EEG-Based Familiar and Unfamiliar Face Classification Using Filter-Bank Differential Entropy Features

The face recognition of familiar and unfamiliar people is an essential part of our daily lives. However, its neural mechanism and relevant electroencephalography (EEG) features are still unclear. In this study, a new EEG-based familiar and unfamiliar faces classification method is proposed. We recor...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on human-machine systems Vol. 54; no. 1; pp. 44 - 55
Main Authors Liu, Guoyang, Wen, Yiming, Hsiao, Janet H., Zhang, Di, Tian, Lan, Zhou, Weidong
Format Journal Article
LanguageEnglish
Published New York IEEE 01.02.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The face recognition of familiar and unfamiliar people is an essential part of our daily lives. However, its neural mechanism and relevant electroencephalography (EEG) features are still unclear. In this study, a new EEG-based familiar and unfamiliar faces classification method is proposed. We record the multichannel EEG with three different face-recall paradigms, and these EEG signals are temporally segmented and filtered using a well-designed filter-bank strategy. The filter-bank differential entropy is employed to extract discriminative features. Finally, the support vector machine (SVM) with Gaussian kernels serves as the robust classifier for EEG-based face recognition. In addition, the F-score is employed for feature ranking and selection, which helps to visualize the brain activation in time, frequency, and spatial domains, and contributes to revealing the neural mechanism of face recognition. With feature selection, the highest mean accuracy of 74.10% can be yielded in face-recall paradigms over ten subjects. Meanwhile, the analysis of results indicates that the EEG-based classification performance of face recognition will be significantly affected when subjects lie. The time-frequency topographical maps generated according to feature importance suggest that the delta band in the prefrontal region correlates to the face recognition task, and the brain response pattern varies from person to person. The present work demonstrates the feasibility of developing an efficient and interpretable brain-computer interface for EEG-based face recognition.
AbstractList The face recognition of familiar and unfamiliar people is an essential part of our daily lives. However, its neural mechanism and relevant electroencephalography (EEG) features are still unclear. In this study, a new EEG-based familiar and unfamiliar faces classification method is proposed. We record the multichannel EEG with three different face-recall paradigms, and these EEG signals are temporally segmented and filtered using a well-designed filter-bank strategy. The filter-bank differential entropy is employed to extract discriminative features. Finally, the support vector machine (SVM) with Gaussian kernels serves as the robust classifier for EEG-based face recognition. In addition, the F-score is employed for feature ranking and selection, which helps to visualize the brain activation in time, frequency, and spatial domains, and contributes to revealing the neural mechanism of face recognition. With feature selection, the highest mean accuracy of 74.10% can be yielded in face-recall paradigms over ten subjects. Meanwhile, the analysis of results indicates that the EEG-based classification performance of face recognition will be significantly affected when subjects lie. The time-frequency topographical maps generated according to feature importance suggest that the delta band in the prefrontal region correlates to the face recognition task, and the brain response pattern varies from person to person. The present work demonstrates the feasibility of developing an efficient and interpretable brain-computer interface for EEG-based face recognition.
Author Hsiao, Janet H.
Zhou, Weidong
Wen, Yiming
Tian, Lan
Liu, Guoyang
Zhang, Di
Author_xml – sequence: 1
  givenname: Guoyang
  orcidid: 0000-0002-5879-809X
  surname: Liu
  fullname: Liu, Guoyang
  email: virter1995@outlook.com
  organization: School of Microelectronics, Shandong University, Jinan, China
– sequence: 2
  givenname: Yiming
  orcidid: 0009-0005-7413-3468
  surname: Wen
  fullname: Wen, Yiming
  email: yimingwen@sdu.edu.cn
  organization: School of Microelectronics, Shandong University, Jinan, China
– sequence: 3
  givenname: Janet H.
  orcidid: 0000-0003-2271-8710
  surname: Hsiao
  fullname: Hsiao, Janet H.
