Ultrathin carbon layer coated MXene/PBO nanofiber films for excellent electromagnetic interference shielding and thermal stability
In this study, a carbon layer coated MXene/poly(p-phenylene-2,6-benzobisoxazole) nanofibers (PNFs) (MXene/PNF@C) EMI shielding composite film was obtained through polymer infiltration and pyrolysis (PIP) technique. The introduction of the carbon layer improved both the electrical and thermal conduct...
Saved in:
Published in | Composites. Part A, Applied science and manufacturing Vol. 176; p. 107857 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
01.01.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In this study, a carbon layer coated MXene/poly(p-phenylene-2,6-benzobisoxazole) nanofibers (PNFs) (MXene/PNF@C) EMI shielding composite film was obtained through polymer infiltration and pyrolysis (PIP) technique. The introduction of the carbon layer improved both the electrical and thermal conductive pathways of the film leading to the enhancement of its electrical conductivity(σ), thermal conductivity coefficient (λ) and EMI shielding effectiveness (SE). Meanwhile, thermal annealing reduced the defects of PBO molecular chains and improved the mechanical properties of the composite film. When the content of MXene is 50 wt% and the thickness of the film is only 37 μm, MP50@C-400 composite film has the best comprehensive properties, with the σ, λ, specific EMI SE (SEₜ) and tensile strength is 1760 S/m, 5.64 W/(m·K), 1108.1 dB/mm and 66.8 MPa, respectively, and its weight loss is only 24.1% at 800°C. The composite film provides important application prospects in 5G communication technology, wearable equipment and artificial intelligence. |
---|---|
AbstractList | In this study, a carbon layer coated MXene/poly(p-phenylene-2,6-benzobisoxazole) nanofibers (PNFs) (MXene/PNF@C) EMI shielding composite film was obtained through polymer infiltration and pyrolysis (PIP) technique. The introduction of the carbon layer improved both the electrical and thermal conductive pathways of the film leading to the enhancement of its electrical conductivity(σ), thermal conductivity coefficient (λ) and EMI shielding effectiveness (SE). Meanwhile, thermal annealing reduced the defects of PBO molecular chains and improved the mechanical properties of the composite film. When the content of MXene is 50 wt% and the thickness of the film is only 37 μm, MP50@C-400 composite film has the best comprehensive properties, with the σ, λ, specific EMI SE (SEₜ) and tensile strength is 1760 S/m, 5.64 W/(m·K), 1108.1 dB/mm and 66.8 MPa, respectively, and its weight loss is only 24.1% at 800°C. The composite film provides important application prospects in 5G communication technology, wearable equipment and artificial intelligence. |
ArticleNumber | 107857 |
Author | Peng, Yanmeng Liu, An Qiu, Hua Qi, Shuhua Gong, Kaijie |
Author_xml | – sequence: 1 givenname: Kaijie surname: Gong fullname: Gong, Kaijie – sequence: 2 givenname: Yanmeng surname: Peng fullname: Peng, Yanmeng – sequence: 3 givenname: An surname: Liu fullname: Liu, An – sequence: 4 givenname: Shuhua surname: Qi fullname: Qi, Shuhua – sequence: 5 givenname: Hua orcidid: 0000-0003-1687-6966 surname: Qiu fullname: Qiu, Hua |
BookMark | eNqNkE1LAzEQhnNQ0Kr_Id68tOZjd7M5iYpfoNSDgreQTWbblGxSkwj26i93Sz2IJ08DM-_7wDwTtBdiAIROKZlRQpvz1czEYR2zK5D1jBHGx71oa7GHDimv5bTl9dsBmuS8IoRwLukh-nr1JemydAEbnboYsNcbSNhEXcDipzcIcP58NcdBh9i7bjz1zg8Z9zFh-DTgPYSCwYMpKQ56EaA4g10okHpIEAzgvHTgrQsLrIPFZQlp0B7nojvnXdkco_1e-wwnP_MIvd7evFzfTx_ndw_Xl49Tw2RVplJaYQ1rraxEA7Q3oqkYFbUUrKEtt4y1FTOCt00nTFPVTWe1Acmh1daOXX6EznbcdYrvH5CLGlzePqADxI-sOK0r2tZEkjF6sYuaFHNO0Cvjii4uhlGW84oStTWuVuqXcbU1rnbGR4L8Q1gnN-i0-Uf3G7V4k5Y |
