EEG-Based Familiar and Unfamiliar Face Classification Using Filter-Bank Differential Entropy Features
The face recognition of familiar and unfamiliar people is an essential part of our daily lives. However, its neural mechanism and relevant electroencephalography (EEG) features are still unclear. In this study, a new EEG-based familiar and unfamiliar faces classification method is proposed. We recor...
Saved in:
Published in | IEEE transactions on human-machine systems Vol. 54; no. 1; pp. 44 - 55 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.02.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The face recognition of familiar and unfamiliar people is an essential part of our daily lives. However, its neural mechanism and relevant electroencephalography (EEG) features are still unclear. In this study, a new EEG-based familiar and unfamiliar faces classification method is proposed. We record the multichannel EEG with three different face-recall paradigms, and these EEG signals are temporally segmented and filtered using a well-designed filter-bank strategy. The filter-bank differential entropy is employed to extract discriminative features. Finally, the support vector machine (SVM) with Gaussian kernels serves as the robust classifier for EEG-based face recognition. In addition, the F-score is employed for feature ranking and selection, which helps to visualize the brain activation in time, frequency, and spatial domains, and contributes to revealing the neural mechanism of face recognition. With feature selection, the highest mean accuracy of 74.10% can be yielded in face-recall paradigms over ten subjects. Meanwhile, the analysis of results indicates that the EEG-based classification performance of face recognition will be significantly affected when subjects lie. The time-frequency topographical maps generated according to feature importance suggest that the delta band in the prefrontal region correlates to the face recognition task, and the brain response pattern varies from person to person. The present work demonstrates the feasibility of developing an efficient and interpretable brain-computer interface for EEG-based face recognition. |
---|---|
AbstractList | The face recognition of familiar and unfamiliar people is an essential part of our daily lives. However, its neural mechanism and relevant electroencephalography (EEG) features are still unclear. In this study, a new EEG-based familiar and unfamiliar faces classification method is proposed. We record the multichannel EEG with three different face-recall paradigms, and these EEG signals are temporally segmented and filtered using a well-designed filter-bank strategy. The filter-bank differential entropy is employed to extract discriminative features. Finally, the support vector machine (SVM) with Gaussian kernels serves as the robust classifier for EEG-based face recognition. In addition, the F-score is employed for feature ranking and selection, which helps to visualize the brain activation in time, frequency, and spatial domains, and contributes to revealing the neural mechanism of face recognition. With feature selection, the highest mean accuracy of 74.10% can be yielded in face-recall paradigms over ten subjects. Meanwhile, the analysis of results indicates that the EEG-based classification performance of face recognition will be significantly affected when subjects lie. The time-frequency topographical maps generated according to feature importance suggest that the delta band in the prefrontal region correlates to the face recognition task, and the brain response pattern varies from person to person. The present work demonstrates the feasibility of developing an efficient and interpretable brain-computer interface for EEG-based face recognition. |