  email: jhsiao@hku.hk
  organization: Department of Psychology, State Key Laboratory of Brain and Cognitive Sciences, Institute of Data Science, University of Hong Kong, Hong Kong
– sequence: 4
  givenname: Di
  orcidid: 0009-0000-6233-9956
  surname: Zhang
  fullname: Zhang, Di
  email: sduzhangdi@yeah.net
  organization: School of Microelectronics, Shandong University, Jinan, China
– sequence: 5
  givenname: Lan
  orcidid: 0000-0003-1321-334X
  surname: Tian
  fullname: Tian, Lan
  email: tianlan65@sdu.edu.cn
  organization: School of Microelectronics, Shandong University, Jinan, China
– sequence: 6
  givenname: Weidong
  orcidid: 0000-0001-9481-1696
  surname: Zhou
  fullname: Zhou, Weidong
  email: wdzhou@sdu.edu.cn
  organization: School of Microelectronics, Shandong University, Jinan, China
BookMark eNp9kE1PAjEQhhujiYj8ABMPTTwv9mPLbo-KLJhgPAjnzdidNcWli2058O9dBBLjwbnMTDLPvMlzRc5d65CQG86GnDN9v5i9vA0FE3IopRSC6TPSE3yUJ0IydX6aheaXZBDCinWVC6VU3iM4mUyTRwhY0QLWtrHgKbiKLl19WgswSMcNhGBrayDa1tFlsO6DFraJ6DvcfdInW9fo0UULDZ246NvNjhYIcesxXJOLGpqAg2Pvk2UxWYxnyfx1-jx-mCdG6DQmWlQpVzLP0uzdQGWUTlU9UhyqLDNM5QpyOaogYxkCSlFJXaccOCguJChZyT65O_zd-PZriyGWq3brXRdZCt0J0pKrvLvihyvj2xA81uXG2zX4XclZuRda7oWWe6HlUWjHZH8YY-OPi-jBNv-StwfSIuKvJCm1Zqn8BqWGhC4
CODEN ITHSA6
CitedBy_id crossref_primary_10_1007_s11227_025_07015_1
crossref_primary_10_1007_s13369_024_09894_7
crossref_primary_10_3390_s24237856
crossref_primary_10_1007_s11760_024_03524_3
crossref_primary_10_1109_TCDS_2024_3417534
Cites_doi 10.1109/ICHMS53169.2021.9582641
10.1108/WJE-10-2020-0537
10.1016/j.bspc.2019.101702
10.1126/science.278.5340.1135
10.1007/978-3-540-35488-8_13
10.1007/s11760-018-1269-x
10.1016/j.bbe.2021.10.001
10.1109/ICCV.2017.156
10.1109/TNSRE.2017.2776149
10.1038/nn.2158
10.1007/s10919-014-0191-3
10.1016/j.softx.2023.101371
10.1097/00001756-200007140-00050
10.1016/j.neuroimage.2021.117896
10.1016/j.neuropsychologia.2011.05.025
10.1109/ACCESS.2017.2788859
10.1016/j.neuropsychologia.2023.108623
10.1038/71152
10.1142/S0219720005001004
10.1109/cne.2007.369647
10.1037/bul0000310
10.1016/j.neuropsychologia.2013.03.009
10.1016/j.cortex.2021.03.034
10.1371/journal.pone.0031250
10.1016/j.ijpsycho.2017.07.001
10.1111/bjop.12647
10.1016/j.neuropsychologia.2006.04.015
10.1109/IEMBS.2001.1020545
10.1037/a0028584
10.3906/elk-1203-9
10.1016/j.eswa.2020.113448
10.3390/brainsci11101356
10.1109/TBME.2012.2223698
10.1016/j.jneumeth.2020.109037
10.1002/hbm.23730
10.1109/JBHI.2019.2942429
10.4236/psych.2010.13027
10.1109/TNSRE.2017.2757519
10.1038/nature14539
10.1016/j.compbiomed.2022.105299
10.1109/NER.2013.6695876
10.3758/s13428-021-01541-5
10.1016/j.bpsc.2018.07.015
10.3906/elk-1608-130
10.1016/j.neuropsychologia.2006.04.018
10.1023/A:1025667309714
10.1109/TBME.2010.2048568
10.1088/1741-2552/aace8c
10.5555/3104322.3104425
10.1155/2021/3928470
10.1016/j.ijpsycho.2018.07.005
10.1016/j.knosys.2015.08.004
10.1016/S1364-6613(00)01482-0
10.3389/fnins.2020.587520
10.1109/TPAMI.2022.3195549
10.1016/j.eswa.2015.10.047
10.3389/fnins.2012.00055
10.1111/j.2517-6161.1996.tb02080.x
10.1109/IJCNN.2008.4634130
10.1016/j.eswa.2011.09.093
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
7TB
8FD
FR3
JQ2
L7M
L~C
L~D
DOI 10.1109/THMS.2023.3332209
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2168-2305
EndPage 55
ExternalDocumentID 10_1109_THMS_2023_3332209
10339904
Genre orig-research
GrantInformation_xml – fundername: Natural Science Foundation of Shandong Province
  grantid: ZR2020LZH009; ZR2021ZD40; ZR2021MF065
  funderid: 10.13039/501100007129
– fundername: National Natural Science Foundation of China
  grantid: 62271291
  funderid: 10.13039/501100001809
GroupedDBID 0R~
4.4
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
AENEX
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
HZ~
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
RIG
7SC
7SP
7TB
8FD
FR3
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c294t-92d41538747bcadc5945f651ad77c0585a836da707eae32d39f41a1a5123a53d3
IEDL.DBID RIE
ISSN 2168-2291
IngestDate Mon Jun 30 06:29:20 EDT 2025
Tue Jul 01 03:01:00 EDT 2025
Thu Apr 24 22:54:16 EDT 2025
Wed Aug 27 02:02:12 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c294t-92d41538747bcadc5945f651ad77c0585a836da707eae32d39f41a1a5123a53d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0009-0000-6233-9956
0000-0003-1321-334X
0009-0005-7413-3468
0000-0002-5879-809X
0000-0003-2271-8710
0000-0001-9481-1696
PQID 2920293158
PQPubID 85416
PageCount 12
ParticipantIDs proquest_journals_2920293158
ieee_primary_10339904
crossref_primary_10_1109_THMS_2023_3332209
crossref_citationtrail_10_1109_THMS_2023_3332209
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-Feb.