CitedBy_id | crossref_primary_10_1016_j_mtphys_2024_101419 crossref_primary_10_1016_j_jmst_2024_08_059 crossref_primary_10_1002_app_56070 crossref_primary_10_1016_j_seppur_2025_132651 crossref_primary_10_1007_s10118_024_3112_x crossref_primary_10_1016_j_jmst_2024_08_053 crossref_primary_10_1016_j_compositesb_2024_112011 crossref_primary_10_1016_j_jaap_2025_107041 crossref_primary_10_1016_j_jmst_2024_09_026 crossref_primary_10_1016_j_jmst_2024_01_064 crossref_primary_10_1016_j_jmst_2024_09_020 crossref_primary_10_1016_j_mtener_2024_101543 crossref_primary_10_1007_s40820_024_01381_w crossref_primary_10_1016_j_mtphys_2024_101400 crossref_primary_10_1007_s10853_025_10649_4 crossref_primary_10_1007_s12274_024_6938_1 crossref_primary_10_1016_j_compositesa_2024_108372 crossref_primary_10_1016_j_apsusc_2024_161999 crossref_primary_10_1016_j_jmst_2024_08_065 crossref_primary_10_1016_j_cej_2024_154013 crossref_primary_10_1016_j_cej_2024_153202 crossref_primary_10_1016_j_inoche_2024_113434 crossref_primary_10_1016_j_jmst_2024_03_085 crossref_primary_10_1016_j_mtchem_2025_102644 crossref_primary_10_1016_j_coco_2024_101837 crossref_primary_10_1016_j_jmst_2024_03_010 crossref_primary_10_1002_sus2_245 crossref_primary_10_1016_j_coco_2025_102324 crossref_primary_10_1016_j_coco_2024_102247 crossref_primary_10_1016_j_cej_2024_158840 crossref_primary_10_1016_j_coco_2024_101954 crossref_primary_10_1002_adfm_202500304 crossref_primary_10_1002_adma_202415160 crossref_primary_10_1016_j_ijbiomac_2024_138720 crossref_primary_10_1016_j_carbon_2024_119156 crossref_primary_10_1016_j_mtnano_2025_100606 crossref_primary_10_1002_adem_202400515 crossref_primary_10_1016_j_apmt_2025_102669 crossref_primary_10_1016_j_mtphys_2024_101509 crossref_primary_10_1007_s40820_024_01590_3 crossref_primary_10_1016_j_compscitech_2025_111058 crossref_primary_10_1016_j_jmst_2024_03_028 crossref_primary_10_1016_j_mtphys_2024_101349 crossref_primary_10_1021_acsanm_3c06053 crossref_primary_10_1007_s40820_023_01257_5 crossref_primary_10_1016_j_ijbiomac_2024_130795 crossref_primary_10_1016_j_jmst_2024_08_044 crossref_primary_10_1007_s40820_024_01496_0 crossref_primary_10_1007_s40820_024_01527_w crossref_primary_10_1016_j_jallcom_2024_177017 crossref_primary_10_1002_adma_202414085 crossref_primary_10_1016_j_jmst_2024_08_016 crossref_primary_10_1016_j_porgcoat_2024_108750 crossref_primary_10_1016_j_eurpolymj_2024_113236 crossref_primary_10_1016_j_jmst_2024_08_018 crossref_primary_10_1007_s40820_024_01454_w crossref_primary_10_1016_j_cej_2024_151620 crossref_primary_10_1016_j_jallcom_2024_176754 crossref_primary_10_1002_smll_202405968 crossref_primary_10_1016_j_mtchem_2024_102492 crossref_primary_10_1016_j_jmst_2024_02_084 crossref_primary_10_1016_j_cej_2024_150144 crossref_primary_10_1016_j_mtphys_2024_101440 crossref_primary_10_1016_j_jmst_2024_08_022 crossref_primary_10_1002_adfm_202414910 crossref_primary_10_1016_j_jallcom_2024_174287 crossref_primary_10_1016_j_surfin_2024_105471 crossref_primary_10_1016_j_jallcom_2024_175016 crossref_primary_10_1007_s12274_023_6405_4 crossref_primary_10_1016_j_compositesa_2024_108129 crossref_primary_10_1016_j_materresbull_2024_112717 crossref_primary_10_20517_ss_2024_66 crossref_primary_10_1016_j_coco_2024_102047 crossref_primary_10_1016_j_jmst_2024_08_074 crossref_primary_10_1016_j_mtphys_2024_101434 crossref_primary_10_1016_j_ceramint_2024_11_192 crossref_primary_10_1016_j_jmst_2024_12_019 crossref_primary_10_1016_j_jmst_2024_01_006 crossref_primary_10_1016_j_mtphys_2024_101430 crossref_primary_10_1016_j_seppur_2023_126193 crossref_primary_10_1016_j_jmst_2024_01_008 crossref_primary_10_1039_D3MA00919J crossref_primary_10_1021_acs_langmuir_4c02829 crossref_primary_10_1002_marc_202300601 crossref_primary_10_1016_j_mtnano_2024_100560 crossref_primary_10_1016_j_mtphys_2024_101390 crossref_primary_10_1016_j_cej_2025_160168 crossref_primary_10_1002_pc_29412 crossref_primary_10_1016_j_jmst_2024_03_053 crossref_primary_10_1039_D5TA00458F crossref_primary_10_1016_j_apmt_2024_102271 crossref_primary_10_1016_j_jmst_2024_08_004 crossref_primary_10_1016_j_jmst_2024_03_066 crossref_primary_10_1021_acsanm_4c03497 crossref_primary_10_1007_s12274_024_6939_0 crossref_primary_10_1016_j_jmst_2023_12_069 crossref_primary_10_1016_j_jmst_2024_04_011 crossref_primary_10_1016_j_jmst_2024_01_072 crossref_primary_10_1007_s42114_024_01097_w crossref_primary_10_1016_j_matchemphys_2024_129153 crossref_primary_10_1021_acsnano_4c14912 |
