Accuracy of IGBT Junction Temperature Prediction: An Improved Sailfish Algorithm to Optimize Support Vector Machine
This study improves the accuracy of junction temperature prediction, as the insulated gate bipolar transistor (IGBT) reliability is important for the safe operation of its working system due to junction temperature is limited in its actual performance and reliability. A model based on an improved sa...
Saved in:
Published in | IEEE transactions on power electronics Vol. 39; no. 6; pp. 6864 - 6876 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.06.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This study improves the accuracy of junction temperature prediction, as the insulated gate bipolar transistor (IGBT) reliability is important for the safe operation of its working system due to junction temperature is limited in its actual performance and reliability. A model based on an improved sailfish optimization algorithm to optimize support vector machine (ISFO-SVM) is proposed to solve the problem that the junction temperature prediction accuracy is not high enough. The proposed algorithm is improved by adaptive nonlinear iterative factor, Le'vy flight and differential mutation strategy to optimize the support vector machine (SVM) internal parameters to predict junction temperature. The results indicate that ISFO-SVM performs better under the same evaluation indexes. The root mean squared error average value decreased by 67.189%, and the mean absolute percentage error average value decreased by 63.189%, compared with the sailfish optimization algorithm to optimize the SVM. The prediction error of ISFO-SVM is smaller and the error value is in the [−5 °C, 5 °C] range accounting for 98.270% of the total test samples. ISFO-SVM has a higher fitting degree than the actual junction temperature and the R2 has reached 99.660%. The model predicts the junction temperature of IGBT modules and provides scientific guidance for system reliability evaluation to maintain safe and stable operation effectively. |
---|---|
AbstractList | This study improves the accuracy of junction temperature prediction, as the insulated gate bipolar transistor (IGBT) reliability is important for the safe operation of its working system due to junction temperature is limited in its actual performance and reliability. A model based on an improved sailfish optimization algorithm to optimize support vector machine (ISFO-SVM) is proposed to solve the problem that the junction temperature prediction accuracy is not high enough. The proposed algorithm is improved by adaptive nonlinear iterative factor, Le'vy flight and differential mutation strategy to optimize the support vector machine (SVM) internal parameters to predict junction temperature. The results indicate that ISFO-SVM performs better under the same evaluation indexes. The root mean squared error average value decreased by 67.189%, and the mean absolute percentage error average value decreased by 63.189%, compared with the sailfish optimization algorithm to optimize the SVM. The prediction error of ISFO-SVM is smaller and the error value is in the [−5 °C, 5 °C] range accounting for 98.270% of the total test samples. ISFO-SVM has a higher fitting degree than the actual junction temperature and the R2 has reached 99.660%. The model predicts the junction temperature of IGBT modules and provides scientific guidance for system reliability evaluation to maintain safe and stable operation effectively. |
Author | Lim, Ming K. Tseng, Ming-Lang Liu, Jiaqi Li, Lingling |
Author_xml | – sequence: 1 givenname: Lingling orcidid: 0000-0003-3919-8539 surname: Li fullname: Li, Lingling email: lilingling@.hebut.edu.cn organization: State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin, China – sequence: 2 givenname: Jiaqi orcidid: 0000-0002-4632-5914 surname: Liu fullname: Liu, Jiaqi email: 201921401082@stu.hebut.edu.cn organization: State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin, China – sequence: 3 givenname: Ming-Lang orcidid: 0000-0002-2702-3590 surname: Tseng fullname: Tseng, Ming-Lang email: tsengminglang@gmail.com organization: Institute of Innovation and Circular Economy, Asia University, Taichung, Taiwan – sequence: 4 givenname: Ming K. orcidid: 0000-0003-0809-9431 surname: Lim fullname: Lim, Ming K. email: ming.lim@glasgow.ac.uk organization: Adam Smith Business School, University of Glasgow, Glasgow, U.K |
