MMW-Carry: Enhancing Carry Object Detection Through Millimeter-Wave Radar-Camera Fusion
This article introduces MMW-Carry, a system designed to predict the probability of individuals carrying various objects using millimeter-wave (MMWave) radar signals, complemented by camera input. The primary goal of MMW-Carry is to provide a rapid and cost-effective preliminary screening solution, s...
Saved in:
Published in | IEEE sensors journal Vol. 24; no. 9; pp. 15091 - 15100 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.05.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This article introduces MMW-Carry, a system designed to predict the probability of individuals carrying various objects using millimeter-wave (MMWave) radar signals, complemented by camera input. The primary goal of MMW-Carry is to provide a rapid and cost-effective preliminary screening solution, specifically tailored for non-super-sensitive scenarios. Overall, MMW-Carry achieves significant advancements in two crucial aspects. First, it addresses localization challenges in complex indoor environments caused by multipath reflections, enhancing the system's overall robustness. This is accomplished by the integration of camera-based human detection, tracking, and the radar-camera plane transformation for obtaining subjects' spatial occupancy region, followed by a zooming-in operation on the radar images. Second, the system performance is elevated by leveraging long-term observation of a subject. This is realized through the intelligent fusion of neural network results from multiple different-view radar images of an in-track moving subject and their carried objects, facilitated by a proposed knowledge-transfer module. Our experiment results demonstrate that MMW-Carry detects objects with an average error rate of 25.22% false positives and a 21.71% missing rate (MR) for individuals moving randomly in a large indoor space, carrying the common-in-everyday-life objects, both in open carry or concealed ways. These findings affirm MMW-Carry's potential to extend its capabilities to detect a broader range of objects for diverse applications. |
---|---|
AbstractList | This article introduces MMW-Carry, a system designed to predict the probability of individuals carrying various objects using millimeter-wave (MMWave) radar signals, complemented by camera input. The primary goal of MMW-Carry is to provide a rapid and cost-effective preliminary screening solution, specifically tailored for non-super-sensitive scenarios. Overall, MMW-Carry achieves significant advancements in two crucial aspects. First, it addresses localization challenges in complex indoor environments caused by multipath reflections, enhancing the system’s overall robustness. This is accomplished by the integration of camera-based human detection, tracking, and the radar–camera plane transformation for obtaining subjects’ spatial occupancy region, followed by a zooming-in operation on the radar images. Second, the system performance is elevated by leveraging long-term observation of a subject. This is realized through the intelligent fusion of neural network results from multiple different-view radar images of an in-track moving subject and their carried objects, facilitated by a proposed knowledge-transfer module. Our experiment results demonstrate that MMW-Carry detects objects with an average error rate of 25.22% false positives and a 21.71% missing rate (MR) for individuals moving randomly in a large indoor space, carrying the common-in-everyday-life objects, both in open carry or concealed ways. These findings affirm MMW-Carry’s potential to extend its capabilities to detect a broader range of objects for diverse applications. |