Cites_doi | 10.1016/j.compositesb.2019.107615 10.1021/acs.chemmater.7b02847 10.1016/j.carbon.2021.07.055 10.1016/j.carbon.2021.05.019 10.1039/C4RA15674A 10.1016/j.carbon.2019.04.038 10.1007/s42765-023-00298-0 10.1016/j.cej.2019.122475 10.1002/cey2.174 10.1016/j.carbon.2018.02.001 10.1002/smll.202101951 10.1002/adfm.202107767 10.1016/j.carbon.2022.07.017 10.1016/j.cej.2021.131937 10.1016/j.carbon.2021.02.047 10.1080/15583724.2018.1546737 10.1016/j.jmst.2021.06.039 10.1002/adfm.201903876 10.1021/acsami.6b06455 10.1177/0040517517703598 10.1016/j.polymdegradstab.2007.03.030 10.1016/j.polymdegradstab.2022.109896 10.1021/acsami.9b19768 10.1039/D3TA01369C 10.1002/batt.202000149 10.1016/j.compscitech.2022.109540 10.1002/adpr.202300224 10.1016/j.cej.2020.124608 10.1016/j.progpolymsci.2016.03.001 10.1016/j.compositesb.2018.05.027 10.1002/sus2.21 10.1016/j.compositesb.2020.108250 10.1016/j.carbon.2020.04.041 10.1016/j.carbon.2023.118035 10.1016/j.compositesa.2020.105927 10.1021/acsanm.2c01126 10.1016/j.carbon.2022.03.048 10.1002/mame.201800229 10.1016/j.carbon.2018.04.086 10.1016/j.compscitech.2023.110093 10.1016/j.compositesa.2020.105956 10.1007/s12221-018-8241-9 10.1021/acsmaterialslett.2c01177 10.1039/C9NR07331K 10.1016/j.carbon.2022.06.085 10.1016/j.compositesb.2020.107935 10.1021/acsanm.0c00835 |
ContentType | Journal Article |
DBID | AAYXX CITATION 7S9 L.6 |
DOI | 10.1016/j.compositesa.2023.107857 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
ExternalDocumentID | 10_1016_j_compositesa_2023_107857 |
GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 29F 4.4 457 4G. 5GY 5VS 6TJ 7-5 71M 8P~ AABNK AABXZ AAEDT AAEDW AAEPC AAHBH AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYWO AAYXX ABFNM ABJNI ABMAC ABWVN ABXDB ABXRA ACDAQ ACGFS ACNNM ACRLP ACRPL ADBBV ADEZE ADIYS ADMUD ADNMO AEBSH AEIPS AEKER AEZYN AFJKZ AFRZQ AFTJW AFXIZ AGCQF AGHFR AGQPQ AGRNS AGUBO AGYEJ AIEXJ AIIUN AIKHN AITUG ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC BNPGV CITATION CS3 EBS EFJIC EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA HVGLF HZ~ IHE J1W KOM M41 MAGPM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SSH SSM SSZ T5K TN5 ZMT ~G- 7S9 EFKBS L.6 |
ID | FETCH-LOGICAL-c294t-99d7dc28d9476e1fc76421759726183d22842c7386b7c6456bdace93e8add9d73 |
ISSN | 1359-835X |
IngestDate | Tue Aug 05 09:41:21 EDT 2025 Tue Jul 01 00:48:56 EDT 2025 Thu Apr 24 23:04:52 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c294t-99d7dc28d9476e1fc76421759726183d22842c7386b7c6456bdace93e8add9d73 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-1687-6966 |
PQID | 3154185090 |
PQPubID | 24069 |
ParticipantIDs | proquest_miscellaneous_3154185090 crossref_citationtrail_10_1016_j_compositesa_2023_107857 crossref_primary_10_1016_j_compositesa_2023_107857 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-01-00 20240101 |
PublicationDateYYYYMMDD | 2024-01-01 |
PublicationDate_xml | – month: 01 year: 2024 text: 2024-01-00 |
PublicationDecade | 2020 |
PublicationTitle | Composites. Part A, Applied science and manufacturing |
PublicationYear | 2024 |