2024-2-00
20240201
PublicationDateYYYYMMDD 2024-02-01
PublicationDate_xml – month: 02
  year: 2024
  text: 2024-Feb.
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on human-machine systems
PublicationTitleAbbrev THMS
PublicationYear 2024
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
Gardner (ref43) 2006; 7
ref57
ref12
ref56
ref15
Kingma (ref37) 2015
ref59
ref14
ref58
ref53
ref52
ref11
ref10
ref54
ref17
ref16
ref19
ref18
Fan (ref33) 2005; 6
ref51
ref46
ref48
Yuen (ref41) 2009; 1
ref49
Abdulhay (ref40) 2018; 9
Hjorth (ref45) 1975; 31
ref7
ref9
ref4
ref3
ref6
ref5
Kamau (ref50)
ref35
ref36
ref31
He (ref55) 2005; 18
ref30
ref32
en (ref42) 2014; 38
ref2
ref1
ref39
ref38
ref71
ref70
ref73
ref72
Robertson (ref8) 2018; 5
Balakrishnama (ref34) 1998; 18
ref24
ref68
ref23
ref67
ref26
ref25
ref69
ref20
ref64
ref63
ref22
ref66
ref21
ref65
Phung (ref47) 2014; 4
ref28
ref27
ref29
Han (ref44) 2009; 147
ref60
ref62
ref61
References_xml – ident: ref26
  doi: 10.1109/ICHMS53169.2021.9582641
– ident: ref53
  doi: 10.1108/WJE-10-2020-0537
– ident: ref25
  doi: 10.1016/j.bspc.2019.101702
– volume: 147
  issue: 1
  year: 2009
  ident: ref44
  article-title: Entropy feature extraction on flow pattern of gasliquid two-phase flow based on cross-section measurement
  publication-title: J. Phys., Conf. Ser.
– start-page: 1
  volume-title: Proc. Sustain. Res. Innov. Conf.
  ident: ref50
  article-title: Optimal accuracy selection for Gaussian multiclass SVM through optimization of kernel scale and box constraint
– ident: ref17
  doi: 10.1126/science.278.5340.1135
– ident: ref31
  doi: 10.1007/978-3-540-35488-8_13
– ident: ref19
  doi: 10.1007/s11760-018-1269-x
– ident: ref65
  doi: 10.1016/j.bbe.2021.10.001
– volume: 5
  start-page: 6
  issue: 1
  year: 2018
  ident: ref8
  article-title: Face recognition: Security contexts, super-recognizers, and sophisticated fraud
  publication-title: J. United States Homeland Defence Secur. Inf. Anal. Center
– ident: ref54
  doi: 10.1109/ICCV.2017.156
– ident: ref39
  doi: 10.1109/TNSRE.2017.2776149
– ident: ref18
  doi: 10.1038/nn.2158
– volume: 7
  issue: 6
  year: 2006
  ident: ref43
  article-title: One-class novelty detection for seizure analysis from intracranial EEG
  publication-title: J. Mach. Learn. Res.
– ident: ref5
  doi: 10.1007/s10919-014-0191-3
– volume: 38
  start-page: 1
  issue: 3
  year: 2014
  ident: ref42
  article-title: A comparative study on classification of sleep stage based on EEG signals using feature selection and classification algorithms
  publication-title: J. Med. Syst.