Author | Hsiao, Janet H. Zhou, Weidong Wen, Yiming Tian, Lan Liu, Guoyang Zhang, Di |
Author_xml | – sequence: 1 givenname: Guoyang orcidid: 0000-0002-5879-809X surname: Liu fullname: Liu, Guoyang email: virter1995@outlook.com organization: School of Microelectronics, Shandong University, Jinan, China – sequence: 2 givenname: Yiming orcidid: 0009-0005-7413-3468 surname: Wen fullname: Wen, Yiming email: yimingwen@sdu.edu.cn organization: School of Microelectronics, Shandong University, Jinan, China – sequence: 3 givenname: Janet H. orcidid: 0000-0003-2271-8710 surname: Hsiao fullname: Hsiao, Janet H. email: jhsiao@hku.hk organization: Department of Psychology, State Key Laboratory of Brain and Cognitive Sciences, Institute of Data Science, University of Hong Kong, Hong Kong – sequence: 4 givenname: Di orcidid: 0009-0000-6233-9956 surname: Zhang fullname: Zhang, Di email: sduzhangdi@yeah.net organization: School of Microelectronics, Shandong University, Jinan, China – sequence: 5 givenname: Lan orcidid: 0000-0003-1321-334X surname: Tian fullname: Tian, Lan email: tianlan65@sdu.edu.cn organization: School of Microelectronics, Shandong University, Jinan, China – sequence: 6 givenname: Weidong orcidid: 0000-0001-9481-1696 surname: Zhou fullname: Zhou, Weidong email: wdzhou@sdu.edu.cn organization: School of Microelectronics, Shandong University, Jinan, China |
BookMark | eNp9kE1PAjEQhhujiYj8ABMPTTwv9mPLbo-KLJhgPAjnzdidNcWli2058O9dBBLjwbnMTDLPvMlzRc5d65CQG86GnDN9v5i9vA0FE3IopRSC6TPSE3yUJ0IydX6aheaXZBDCinWVC6VU3iM4mUyTRwhY0QLWtrHgKbiKLl19WgswSMcNhGBrayDa1tFlsO6DFraJ6DvcfdInW9fo0UULDZ246NvNjhYIcesxXJOLGpqAg2Pvk2UxWYxnyfx1-jx-mCdG6DQmWlQpVzLP0uzdQGWUTlU9UhyqLDNM5QpyOaogYxkCSlFJXaccOCguJChZyT65O_zd-PZriyGWq3brXRdZCt0J0pKrvLvihyvj2xA81uXG2zX4XclZuRda7oWWe6HlUWjHZH8YY-OPi-jBNv-StwfSIuKvJCm1Zqn8BqWGhC4 |
CODEN | ITHSA6 |
CitedBy_id | crossref_primary_10_1007_s11227_025_07015_1 crossref_primary_10_1007_s13369_024_09894_7 crossref_primary_10_3390_s24237856 crossref_primary_10_1007_s11760_024_03524_3 crossref_primary_10_1109_TCDS_2024_3417534 |
Cites_doi | 10.1109/ICHMS53169.2021.9582641 10.1108/WJE-10-2020-0537 10.1016/j.bspc.2019.101702 10.1126/science.278.5340.1135 10.1007/978-3-540-35488-8_13 10.1007/s11760-018-1269-x 10.1016/j.bbe.2021.10.001 10.1109/ICCV.2017.156 10.1109/TNSRE.2017.2776149 10.1038/nn.2158 10.1007/s10919-014-0191-3 10.1016/j.softx.2023.101371 10.1097/00001756-200007140-00050 10.1016/j.neuroimage.2021.117896 10.1016/j.neuropsychologia.2011.05.025 10.1109/ACCESS.2017.2788859 10.1016/j.neuropsychologia.2023.108623 10.1038/71152 10.1142/S0219720005001004 10.1109/cne.2007.369647 10.1037/bul0000310 10.1016/j.neuropsychologia.2013.03.009 10.1016/j.cortex.2021.03.034 10.1371/journal.pone.0031250 10.1016/j.ijpsycho.2017.07.001 10.1111/bjop.12647 10.1016/j.neuropsychologia.2006.04.015 10.1109/IEMBS.2001.1020545 10.1037/a0028584 10.3906/elk-1203-9 10.1016/j.eswa.2020.113448 10.3390/brainsci11101356 10.1109/TBME.2012.2223698 10.1016/j.jneumeth.2020.109037 10.1002/hbm.23730 10.1109/JBHI.2019.2942429 10.4236/psych.2010.13027 10.1109/TNSRE.2017.2757519 10.1038/nature14539 10.1016/j.compbiomed.2022.105299 10.1109/NER.2013.6695876 10.3758/s13428-021-01541-5 10.1016/j.bpsc.2018.07.015 10.3906/elk-1608-130 10.1016/j.neuropsychologia.2006.04.018 10.1023/A:1025667309714 10.1109/TBME.2010.2048568 10.1088/1741-2552/aace8c 10.5555/3104322.3104425 10.1155/2021/3928470 10.1016/j.ijpsycho.2018.07.005 10.1016/j.knosys.2015.08.004 10.1016/S1364-6613(00)01482-0 10.3389/fnins.2020.587520 10.1109/TPAMI.2022.3195549 10.1016/j.eswa.2015.10.047 10.3389/fnins.2012.00055 10.1111/j.2517-6161.1996.tb02080.x 10.1109/IJCNN.2008.4634130 10.1016/j.eswa.2011.09.093 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 7TB 8FD FR3 JQ2 L7M L~C L~D |