References | Singh (10.1016/j.compositesa.2023.107857_b0010) 2018; 149 Bai (10.1016/j.compositesa.2023.107857_b0110) 2018; 88 Wang (10.1016/j.compositesa.2023.107857_b0020) 2020; 136 Zhou (10.1016/j.compositesa.2023.107857_b0065) 2020; 12 Li (10.1016/j.compositesa.2023.107857_b0055) 2022; 197 Chen (10.1016/j.compositesa.2023.107857_b0070) 2022; 103 Jiang (10.1016/j.compositesa.2023.107857_b0005) 2019; 59 Xu (10.1016/j.compositesa.2023.107857_b0170) 2023; 5 Agnihotri (10.1016/j.compositesa.2023.107857_b0175) 2015; 5 Cao (10.1016/j.compositesa.2023.107857_b0195) 2019; 11 Mk (10.1016/j.compositesa.2023.107857_b0120) 2016; 8 Lu (10.1016/j.compositesa.2023.107857_b0185) 2018; 136 Qian (10.1016/j.compositesa.2023.107857_b0050) 2021; 4 Jiao (10.1016/j.compositesa.2023.107857_b0200) 2022; 198 Zeng (10.1016/j.compositesa.2023.107857_b0075) 2022; 14 Yang (10.1016/j.compositesa.2023.107857_b0230) 2023; 240 Nguyen (10.1016/j.compositesa.2023.107857_b0035) 2020; 393 Jin (10.1016/j.compositesa.2023.107857_b0030) 2020; 380 Zhang (10.1016/j.compositesa.2023.107857_bib251) 2023 Weng (10.1016/j.compositesa.2023.107857_b0090) 2020; 135 Hao (10.1016/j.compositesa.2023.107857_b0140) 2022; 199 Zhao (10.1016/j.compositesa.2023.107857_b0125) 2021; 181 Li (10.1016/j.compositesa.2023.107857_b0145) 2020; 190 Chen (10.1016/j.compositesa.2023.107857_b0135) 2018; 303 Chen (10.1016/j.compositesa.2023.107857_b0235) 2016; 59 Ma (10.1016/j.compositesa.2023.107857_b0165) 2022; 226 Xie (10.1016/j.compositesa.2023.107857_b0215) 2019; 11 Liu (10.1016/j.compositesa.2023.107857_b0100) 2023; 5 Peng (10.1016/j.compositesa.2023.107857_b0225) 2023; 11 Chin (10.1016/j.compositesa.2023.107857_b0250) 2007; 92 Li (10.1016/j.compositesa.2023.107857_b0205) 2023; 2350051 Li (10.1016/j.compositesa.2023.107857_b0150) 2022; 427 Chu (10.1016/j.compositesa.2023.107857_b0085) 2022; 5 Wang (10.1016/j.compositesa.2023.107857_b0105) 2022; 4 Wang (10.1016/j.compositesa.2023.107857_b0095) 2019; 29 Chen (10.1016/j.compositesa.2023.107857_b0025) 2023; 210 Ji (10.1016/j.compositesa.2023.107857_b0130) 2020; 165 Kang (10.1016/j.compositesa.2023.107857_b0245) 2018; 19 Xing (10.1016/j.compositesa.2023.107857_b0155) 2018; 132 Li (10.1016/j.compositesa.2023.107857_b0180) 2020; 182 Jia (10.1016/j.compositesa.2023.107857_b0080) 2020; 198 Jia (10.1016/j.compositesa.2023.107857_b0040) 2020; 3 Li (10.1016/j.compositesa.2023.107857_b0210) 2022; 194 Zou (10.1016/j.compositesa.2023.107857_b0240) 2019; 149 Wang (10.1016/j.compositesa.2023.107857_b0015) 2021; 177 Wang (10.1016/j.compositesa.2023.107857_b0045) 2021; 1 Alhabeb (10.1016/j.compositesa.2023.107857_b0060) 2017; 29 Yu (10.1016/j.compositesa.2023.107857_b0160) 2021; 183 Li (10.1016/j.compositesa.2023.107857_b0220) 2022; 32 Zhang (10.1016/j.compositesa.2023.107857_b0190) 2021; 17 Liu (10.1016/j.compositesa.2023.107857_b0115) 2023; 2303561 |
References_xml | – volume: 182 year: 2020 ident: 10.1016/j.compositesa.2023.107857_b0180 article-title: Self-templating graphene network composites by flame carbonization for excellent electromagnetic interference shielding publication-title: Compos B Eng doi: 10.1016/j.compositesb.2019.107615 – volume: 29 start-page: 7633 issue: 18 year: 2017 ident: 10.1016/j.compositesa.2023.107857_b0060 article-title: Guidelines for Synthesis and Processing of Two-Dimensional Titanium Carbide (Ti3C2Tx MXene) publication-title: Chem Mater doi: 10.1021/acs.chemmater.7b02847 – volume: 183 start-page: 600 year: 2021 ident: 10.1016/j.compositesa.2023.107857_b0160 article-title: Free-standing laser-induced graphene films for high-performance electromagnetic interference shielding publication-title: Carbon doi: 10.1016/j.carbon.2021.07.055 – volume: 181 start-page: 40 year: 2021 ident: 10.1016/j.compositesa.2023.107857_b0125 article-title: Bioinspired modified graphite film with superb mechanical and thermoconductive properties publication-title: Carbon doi: 10.1016/j.carbon.2021.05.019 – volume: 5 start-page: 43765 issue: 54 year: 2015 ident: 10.1016/j.compositesa.2023.107857_b0175 article-title: Highly efficient electromagnetic interference shielding using graphite nanoplatelet/poly(3,4-ethylenedioxythiophene)–poly(styrenesulfonate) composites with enhanced thermal conductivity publication-title: RSC