– ident: ref69
  doi: 10.1016/j.softx.2023.101371
– ident: ref12
  doi: 10.1097/00001756-200007140-00050
– ident: ref22
  doi: 10.1016/j.neuroimage.2021.117896
– ident: ref15
  doi: 10.1016/j.neuropsychologia.2011.05.025
– ident: ref58
  doi: 10.1109/ACCESS.2017.2788859
– ident: ref6
  doi: 10.1016/j.neuropsychologia.2023.108623
– ident: ref59
  doi: 10.1038/71152
– ident: ref52
  doi: 10.1142/S0219720005001004
– ident: ref61
  doi: 10.1109/cne.2007.369647
– ident: ref4
  doi: 10.1037/bul0000310
– ident: ref9
  doi: 10.1016/j.neuropsychologia.2013.03.009
– volume: 18
  year: 2005
  ident: ref55
  article-title: Laplacian score for feature selection
  publication-title: Adv. Neural Inf. Process. Syst.
– ident: ref21
  doi: 10.1016/j.cortex.2021.03.034
– ident: ref3
  doi: 10.1371/journal.pone.0031250
– ident: ref10
  doi: 10.1016/j.ijpsycho.2017.07.001
– ident: ref71
  doi: 10.1111/bjop.12647
– ident: ref23
  doi: 10.1016/j.neuropsychologia.2006.04.015
– ident: ref38
  doi: 10.1109/IEMBS.2001.1020545
– volume: 1
  issue: 3
  year: 2009
  ident: ref41
  article-title: Classification of human emotions from EEG signals using statistical features and neural network
  publication-title: Int. J. Integr. Eng.
– ident: ref2
  doi: 10.1037/a0028584
– ident: ref46
  doi: 10.3906/elk-1203-9
– volume: 6
  issue: 12
  year: 2005
  ident: ref33
  article-title: Working set selection using second order information for training support vector machines
  publication-title: J. Mach. Learn. Res.
– ident: ref11
  doi: 10.1016/j.eswa.2020.113448
– volume: 31
  start-page: 3
  year: 1975
  ident: ref45
  article-title: Time domain descriptors and their relation to a particular model for generation of EEG activity
  publication-title: CEAN-Computerized EEG Anal.
– ident: ref7
  doi: 10.3390/brainsci11101356
– ident: ref48
  doi: 10.1109/TBME.2012.2223698
– ident: ref66
  doi: 10.1016/j.jneumeth.2020.109037
– ident: ref63
  doi: 10.1002/hbm.23730
– ident: ref72
  doi: 10.1109/JBHI.2019.2942429
– ident: ref16
  doi: 10.4236/psych.2010.13027
– ident: ref29
  doi: 10.1109/TNSRE.2017.2757519
– ident: ref35
  doi: 10.1038/nature14539
– ident: ref62
  doi: 10.1016/j.compbiomed.2022.105299
– volume: 9
  start-page: 1
  year: 2018
  ident: ref40
  article-title: Computer-aided autism diagnosis via second-order difference plot area applied to EEG empirical mode decomposition
  publication-title: Neural Comput. Appl.
– volume: 4
  start-page: 413
  issue: 1
  year: 2014
  ident: ref47
  article-title: Using shannon entropy as EEG signal feature for fast person identification
  publication-title: Eur. Symp. Artif. Neural Netw. Assoc. Org.
– ident: ref27
  doi: 10.1109/NER.2013.6695876
– volume: 18
  start-page: 1
  year: 1998
  ident: ref34
  article-title: Linear discriminant analysis-a brief tutorial
  publication-title: Inst. Signal Inf. Process.
