-title: Compos B Eng
  doi: 10.1016/j.compositesb.2020.107935
– volume: 3
  start-page: 6140
  issue: 7
  year: 2020
  ident: 10.1016/j.compositesa.2023.107857_b0040
  article-title: Graphene Foams for Electromagnetic Interference Shielding: A Review
  publication-title: ACS Appl Nano Mater
  doi: 10.1021/acsanm.0c00835
SSID ssj0003391
Score 2.6685822
Snippet In this study, a carbon layer coated MXene/poly(p-phenylene-2,6-benzobisoxazole) nanofibers (PNFs) (MXene/PNF@C) EMI shielding composite film was obtained...
SourceID proquest
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
StartPage 107857
SubjectTerms artificial intelligence
carbon
communications technology
composite films
electrical conductivity
electromagnetic interference
nanofibers
polymers
pyrolysis
tensile strength
thermal conductivity
thermal stability
weight loss
Title Ultrathin carbon layer coated MXene/PBO nanofiber films for excellent electromagnetic interference shielding and thermal stability
URI https://www.proquest.com/docview/3154185090
Volume 176
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nj9MwELXKIiE4ID7F8iWvxC1KSew0iY8LYrUCFpDYSuUUOY67bdWmqCQS4sCBH8RvZMZOnGQBsewlqtLabTIv4zfTN2NCnolUhjyVDHV-gQ8rVO6nuZLwxBexCKMcKD8m9E_excfT6PVsMhuNfvZUS3WVj9W3P9aVXMaqcA7silWy_2FZNymcgNdgXziCheF4IRtP19hbdoFScrnLwY5rCQzaU1uJPPJkpjFdefThxXuvlCV8Uw5vzpdr24PB019N1r6svGYvnI08K7Gm0fSQ2LkGtAsUubW1jMgXN6bGxDb4HvwrjM4FRWAQfAM13VXeoXE9DdFtK4hwmo0sa6ypMEWSTgPUyIPfyOVqqTunbc9-kihccB9-u6ytINOlbo0u4eOiXtSyn8tgUS-XYd0vx6Qkn8wG_jnpe1gIV1Pb0vo352_zECs0aHOx2FiK8XE3Zthw-9xC6OSJrfJtlfWmynCqzE51hVxlEJbgjhnj752kiHNhA_zmKq6Rg05P-JdfNeRDQzpgOM7pLXKzCU7ooUXabTLS5R1yo9ey8i754TBHLeaowRy1mKMGc88BcdQhjhrEUUAcdYij5xBH-4ijDnEUoEIbxFGHuHtkevTq9OWx3-zj4SsmosoXokgKxdJCREmsw7lKsLo6gVAWwveUFwwoElO4-2yeqBgYfV5IpQXXKSy-MJbfJ3vlttQPCJVBobVgiYIB0aTgMmHpPCyiQMzDWBfJPknbu5mppsk97rWyzv5p033C3NDPttPLRQYdtCbLwC_jTZSl3tZfMg6xCXDhQAQPLzPxI3K9e0Aek71qV-snQH-r_KnB3C_5frio
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ultrathin+carbon+layer+coated+MXene%2FPBO+nanofiber+films+for+excellent+electromagnetic+interference+shielding+and+thermal+stability&rft.jtitle=Composites.+Part+A%2C+Applied+science+and+manufacturing&rft.au=Gong%2C+Kaijie&rft.au=Peng%2C+Yanmeng&rft.au=Liu%2C+An&rft.au=Qi%2C+Shuhua&rft.date=2024-01-01&rft.issn=1359-835X&rft.volume=176&rft.spage=107857&rft_id=info:doi/10.1016%2Fj.compositesa.2023.107857&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_compositesa_2023_107857
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1359-835X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1359-835X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1359-835X&client=summon