DOI | 10.1109/THMS.2023.3332209 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Technology Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2168-2305 |
EndPage | 55 |
ExternalDocumentID | 10_1109_THMS_2023_3332209 10339904 |
Genre | orig-research |
GrantInformation_xml | – fundername: Natural Science Foundation of Shandong Province grantid: ZR2020LZH009; ZR2021ZD40; ZR2021MF065 funderid: 10.13039/501100007129 – fundername: National Natural Science Foundation of China grantid: 62271291 funderid: 10.13039/501100001809 |
GroupedDBID | 0R~ 4.4 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACIWK AENEX AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD HZ~ IFIPE IPLJI JAVBF M43 O9- OCL PQQKQ RIA RIE RNS AAYXX CITATION RIG 7SC 7SP 7TB 8FD FR3 JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c294t-92d41538747bcadc5945f651ad77c0585a836da707eae32d39f41a1a5123a53d3 |
IEDL.DBID | RIE |
ISSN | 2168-2291 |
IngestDate | Mon Jun 30 06:29:20 EDT 2025 Tue Jul 01 03:01:00 EDT 2025 Thu Apr 24 22:54:16 EDT 2025 Wed Aug 27 02:02:12 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c294t-92d41538747bcadc5945f651ad77c0585a836da707eae32d39f41a1a5123a53d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0009-0000-6233-9956 0000-0003-1321-334X 0009-0005-7413-3468 0000-0002-5879-809X 0000-0003-2271-8710 0000-0001-9481-1696 |
PQID | 2920293158 |
PQPubID | 85416 |
PageCount | 12 |
ParticipantIDs | proquest_journals_2920293158 ieee_primary_10339904 crossref_primary_10_1109_THMS_2023_3332209 crossref_citationtrail_10_1109_THMS_2023_3332209 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-Feb. 2024-2-00 20240201 |
PublicationDateYYYYMMDD | 2024-02-01 |
PublicationDate_xml | – month: 02 year: 2024 text: 2024-Feb. |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on human-machine systems |
PublicationTitleAbbrev | THMS |
PublicationYear | 2024 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 Gardner (ref43) 2006; 7 ref57 ref12 ref56 ref15 Kingma (ref37) 2015 ref59 ref14 ref58 ref53 ref52 ref11 ref10 ref54 ref17 ref16 ref19 ref18 Fan (ref33) 2005; 6 ref51 ref46 ref48 Yuen (ref41) 2009; 1 ref49 Abdulhay (ref40) 2018; 9 Hjorth (ref45) 1975; 31 ref7 ref9 ref4 ref3 ref6 ref5 Kamau (ref50) ref35 ref36 ref31 He (ref55) 2005; 18 ref30 ref32 en (ref42) 2014; 38 ref2 ref1 ref39 ref38 ref71 ref70 ref73 ref72 Robertson (ref8) 2018; 5 Balakrishnama (ref34) 1998; 18 ref24 ref68 ref23 ref67 ref26 ref25 ref69 ref20 ref64 ref63 ref22 ref66 ref21 ref65 Phung (ref47) 2014; 4 ref28 ref27 ref29 Han (ref44) 2009; 147 ref60 ref62 ref61 |
References_xml | – ident: ref26 doi: 10.1109/ICHMS53169.2021.9582641 – ident: ref53 doi: 10.1108/WJE-10-2020-0537 – ident: ref25 doi: 10.1016/j.bspc.2019.101702 – volume: 147 issue: 1 year: 2009 ident: ref44 article-title: Entropy feature extraction on flow pattern of gasliquid two-phase flow based on cross-section measurement publication-title: J. Phys., Conf. Ser. – start-page: 1 volume-title: Proc. Sustain. Res. Innov. Conf. ident: ref50 article-title: Optimal accuracy selection for Gaussian multiclass SVM through optimization of kernel scale and box constraint – ident: ref17 doi: 10.1126/science.278.5340.1135 – ident: ref31 doi: 10.1007/978-3-540-35488-8_13 – ident: ref19 doi: 10.1007/s11760-018-1269-x – ident: ref65 doi: 10.1016/j.bbe.2021.10.001 – volume: 5 start-page: 6 issue: 1 year: 