– ident: ref70
  doi: 10.3758/s13428-021-01541-5
– ident: ref13
  doi: 10.1016/j.bpsc.2018.07.015
– ident: ref20
  doi: 10.3906/elk-1608-130
– ident: ref24
  doi: 10.1016/j.neuropsychologia.2006.04.018
– ident: ref56
  doi: 10.1023/A:1025667309714
– ident: ref30
  doi: 10.1109/TBME.2010.2048568
– ident: ref64
  doi: 10.1088/1741-2552/aace8c
– ident: ref36
  doi: 10.5555/3104322.3104425
– ident: ref51
  doi: 10.1155/2021/3928470
– ident: ref14
  doi: 10.1016/j.ijpsycho.2018.07.005
– ident: ref32
  doi: 10.1016/j.knosys.2015.08.004
– ident: ref60
  doi: 10.1016/S1364-6613(00)01482-0
– ident: ref67
  doi: 10.3389/fnins.2020.587520
– ident: ref73
  doi: 10.1109/TPAMI.2022.3195549
– ident: ref1
  doi: 10.1016/j.eswa.2015.10.047
– ident: ref68
  doi: 10.3389/fnins.2012.00055
– ident: ref57
  doi: 10.1111/j.2517-6161.1996.tb02080.x
– ident: ref28
  doi: 10.1109/IJCNN.2008.4634130
– year: 2015
  ident: ref37
  article-title: Adam: A method for stochastic optimization
– ident: ref49
  doi: 10.1016/j.eswa.2011.09.093
SSID ssj0000825558
Score 2.448694
Snippet The face recognition of familiar and unfamiliar people is an essential part of our daily lives. However, its neural mechanism and relevant...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 44
SubjectTerms Brain computer interface (BCI)
Brain-computer interfaces
Classification
differential entropy
Electroencephalography
electroencephalography (EEG)
Entropy
Face recognition
familiar and unfamiliar face classification
Feature extraction
Feature recognition
Filter banks
filter-bank
Human-computer interface
Recall
Support vector machines
Title EEG-Based Familiar and Unfamiliar Face Classification Using Filter-Bank Differential Entropy Features
URI https://ieeexplore.ieee.org/document/10339904
https://www.proquest.com/docview/2920293158
Volume 54
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NS8MwFA-6kx78nDidkoMnobVtkrY5-rE5BHdxg91KmqQwNroxt4P-9b6XdmMoircWEgj8kveR_N77EXLDglwKK3IvCRXzOJhhT8VaeDE691gKbZUjyPbj3pC_jMSoLlZ3tTDWWkc-sz5-urd8M9MrvCqDE87An2L3z13I3Kpirc2FCuY6wulxRmEM6EcyrF8xw0DeDXqvbz5KhfuMwR5G_uGWH3LCKj-ssXMx3UPSXy-uYpZM_NUy9_Xnt76N_179ETmog016X-2OY7JjyxOyv9WC8JTYTufZewBXZqjTwBirBVWlocOyWP92lbbUiWcircghSR3TgHbH-NYO08sJfaqVVsBiTGkH-e_zD4oB5goS-iYZdjuDx55XSy94OpJ86cnIcLSFkGzkWhktJBcF4KdMkugAUgyVstioJEissiwyTBY8VKGC8IEpwQw7I41yVtpzQpURAeOpKFgKoYQxeax4FNq0EFJESZS3SLAGItN1X3KUx5hmLj8JZIbYZYhdVmPXIrebKfOqKcdfg5uIxdbACoYWaa_hzupz-56hdhcEQKFIL36Zdkn2YAiviNtt0lguVvYK4pJlfu324xcIDdwr
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8QwEA6iB_XgW1xdNQdPQmubR9scfey66roXd8FbSZMURKmiuwf99c6kXVkUxVsLCQS-ZB7JN_MRcsSjQkkniyCNNQ8EmOFAJ0YGCTr3REnjtCfIDpLeSFzfy_umWN3XwjjnPPnMhfjp3_Lts5ngVRmccA7-FLt_LoDjl6wu1_q6UsFsR3pFThYngD9TcfOOGUfqZNi7vQtRLDzkHHYxMhBnPJGXVvlhj72T6a6SwXR5NbfkMZyMi9B8fOvc-O_1r5GVJtykp_X-WCdzrtogyzNNCDeJ63QugzNwZpZ6FYwH_Up1ZemoKqe_XW0c9fKZSCzyWFLPNaDdB3xth-nVI71otFbAZjzRDjLgX94phpgTSOm3yKjbGZ73gkZ8ITBMiXGgmBVoDSHdKIy2RiohS0BQ2zQ1ESQZOuOJ1WmUOu04s1yVItaxhgCCa8kt3ybz1XPldgjVVkZcZLLkGQQT1haJFix2WSmVZCkrWiSaApGbpjM5CmQ85T5DiVSO2OWIXd5g1yLHX1Ne6rYcfw3eQixmBtYwtEh7CnfenNy3HNW7IASKZbb7y7RDstgb3vbz_tXgZo8swXBR07jbZH78OnH7EKWMiwO_Nz8BsqHfdQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=EEG-Based+Familiar+and+Unfamiliar+Face+Classification+Using+Filter-Bank+Differential+Entropy+Features&rft.jtitle=IEEE+transactions+on+human-machine+systems&rft.au=Liu%2C+Guoyang&rft.au=Wen%2C+Yiming&rft.au=Hsiao%2C+Janet+H.&rft.au=Zhang%2C+Di&rft.date=2024-02-01&rft.pub=IEEE&rft.issn=2168-2291&rft.volume=54&rft.issue=1&rft.spage=44&rft.epage=55&rft_id=info:doi/10.1109%2FTHMS.2023.3332209&rft.externalDocID=10339904
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2291&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2291&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2291&client=summon