Author | Luo, Youchen Gao, Xiangyu Alansari, Ali Sun, Yaping |
Author_xml | – sequence: 1 givenname: Xiangyu orcidid: 0000-0002-7552-6192 surname: Gao fullname: Gao, Xiangyu email: xygao@uw.edu organization: Department of Electrical and Computer Engineering, University of Washington, Seattle, WA, USA – sequence: 2 givenname: Youchen orcidid: 0000-0003-0375-5903 surname: Luo fullname: Luo, Youchen email: yluo6@uw.edu organization: Paul G. Allen School of Computer Science and Engineering, University of Washington, Seattle, WA, USA – sequence: 3 givenname: Ali surname: Alansari fullname: Alansari, Ali organization: Department of Electrical and Computer Engineering, University of Washington, Seattle, WA, USA – sequence: 4 givenname: Yaping orcidid: 0000-0001-6284-1639 surname: Sun fullname: Sun, Yaping email: sunyp@pcl.ac.cn organization: Department of Broadband Communication, Peng Cheng Laboratory, Shenzhen, China |
BookMark | eNp9kE1LwzAYx4NMcJt-AMFDwXNn0iRN6k3m5gubA53MW3jaJFvG1s60Ffbtbd0O4sHT_-Hh_wK_HurkRW4QuiR4QAhObp7fRi-DCEdsQKmQXJAT1CWcy5AIJjvtTXHIqPg4Q72yXGNMEsFFFy2m00U4BO_3t8EoX0GeuXwZ_DyCWbo2WRXcm6oRV-TBfOWLerkKpm6zcdvm7cMFfJngFTT4pmVrPATjumy85-jUwqY0F0fto_fxaD58DCezh6fh3STMooRVYSIZzWIbxQKnXEAsIQULmmqutRXCYgFGJjwCSKW1jHMdMxKlmOnUYppq2kfXh96dLz5rU1ZqXdQ-byYVxSxhSSSFaFzk4Mp8UZbeWLXzbgt-rwhWLT_V8lMtP3Xk12TEn0zmKmg5VB7c5t_k1SHpjDG_lpiQFMf0G4I8f9Y |
CODEN | ISJEAZ |
CitedBy_id | crossref_primary_10_1007_s12239_025_00236_6 crossref_primary_10_1109_JSEN_2024_3524441 |
Cites_doi | 10.3390/app11198926 10.1109/TENCON.2018.8650148 10.1109/79.526899 10.1109/MSP.2005.1406480 10.1109/IEEECONF44664.2019.9048939 10.1109/JSEN.2020.3040354 10.1109/ICARCV.2018.8581329 10.1007/BF02278710 10.1109/ICAS49788.2021.9551127 10.1109/ROBOT.2010.5509644 10.1109/TGRS.2010.2053038 10.1109/TVT.2021.3092355 10.1115/1.3662552 10.1109/ACCESS.2021.3059170 10.1016/B978-0-12-411597-2.00014-X 10.1109/JSTSP.2022.3171168 10.1109/ICIP.1999.817171 10.1109/IUCS.2010.5666180 10.1007/978-3-030-58452-8_13 10.1109/JSEN.2018.2879223 10.1109/TAP.1986.1143830 10.1109/JSEN.2020.3036047 10.1109/TMTT.2008.2007081 10.1109/IROS45743.2020.9341164 10.1109/JSEN.2020.3028362 10.5121/ijcseit.2012.2216 10.1109/CVPR.2016.90 10.1109/TPAMI.2009.167 10.1145/3447993.3483258 10.1109/ICPR.2004.1334537 10.1109/JSEN.2023.3295574 10.1109/TIE.2019.2893843 10.1109/TAES.1972.309463 10.1109/MSP.2007.904812 10.1109/iwem.2018.8536660 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
DBID | 97E RIA RIE AAYXX CITATION 7SP 7U5 8FD L7M |
DOI | 10.1109/JSEN.2024.3378571 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
DatabaseTitleList | Solid State and Superconductivity Abstracts |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography Engineering |
EISSN | 1558-1748 |
EndPage | 15100 |
ExternalDocumentID | 10_1109_JSEN_2024_3378571 10478306 |
Genre | orig-research |
GroupedDBID | -~X 0R~ 29I 4.4 5GY 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AGQYO AHBIQ AJQPL AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 EBS F5P HZ~ IFIPE IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS TWZ AAYXX CITATION 7SP 7U5 8FD L7M |
ID | FETCH-LOGICAL-c294t-9843c6f2670b57a68abafad3d5ddf77f07ae8952aab8ff455d6412b04dbf03bd3 |
IEDL.DBID | RIE |
ISSN | 1530-437X |