Adv doi: 10.1039/C4RA15674A – volume: 149 start-page: 173 year: 2019 ident: 10.1016/j.compositesa.2023.107857_b0240 article-title: Carbonized polydopamine nanoparticle reinforced graphene films with superior thermal conductivity publication-title: Carbon doi: 10.1016/j.carbon.2019.04.038 – volume: 5 start-page: 1657 year: 2023 ident: 10.1016/j.compositesa.2023.107857_b0100 article-title: Mechanically strong and flame-retardant PBO/BN/MXene nanocomposite paper with low thermal expansion coefficient, for efficient emi shielding and heat dissipation publication-title: Adv Fiber Mater doi: 10.1007/s42765-023-00298-0 – volume: 380 year: 2020 ident: 10.1016/j.compositesa.2023.107857_b0030 article-title: Flame-retardant poly(vinyl alcohol)/MXene multilayered films with outstanding electromagnetic interference shielding and thermal conductive performances publication-title: Chem Eng J doi: 10.1016/j.cej.2019.122475 – volume: 4 start-page: 200 issue: 2 year: 2022 ident: 10.1016/j.compositesa.2023.107857_b0105 article-title: Mechanically strong and folding-endurance Ti3C2Tx MXene/PBO nanofiber films for efficient electromagnetic interference shielding and thermal management publication-title: Carbon Energy doi: 10.1002/cey2.174 – volume: 132 start-page: 32 year: 2018 ident: 10.1016/j.compositesa.2023.107857_b0155 article-title: Highly flexible and ultra-thin Ni-plated carbon-fabric/polycarbonate film for enhanced electromagnetic interference shielding publication-title: Carbon doi: 10.1016/j.carbon.2018.02.001 – volume: 14 start-page: 59 issue: 1 year: 2022 ident: 10.1016/j.compositesa.2023.107857_b0075 article-title: Porous and Ultra-Flexible Crosslinked MXene/Polyimide Composites for Multifunctional Electromagnetic Interference Shielding publication-title: Nanomicro Lett – volume: 2350051 year: 2023 ident: 10.1016/j.compositesa.2023.107857_b0205 article-title: Self-assembling ultrathin MXene/cellulose nanofiber/MXene composite film for high-performance electromagnetic interference shielding publication-title: Nano – volume: 17 start-page: 2101951 issue: 42 year: 2021 ident: 10.1016/j.compositesa.2023.107857_b0190 article-title: Flexible sandwich-structured electromagnetic interference shielding nanocomposite films with excellent thermal conductivities publication-title: Small doi: 10.1002/smll.202101951 – volume: 32 start-page: 2107767 issue: 4 year: 2022 ident: 10.1016/j.compositesa.2023.107857_b0220 article-title: Electrically conductive, optically responsive, and highly orientated Ti3C2Tx MXene aerogel fibers publication-title: Adv Funct Mater doi: 10.1002/adfm.202107767 – volume: 198 start-page: 179 year: 2022 ident: 10.1016/j.compositesa.2023.107857_b0200 article-title: Photothermal healable, stretchable, and conductive MXene composite films for efficient electromagnetic interference shielding publication-title: Carbon doi: 10.1016/j.carbon.2022.07.017 – volume: 427 year: 2022 ident: 10.1016/j.compositesa.2023.107857_b0150 article-title: Multifunctional carbon fiber@NiCo/polyimide films with outstanding electromagnetic interference shielding performance publication-title: Chem Eng J doi: 10.1016/j.cej.2021.131937 – volume: 177 start-page: 377 year: 2021 ident: 10.1016/j.compositesa.2023.107857_b0015 article-title: Construction, mechanism and prospective of conductive polymer composites with multiple interfaces for electromagnetic interference shielding: A review publication-title: Carbon doi: 10.1016/j.carbon.2021.02.047 – volume: 2303561 year: 2023 ident: 10.1016/j.compositesa.2023.107857_b0115 article-title: Polymer films with metal-like thermal conductivity, excellent stability, and flame retardancy publication-title: Adv Funct Mater – volume: 59 start-page: 280 issue: 2 year: 2019 ident: 10.1016/j.compositesa.2023.107857_b0005 article-title: Electromagnetic Interference Shielding Polymers and Nanocomposites - A Review