2018 ident: ref8 article-title: Face recognition: Security contexts, super-recognizers, and sophisticated fraud publication-title: J. United States Homeland Defence Secur. Inf. Anal. Center – ident: ref54 doi: 10.1109/ICCV.2017.156 – ident: ref39 doi: 10.1109/TNSRE.2017.2776149 – ident: ref18 doi: 10.1038/nn.2158 – volume: 7 issue: 6 year: 2006 ident: ref43 article-title: One-class novelty detection for seizure analysis from intracranial EEG publication-title: J. Mach. Learn. Res. – ident: ref5 doi: 10.1007/s10919-014-0191-3 – volume: 38 start-page: 1 issue: 3 year: 2014 ident: ref42 article-title: A comparative study on classification of sleep stage based on EEG signals using feature selection and classification algorithms publication-title: J. Med. Syst. – ident: ref69 doi: 10.1016/j.softx.2023.101371 – ident: ref12 doi: 10.1097/00001756-200007140-00050 – ident: ref22 doi: 10.1016/j.neuroimage.2021.117896 – ident: ref15 doi: 10.1016/j.neuropsychologia.2011.05.025 – ident: ref58 doi: 10.1109/ACCESS.2017.2788859 – ident: ref6 doi: 10.1016/j.neuropsychologia.2023.108623 – ident: ref59 doi: 10.1038/71152 – ident: ref52 doi: 10.1142/S0219720005001004 – ident: ref61 doi: 10.1109/cne.2007.369647 – ident: ref4 doi: 10.1037/bul0000310 – ident: ref9 doi: 10.1016/j.neuropsychologia.2013.03.009 – volume: 18 year: 2005 ident: ref55 article-title: Laplacian score for feature selection publication-title: Adv. Neural Inf. Process. Syst. – ident: ref21 doi: 10.1016/j.cortex.2021.03.034 – ident: ref3 doi: 10.1371/journal.pone.0031250 – ident: ref10 doi: 10.1016/j.ijpsycho.2017.07.001 – ident: ref71 doi: 10.1111/bjop.12647 – ident: ref23 doi: 10.1016/j.neuropsychologia.2006.04.015 – ident: ref38 doi: 10.1109/IEMBS.2001.1020545 – volume: 1 issue: 3 year: 2009 ident: ref41 article-title: Classification of human emotions from EEG signals using statistical features and neural network publication-title: Int. J. Integr. Eng. – ident: ref2 doi: 10.1037/a0028584 – ident: ref46 doi: 10.3906/elk-1203-9 – volume: 6 issue: 12 year: 2005 ident: ref33 article-title: Working set selection using second order information for training support vector machines publication-title: J. Mach. Learn. Res. – ident: ref11 doi: 10.1016/j.eswa.2020.113448 – volume: 31 start-page: 3 year: 1975 ident: ref45 article-title: Time domain descriptors and their relation to a particular model for generation of EEG activity publication-title: CEAN-Computerized EEG Anal. – ident: ref7 doi: 10.3390/brainsci11101356 – ident: ref48 doi: 10.1109/TBME.2012.2223698 – ident: ref66 doi: 10.1016/j.jneumeth.2020.109037 – ident: ref63 doi: 10.1002/hbm.23730 – ident: ref72 doi: 10.1109/JBHI.2019.2942429 – ident: ref16 doi: 10.4236/psych.2010.13027 – ident: ref29 doi: 10.1109/TNSRE.2017.2757519 – ident: ref35 doi: 10.1038/nature14539 – ident: ref62 doi: 10.1016/j.compbiomed.2022.105299 – volume: 9 start-page: 1 year: 2018 ident: ref40 article-title: Computer-aided autism diagnosis via second-order difference plot area applied to EEG empirical mode decomposition publication-title: Neural Comput. Appl. – volume: 4 start-page: 413 issue: 1 year: 2014 ident: ref47 article-title: Using shannon entropy as EEG signal feature for fast person identification publication-title: Eur. Symp. Artif. Neural Netw. Assoc. Org. – ident: ref27 doi: 10.1109/NER.2013.6695876 – volume: 18 start-page: 1 year: 1998 ident: ref34 article-title: Linear discriminant analysis-a brief tutorial publication-title: Inst. Signal Inf. Process. – ident: ref70 doi: 10.3758/s13428-021-01541-5 – ident: ref13 doi: 10.1016/j.bpsc.2018.07.015 – ident: ref20 doi: 10.3906/elk-1608-130 – ident: ref24 doi: 10.1016/j.neuropsychologia.2006.04.018 – ident: ref56 doi: 10.1023/A:1025667309714 – ident: ref30 doi: 10.1109/TBME.2010.2048568 – ident: ref64 doi: 10.1088/1741-2552/aace8c – ident: ref36 doi: 10.5555/3104322.3104425 – ident: ref51 doi: 10.1155/2021/3928470 – ident: ref14 doi: 10.1016/j.ijpsycho.2018.07.005 – ident: ref32 doi: 10.1016/j.knosys.2015.08.004 – ident: ref60 doi: 10.1016/S1364-6613(00)01482-0 – ident: ref67 doi: 10.3389/fnins.2020.587520 – ident: ref73 doi: 10.1109/TPAMI.2022.3195549 – ident: ref1 doi: 10.1016/j.eswa.2015.10.047 – ident: ref68 doi: 10.3389/fnins.2012.00055 – ident: ref57 doi: 10.1111/j.2517-6161.1996.tb02080.x – ident: ref28 doi: 10.1109/IJCNN.2008.4634130 – year: 2015 ident: ref37 article-title: Adam: A method for stochastic optimization – ident: ref49 doi: 10.1016/j.eswa.2011.09.093 |
SSID | ssj0000825558 |
Score | 2.448694 |
Snippet | The face recognition of familiar and unfamiliar people is an essential part of our daily lives. However, its neural mechanism and relevant... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 44 |
SubjectTerms | Brain computer interface (BCI) Brain-computer interfaces Classification differential entropy Electroencephalography electroencephalography (EEG) Entropy Face recognition familiar and unfamiliar face classification Feature extraction Feature recognition Filter banks filter-bank Human-computer interface Recall Support vector machines |
Title | EEG-Based Familiar and Unfamiliar Face Classification Using Filter-Bank Differential Entropy Features |
URI | https://ieeexplore.ieee.org/document/10339904 https://www.proquest.com/docview/2920293158 |
Volume | 54 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NS8MwFA-6kx78nDidkoMnobVtkrY5-rE5BHdxg91KmqQwNroxt4P-9b6XdmMoircWEgj8kveR_N77EXLDglwKK3IvCRXzOJhhT8VaeDE691gKbZUjyPbj3pC_jMSoLlZ3tTDWWkc-sz5-urd8M9MrvCqDE87An2L3z13I3Kpirc2FCuY6wulxRmEM6EcyrF8xw0DeDXqvbz5KhfuMwR5G_uGWH3LCKj-ssXMx3UPSXy-uYpZM_NUy9_Xnt76N_179ETmog016X-2OY7JjyxOyv9WC8JTYTufZewBXZqjTwBirBVWlocOyWP92lbbUiWcircghSR3TgHbH-NYO08sJfaqVVsBiTGkH-e_zD4oB5goS-iYZdjuDx55XSy94OpJ86cnIcLSFkGzkWhktJBcF4KdMkugAUgyVstioJEissiwyTBY8VKGC8IEpwQw7I41yVtpzQpURAeOpKFgKoYQxeax4FNq0EFJESZS3SLAGItN1X3KUx5hmLj8JZIbYZYhdVmPXIrebKfOqKcdfg5uIxdbACoYWaa_hzupz-56hdhcEQKFIL36Zdkn2YAiviNtt0lguVvYK4pJlfu324xcIDdwr |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8QwEA6iB_XgW1xdNQdPQmubR9scfey66roXd8FbSZMURKmiuwf99c6kXVkUxVsLCQS-ZB7JN_MRcsSjQkkniyCNNQ8EmOFAJ0YGCTr3REnjtCfIDpLeSFzfy_umWN3XwjjnPPnMhfjp3_Lts5ngVRmccA7-FLt_LoDjl6wu1_q6UsFsR3pFThYngD9TcfOOGUfqZNi7vQtRLDzkHHYxMhBnPJGXVvlhj72T6a6SwXR5NbfkMZyMi9B8fOvc-O_1r5GVJtykp_X-WCdzrtogyzNNCDeJ63QugzNwZpZ6FYwH_Up1ZemoKqe_XW0c9fKZSCzyWFLPNaDdB3xth-nVI71otFbAZjzRDjLgX94phpgTSOm3yKjbGZ73gkZ8ITBMiXGgmBVoDSHdKIy2RiohS0BQ2zQ1ESQZOuOJ1WmUOu04s1yVItaxhgCCa8kt3ybz1XPldgjVVkZcZLLkGQQT1haJFix2WSmVZCkrWiSaApGbpjM5CmQ85T5DiVSO2OWIXd5g1yLHX1Ne6rYcfw3eQixmBtYwtEh7CnfenNy3HNW7IASKZbb7y7RDstgb3vbz_tXgZo8swXBR07jbZH78OnH7EKWMiwO_Nz8BsqHfdQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=EEG-Based+Familiar+and+Unfamiliar+Face+Classification+Using+Filter-Bank+Differential+Entropy+Features&rft.jtitle=IEEE+transactions+on+human-machine+systems&rft.au=Liu%2C+Guoyang&rft.au=Wen%2C+Yiming&rft.au=Hsiao%2C+Janet+H.&rft.au=Zhang%2C+Di&rft.date=2024-02-01&rft.pub=IEEE&rft.issn=2168-2291&rft.volume=54&rft.issue=1&rft.spage=44&rft.epage=55&rft_id=info:doi/10.1109%2FTHMS.2023.3332209&rft.externalDocID=10339904 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2291&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2291&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2291&client=summon |