IngestDate | Mon Jun 30 10:22:30 EDT 2025 Tue Jul 01 04:27:31 EDT 2025 Thu Apr 24 22:50:47 EDT 2025 Wed Aug 27 02:06:29 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c294t-9843c6f2670b57a68abafad3d5ddf77f07ae8952aab8ff455d6412b04dbf03bd3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-0375-5903 0000-0002-7552-6192 0000-0001-6284-1639 |
PQID | 3049492877 |
PQPubID | 75733 |
PageCount | 10 |
ParticipantIDs | ieee_primary_10478306 proquest_journals_3049492877 crossref_citationtrail_10_1109_JSEN_2024_3378571 crossref_primary_10_1109_JSEN_2024_3378571 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-05-01 |
PublicationDateYYYYMMDD | 2024-05-01 |
PublicationDate_xml | – month: 05 year: 2024 text: 2024-05-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE sensors journal |
PublicationTitleAbbrev | JSEN |
PublicationYear | 2024 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref35 ref12 ref34 ref15 ref37 ref14 ref36 ref31 ref11 ref10 (ref29) 2019 Richards (ref42) 2005 ref1 (ref2) 2022 Rao (ref17) 2017 ref39 ref16 ref38 ref19 ref18 Richards (ref26) 2014 McWirter (ref33) ref24 ref23 ref20 ref41 ref22 ref44 ref21 (ref25) 2018 ref43 Chung (ref32) 2014; 3 ref28 ref27 ref8 ref7 ref9 ref4 ref3 ref5 Bandyopadhyay (ref6) 2012 ref40 Gao (ref30) 2023 Gao (ref45) 2022 |
References_xml | – ident: ref10 doi: 10.3390/app11198926 – ident: ref12 doi: 10.1109/TENCON.2018.8650148 – ident: ref31 doi: 10.1109/79.526899 – ident: ref1 doi: 10.1109/MSP.2005.1406480 – ident: ref16 doi: 10.1109/IEEECONF44664.2019.9048939 – ident: ref22 doi: 10.1109/JSEN.2020.3040354 – ident: ref40 doi: 10.1109/ICARCV.2018.8581329 – year: 2023 ident: ref30 article-title: Static background removal in vehicular radar: Filtering in azimuth-elevation-Doppler domain publication-title: arXiv:2307.01444 – ident: ref38 doi: 10.1007/BF02278710 – ident: ref15 doi: 10.1109/ICAS49788.2021.9551127 – ident: ref28 doi: 10.1109/ROBOT.2010.5509644 – ident: ref11 doi: 10.1109/TGRS.2010.2053038 – ident: ref14 doi: 10.1109/TVT.2021.3092355 – volume-title: White Paper: Imaging Radar Using Cascaded mmWave Sensor Reference Design year: 2019 ident: ref29 – ident: ref36 doi: 10.1115/1.3662552 – ident: ref23 doi: 10.1109/ACCESS.2021.3059170 – volume-title: 5G; Nr; User Equipment (UE) Radio Transmission and Reception, Part 2: Range 2 Standalone, 2 Version 15.2.0 Release 15 year: 2018 ident: ref25 – volume: 3 start-page: 599 volume-title: Academic Press Library in Signal Processing year: 2014 ident: ref32 article-title: Chapter 14—DOA estimation methods and algorithms doi: 10.1016/B978-0-12-411597-2.00014-X – ident: ref8 doi: 10.1109/JSTSP.2022.3171168 – ident: ref4 doi: 10.1109/ICIP.1999.817171 – ident: ref9 doi: 10.1109/IUCS.2010.5666180 – year: 2012 ident: ref6 article-title: Identifications of concealed weapon in a human body publication-title: arXiv:1210.5653 – ident: ref44 doi: 10.1007/978-3-030-58452-8_13 – ident: ref18 doi: 10.1109/JSEN.2018.2879223 – ident: ref34 doi: 10.1109/TAP.1986.1143830 – ident: ref7 doi: 10.1109/JSEN.2020.3036047 – ident: ref5 doi: 10.1109/TMTT.2008.2007081 – volume-title: Fundamentals of Radar Signal Processing year: 2014 ident: ref26 – start-page: 1 volume-title: Proc. IEE F-Radar Signal Process. ident: ref33 article-title: Systolic array processor for MVDR beamforming – year: 2022 ident: ref45 article-title: Raw ADC data of 2D-MIMO mmWave radar for carry object detection – ident: ref37 doi: 10.1109/IROS45743.2020.9341164 – ident: ref24 doi: 10.1109/JSEN.2020.3028362 – volume-title: White Paper: MIMO Radar. Texas Instrum year: 2017 ident: ref17 – ident: ref3 doi: 10.5121/ijcseit.2012.2216 – ident: ref43 doi: 10.1109/CVPR.2016.90 – ident: ref35 doi: 10.1109/TPAMI.2009.167 – ident: ref13 doi: 10.1145/3447993.3483258 – volume-title: Fundamentals of Radar Signal Processing year: 2005 ident: ref42 – year: 2022 ident: ref2 publication-title: TSA – ident: ref39 doi: 10.1109/ICPR.2004.1334537 – ident: ref20 doi: 10.1109/JSEN.2023.3295574 – ident: ref21 doi: 10.1109/TIE.2019.2893843 – ident: ref27 doi: 10.1109/TAES.1972.309463 – ident: ref41 doi: 10.1109/MSP.2007.904812 – ident: ref19 doi: 10.1109/iwem.2018.8536660 |
SSID | ssj0019757 |
Score | 2.4138873 |
Snippet | This article introduces MMW-Carry, a system designed to predict the probability of individuals carrying various objects using millimeter-wave (MMWave) radar... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 15091 |
SubjectTerms | Camera Cameras carry object Imaging Indoor environments Knowledge management Millimeter wave communication Millimeter waves millimeter-wave (MMWave) radar multiple observations Neural networks object detection Object recognition Radar Radar detection Radar imaging Radar tracking Sensors tracking Zooming |
Title | MMW-Carry: Enhancing Carry Object Detection Through Millimeter-Wave Radar-Camera Fusion |
URI | https://ieeexplore.ieee.org/document/10478306 https://www.proquest.com/docview/3049492877 |
Volume | 24 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3LSxwxGA_Wi-3BVy1uayWHngoZs5N3b2J3WYRdoV3ZvQ3JJKmlOso4U7B_fZPMrFiL4m0YvoTAL4_v-fsA-ESc5tjnGuVE5IgyQZASJUeOYys8K60nsd55OuOTc3q6ZMu-WD3VwjjnUvKZy-JniuXb67KNrrKjRCVDIsH2q2C5dcVa9yEDJRKtZzjBGFEiln0Ic4jV0en30SyYgjnNCBGSieE_j1DqqvLfVZzel_EWmK1W1qWV_MraxmTln0ekjS9e-jbY7DVNeNxtjR2w5qpd8OYB_-Au2OhboF_cvQWL6XSBTnRd332Bo-oi0nBUP2D6Ac9M9NbAr65JiVsVnHfdfWCsJPx5FTNq0EL_dvCbtroOs0RPFxy30RO3B87Ho_nJBPVdF1CZK9ogJSkpuc-5wIYJzaU22mtLLLPWC-Gx0E4qlmttpPeUMcvpMDeYWuMxMZa8A-vVdeX2AWRMDrX1LAg4WqpgTHIpDZPKKiWCojIAeAVDUfaU5LEzxmWRTBOsiohcEZEreuQG4PP9kJuOj-M54b2IxAPBDoQBOFiBXfRH9raI8UaqggEp3j8x7AN4HWfv0h0PwHpTt-5jUEkac5i24l9xLNsk |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1LbxMxEB6Vcig98ChFBAr4ABckp44f6zUSB9QmSh8JEqRKbou9tmkFbFGagMJ_4a_w27C9m6iA4FaJ22ple7We8Xie3wA8ZU5nxFONKZMUcyEZVrLMsMuIlV6U1rNY7zwYZv0TfjgRkzX4vqqFcc6l5DPXjo8plm_Py3l0le0mKJmg4zY5lEdu8TVYaBcvD_YDOZ9R2uuO9vq4aSKAS6r4DKucszLzNJPECKmzXBvttWVWWOul9ERqlytBtTa591wIm_EONYRb4wkzloV1r8H1oGgIWpeHrYIUSiYg0SAzCOZMTpqgaYeo3cO33WEwPilvMyZzITu_XHupj8sfwj_daL1b8GO5F3Uiy4f2fGba5bffYCL_2826DTcbXRq9qpn_Dqy5ags2LyEsbsFG0-T9dHEXxoPBGO_p6XTxAnWr0wg0Ur1H6QV6baI_Cu27WUpNq9Co7l-EYq3k2aeYM4TH-otDb7TV07BK9OWh3jz6Grfh5Er-8h6sV-eVuw9IiLyjrRdhgOOlCuZyludG5MoqJYMq1gKyJHtRNqDrsffHxyIZX0QVkVOKyClFwykteL6a8rlGHPnX4O1I-UsDa6K3YGfJXEUjlC6KGFHlKpjI8sFfpj2Bjf5ocFwcHwyPHsKN-KU6uXMH1mfTuXsUFLCZeZyOAYJ3V81KPwFP0Ds9 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MMW-Carry%3A+Enhancing+Carry+Object+Detection+Through+Millimeter-Wave+Radar%E2%80%93Camera+Fusion&rft.jtitle=IEEE+sensors+journal&rft.au=Gao%2C+Xiangyu&rft.au=Luo%2C+Youchen&rft.au=Alansari%2C+Ali&rft.au=Sun%2C+Yaping&rft.date=2024-05-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1530-437X&rft.eissn=1558-1748&rft.volume=24&rft.issue=9&rft.spage=15091&rft_id=info:doi/10.1109%2FJSEN.2024.3378571&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-437X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-437X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-437X&client=summon |