publication-title: Polym Rev doi: 10.1080/15583724.2018.1546737 – volume: 103 start-page: 98 year: 2022 ident: 10.1016/j.compositesa.2023.107857_b0070 article-title: Biomass-based aligned carbon networks with double-layer construction for tunable electromagnetic shielding with ultra-low reflectivity publication-title: J Mater Sci Technol doi: 10.1016/j.jmst.2021.06.039 – volume: 29 start-page: 1903876 issue: 38 year: 2019 ident: 10.1016/j.compositesa.2023.107857_b0095 article-title: Unprecedentedly tough, folding-endurance, and multifunctional graphene-based artificial nacre with predesigned 3D nanofiber network as matrix publication-title: Adv Funct Mater doi: 10.1002/adfm.201903876 – volume: 8 start-page: 21011 issue: 32 year: 2016 ident: 10.1016/j.compositesa.2023.107857_b0120 article-title: Ti3C2 MXenes with modified surface for high-performance electromagnetic absorption and shielding in the X-Band publication-title: ACS Appl Mater Inter doi: 10.1021/acsami.6b06455 – volume: 88 start-page: 1559 issue: 13 year: 2018 ident: 10.1016/j.compositesa.2023.107857_b0110 article-title: Preparation of poly-p-phenylenebenzobisoxazole (PBO) fibrillated pulp and dielectric properties of carbon fiber/PBO wet-laid nonwoven fabric publication-title: Text Res J doi: 10.1177/0040517517703598 – volume: 92 start-page: 1234 issue: 7 year: 2007 ident: 10.1016/j.compositesa.2023.107857_b0250 article-title: Temperature and humidity aging of poly(p-phenylene-2,6-benzobisoxazole) fibers: Chemical and physical characterization publication-title: Polym Degrad Stab doi: 10.1016/j.polymdegradstab.2007.03.030 – volume: 199 year: 2022 ident: 10.1016/j.compositesa.2023.107857_b0140 article-title: Facile preparation of ultraviolet resistant “hard armors” on poly(p-phenylene benzobisoxazole) fibers through heat-induced surface treatment publication-title: Polym Degrad Stab doi: 10.1016/j.polymdegradstab.2022.109896 – volume: 12 start-page: 4895 issue: 4 year: 2020 ident: 10.1016/j.compositesa.2023.107857_b0065 article-title: Flexible, Robust, and Multifunctional Electromagnetic Interference Shielding Film with Alternating Cellulose Nanofiber and MXene Layers publication-title: ACS Appl Mater Inter doi: 10.1021/acsami.9b19768 – volume: 11 start-page: 10857 issue: 20 year: 2023 ident: 10.1016/j.compositesa.2023.107857_b0225 article-title: Absorption-dominated electromagnetic interference shielding composite foam based on porous and bi-conductive network structures publication-title: J Mater Chem A doi: 10.1039/D3TA01369C – volume: 4 start-page: 39 issue: 1 year: 2021 ident: 10.1016/j.compositesa.2023.107857_b0050 article-title: Designing Ceramic/Polymer Composite as Highly Ionic Conductive Solid-State Electrolytes publication-title: Batteries Supercaps doi: 10.1002/batt.202000149 – volume: 226 year: 2022 ident: 10.1016/j.compositesa.2023.107857_b0165 article-title: Construction of gradient conductivity cellulose nanofiber/MXene composites with efficient electromagnetic interference shielding and excellent mechanical properties publication-title: Compos Sci Technol doi: 10.1016/j.compscitech.2022.109540 – start-page: 2300224 year: 2023 ident: 10.1016/j.compositesa.2023.107857_bib251 article-title: Recent Advances of MXenes-Based Optical Functional Materials publication-title: Adv Photonics Res doi: 10.1002/adpr.202300224 – volume: 393 year: 2020 ident: 10.1016/j.compositesa.2023.107857_b0035 article-title: MXene(Ti3C2TX)/graphene/PDMS composites for multifunctional broadband electromagnetic interference shielding skins publication-title: Chem Eng J doi: 10.1016/j.cej.2020.124608 – volume: 59 start-page: 41 year: 2016 ident: 10.1016/j.compositesa.2023.107857_b0235 article-title: Thermal conductivity of polymer-based composites: Fundamentals and applications publication-title: Prog Polym Sci doi: 10.1016/j.progpolymsci.2016.03.001 – volume: 149 start-page: 188 year: 2018 ident: 10.1016/j.compositesa.2023.107857_b0010 article-title: A review of porous lightweight composite materials for electromagnetic interference shielding publication-title: Compos B Eng doi: 10.1016/j.compositesb.2018.05.027 – volume: 1 start-page: 413 issue: 3 year: 2021 ident: 10.1016/j.compositesa.2023.107857_b0045 article-title: Polymer-based EMI shielding composites with 3D conductive networks: A mini-review publication-title: Susmat doi: 10.1002/sus2.21 – volume: 198 year: 2020 ident: 10.1016/j.compositesa.2023.107857_b0080 article-title: Waterproof MXene-decorated wood-pulp fabrics for high-efficiency electromagnetic interference shielding and Joule heating publication-title: Compos B Eng doi: 10.1016/j.compositesb.2020.108250 – volume: 165 start-page: 150 year: 2020 ident: 10.1016/j.compositesa.2023.107857_b0130 article-title: Electromagnetic shielding behavior of heat-treated Ti3C2TX MXene accompanied by structural and phase changes publication-title: Carbon doi: 10.1016/j.carbon.2020.04.041 – volume: 210 year: 2023 ident: 10.1016/j.compositesa.2023.107857_b0025 article-title: Biomass-based Co/C@Carbon composites derived from MOF-modified cotton fibers for enhanced electromagnetic attenuation publication-title: Carbon doi: 10.1016/j.carbon.2023.118035 – volume: 135 year: 2020 ident: 10.1016/j.compositesa.2023.107857_b0090 article-title: Mechanically robust ANF/MXene composite films with tunable electromagnetic interference shielding performance publication-title: Compos A Appl Sci Manuf doi: 10.1016/j.compositesa.2020.105927 – volume: 5 start-page: 7217 issue: 5 year: 2022 ident: 10.1016/j.compositesa.2023.107857_b0085 article-title: Cellulose Nanofiber/Graphene Nanoplatelet/MXene Nanocomposites for Enhanced Electromagnetic Shielding and High In-Plane Thermal Conductivity publication-title: ACS Appl Nano Mater doi: 10.1021/acsanm.2c01126 – volume: 194 start-page: 127 year: 2022 ident: 10.1016/j.compositesa.2023.107857_b0210 article-title: Ultra-thin broadband terahertz absorption and electromagnetic shielding properties of MXene/rGO composite film publication-title: Carbon doi: 10.1016/j.carbon.2022.03.048 – volume: 303 start-page: 1800229 issue: 10 year: 2018 ident: 10.1016/j.compositesa.2023.107857_b0135 article-title: “Zylon” Aerogels publication-title: Macromol Mater Eng doi: 10.1002/mame.201800229 – volume: 136 start-page: 387 year: 2018 ident: 10.1016/j.compositesa.2023.107857_b0185 article-title: Flexible, mechanically resilient carbon nanotube composite films for high-efficiency electromagnetic interference shielding publication-title: Carbon doi: 10.1016/j.carbon.2018.04.086 – volume: 240 year: 2023 ident: 10.1016/j.compositesa.2023.107857_b0230 article-title: Construction of in-situ grid conductor skeleton and magnet core in biodegradable poly (butyleneadipate-co-terephthalate) for efficient electromagnetic interference shielding and low reflection publication-title: Compos Sci Technol doi: 10.1016/j.compscitech.2023.110093 – volume: 136 year: 2020 ident: 10.1016/j.compositesa.2023.107857_b0020 article-title: Recent advances in MXenes composites for electromagnetic interference shielding and microwave absorption publication-title: Compos A Appl Sci Manuf doi: 10.1016/j.compositesa.2020.105956 – volume: 19 start-page: 1626 issue: 8 year: 2018 ident: 10.1016/j.compositesa.2023.107857_b0245 article-title: Effects of drawing and heat-treatment conditions on the structure and mechanical properties of polyhydroxyamide and polybenzoxazole fibers publication-title: Fibers Polym doi: 10.1007/s12221-018-8241-9 – volume: 5 start-page: 421 issue: 2 year: 2023 ident: 10.1016/j.compositesa.2023.107857_b0170 article-title: A proof-of-concept study of auxetic composite foams with negative poisson’s ratio for enhanced strain-stable performance of electromagnetic shielding publication-title: ACS Materials Lett doi: 10.1021/acsmaterialslett.2c01177 – volume: 11 start-page: 72 issue: 1 year: 2019 ident: 10.1016/j.compositesa.2023.107857_b0195 article-title: Ultrathin and flexible CNTs/MXene/cellulose nanofibrils composite paper for electromagnetic interference shielding publication-title: Nanomicro Lett – volume: 11 start-page: 23382 issue: 48 year: 2019 ident: 10.1016/j.compositesa.2023.107857_b0215 article-title: Ultrathin MXene/aramid nanofiber composite paper with excellent mechanical properties for efficient electromagnetic interference shielding publication-title: Nanoscale doi: 10.1039/C9NR07331K – volume: 197 start-page: 508 year: 2022 ident: 10.1016/j.compositesa.2023.107857_b0055 article-title: Controllable growth of NiCo compounds with different morphologies and structures on carbon fabrics as EMI shields with improved absorptivity publication-title: Carbon doi: 10.1016/j.carbon.2022.06.085 – volume: 190 year: 2020 ident: 10.1016/j.compositesa.2023.107857_b0145 article-title: Ultrathin and flexible biomass-derived C@CoFe nanocomposite films for efficient electromagnetic interference shielding publication-title: Compos B Eng doi: 10.1016/j.compositesb.2020.107935 – volume: 3 start-page: 6140 issue: 7 year: 2020 ident: 10.1016/j.compositesa.2023.107857_b0040 article-title: Graphene Foams for Electromagnetic Interference Shielding: A Review publication-title: ACS Appl Nano Mater doi: 10.1021/acsanm.0c00835 |
SSID | ssj0003391 |
Score | 2.6685822 |
Snippet | In this study, a carbon layer coated MXene/poly(p-phenylene-2,6-benzobisoxazole) nanofibers (PNFs) (MXene/PNF@C) EMI shielding composite film was obtained... |
SourceID | proquest crossref |
SourceType | Aggregation Database Enrichment Source Index Database |
StartPage | 107857 |
SubjectTerms | artificial intelligence carbon communications technology composite films electrical conductivity electromagnetic interference nanofibers polymers pyrolysis tensile strength thermal conductivity thermal stability weight loss |
Title | Ultrathin carbon layer coated MXene/PBO nanofiber films for excellent electromagnetic interference shielding and thermal stability |
URI | https://www.proquest.com/docview/3154185090 |
Volume | 176 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nj9MwELXKIiE4ID7F8iWvxC1KSew0iY8LYrUCFpDYSuUUOY67bdWmqCQS4sCBH8RvZMZOnGQBsewlqtLabTIv4zfTN2NCnolUhjyVDHV-gQ8rVO6nuZLwxBexCKMcKD8m9E_excfT6PVsMhuNfvZUS3WVj9W3P9aVXMaqcA7silWy_2FZNymcgNdgXziCheF4IRtP19hbdoFScrnLwY5rCQzaU1uJPPJkpjFdefThxXuvlCV8Uw5vzpdr24PB019N1r6svGYvnI08K7Gm0fSQ2LkGtAsUubW1jMgXN6bGxDb4HvwrjM4FRWAQfAM13VXeoXE9DdFtK4hwmo0sa6ypMEWSTgPUyIPfyOVqqTunbc9-kihccB9-u6ytINOlbo0u4eOiXtSyn8tgUS-XYd0vx6Qkn8wG_jnpe1gIV1Pb0vo352_zECs0aHOx2FiK8XE3Zthw-9xC6OSJrfJtlfWmynCqzE51hVxlEJbgjhnj752kiHNhA_zmKq6Rg05P-JdfNeRDQzpgOM7pLXKzCU7ooUXabTLS5R1yo9ey8i754TBHLeaowRy1mKMGc88BcdQhjhrEUUAcdYij5xBH-4ijDnEUoEIbxFGHuHtkevTq9OWx3-zj4SsmosoXokgKxdJCREmsw7lKsLo6gVAWwveUFwwoElO4-2yeqBgYfV5IpQXXKSy-MJbfJ3vlttQPCJVBobVgiYIB0aTgMmHpPCyiQMzDWBfJPknbu5mppsk97rWyzv5p033C3NDPttPLRQYdtCbLwC_jTZSl3tZfMg6xCXDhQAQPLzPxI3K9e0Aek71qV-snQH-r_KnB3C_5frio |
linkProvider | Elsevier |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ultrathin+carbon+layer+coated+MXene%2FPBO+nanofiber+films+for+excellent+electromagnetic+interference+shielding+and+thermal+stability&rft.jtitle=Composites.+Part+A%2C+Applied+science+and+manufacturing&rft.au=Gong%2C+Kaijie&rft.au=Peng%2C+Yanmeng&rft.au=Liu%2C+An&rft.au=Qi%2C+Shuhua&rft.date=2024-01-01&rft.issn=1359-835X&rft.volume=176&rft.spage=107857&rft_id=info:doi/10.1016%2Fj.compositesa.2023.107857&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_compositesa_2023_107857 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1359-835X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1359-835X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1359-835X&client=summon |