BookMark | eNp9kFFLwzAUhYNMcFN_gOBDwOfOpE2Wxrc55pxMFDZ9LWl24zLWpqapMH-9rfNBfPDpwuV8955zBqhXuhIQuqBkSCmR16vn6WIYk5gNk0SQkSRHqE8loxGhRPRQn6Qpj1IpkxM0qOstIZRxQvuoHmvdeKX32Bk8n92u8ENT6mBdiVdQVOBVaDzgZw9r-72-weMSz4vKuw9Y46WyO2PrDR7v3py3YVPg4PBTFWxhPwEvm6pyPuBX0MF5_Kj0xpZwho6N2tVw_jNP0cvddDW5jxZPs_lkvIh0LFmIJNUmBkVjxkSstFC5SBMWG0GM5mmecy4BGDMm5TJnLJdqJLXUWjCesFyr5BRdHe62Zt8bqEO2dY0v25dZQhjlhJNEtCpxUGnv6tqDybQNqosafJsuoyTrGs66hrOu4eyn4Zakf8jK20L5_b_M5YGxAPBLz0a0s_MFrGqJ6A |
CODEN | ITPEE8 |
CitedBy_id | crossref_primary_10_1016_j_jocs_2024_102436 crossref_primary_10_1002_cta_4391 crossref_primary_10_1080_10589759_2024_2378908 |
Cites_doi | 10.1109/TPEL.2023.3274126 10.1109/TED.2021.3061517 10.1109/ACCESS.2020.2991543 10.1109/TPEL.2015.2418711 10.1016/j.asoc.2023.111087 10.1016/j.energy.2021.121407 10.1109/TPEL.2019.2895695 10.1109/ECCE.2016.7854953 10.1109/ESTS49166.2021.9512370 10.1016/j.ijepes.2021.107057 10.1016/j.engappai.2019.01.001 10.1109/tie.2023.3342316 10.1016/j.knosys.2015.07.006 10.1016/j.egyr.2020.11.007 10.1109/TKDE.2021.3079836 10.1109/TPEL.2023.3254899 10.1109/TPEL.2023.3314738 10.1016/j.microrel.2021.114267 10.1109/TIE.2023.3270542 10.1109/ACEPT.2017.8168600 10.1109/TPEL.2023.3286096 10.1109/TPEL.2021.3054336 10.1016/j.jclepro.2018.09.143 10.5267/j.ijiec.2019.4.002 10.1016/j.eswa.2023.121406 10.1109/TIE.2019.2898600 10.1109/JESTPE.2022.3231718 10.1109/ACCESS.2019.2909928 10.1007/s00521-017-3228-9 10.1109/TIA.2020.3030753 10.1007/s10586-018-2360-3 10.1109/TPEL.2020.3042495 10.1002/tee.23285 10.1016/j.asoc.2019.02.035 10.1109/tie.2020.3022526 10.1109/TPEL.2023.3237771 10.1109/TIE.2018.2854568 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
DBID | 97E RIA RIE AAYXX CITATION 7SP 7TB 8FD FR3 JQ2 KR7 L7M |
DOI | 10.1109/TPEL.2024.3370690 |
DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Engineering Research Database Advanced Technologies Database with Aerospace |
DatabaseTitleList | Civil Engineering Abstracts |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1941-0107 |
EndPage | 6876 |
ExternalDocumentID | 10_1109_TPEL_2024_3370690 10461050 |
Genre | orig-research |
GrantInformation_xml | – fundername: Ministry of Education of the People's Republic of China grantid: HZKY20220242 funderid: 10.13039/501100002338 – fundername: S&T Program of Hebei grantid: 21567605H; 225676163GH |
GroupedDBID | -~X 0R~ 29I 3EH 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABFSI ABQJQ ABVLG ACGFO ACGFS ACIWK ACKIV AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BKOMP BPEOZ CS3 DU5 E.L EBS EJD HZ~ H~9 ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P PQQKQ RIA RIE RNS RXW TAE TAF TN5 VH1 VJK AAYXX CITATION RIG 7SP 7TB 8FD FR3 JQ2 KR7 L7M |
ID | FETCH-LOGICAL-c294t-91cf2ea124472ac7ab78342f70fc58bb559ee44ff859b44b9a69c9cc74534bca3 |
IEDL.DBID | RIE |
ISSN | 0885-8993 |
IngestDate | Sun Jun 29 15:19:39 EDT 2025 Thu Apr 24 23:03:46 EDT 2025 Tue Jul 01 02:39:40 EDT 2025 Wed Aug 27 02:09:07 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c294t-91cf2ea124472ac7ab78342f70fc58bb559ee44ff859b44b9a69c9cc74534bca3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-3919-8539 0000-0002-2702-3590 0000-0002-4632-5914 0000-0003-0809-9431 |
PQID | 3041505037 |
PQPubID | 37080 |
PageCount | 13 |
ParticipantIDs | proquest_journals_3041505037 crossref_citationtrail_10_1109_TPEL_2024_3370690 ieee_primary_10461050 crossref_primary_10_1109_TPEL_2024_3370690 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-06-01 |
PublicationDateYYYYMMDD | 2024-06-01 |
PublicationDate_xml | – month: 06 year: 2024 text: 2024-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on power electronics |
PublicationTitleAbbrev | TPEL |
PublicationYear | 2024 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref35 ref12 ref34 ref15 ref37 ref14 ref36 ref31 ref30 ref11 ref33 ref10 ref32 ref2 ref1 ref17 ref16 ref19 ref18 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 |
References_xml | – ident: ref25 doi: 10.1109/TPEL.2023.3274126 – ident: ref2 doi: 10.1109/TED.2021.3061517 – ident: ref33 doi: 10.1109/ACCESS.2020.2991543 – ident: ref10 doi: 10.1109/TPEL.2015.2418711 – ident: ref27 doi: 10.1016/j.asoc.2023.111087 – ident: ref34 doi: 10.1016/j.energy.2021.121407 – ident: ref8 doi: 10.1109/TPEL.2019.2895695 – ident: ref12 doi: 10.1109/ECCE.2016.7854953 – ident: ref15 doi: 10.1109/ESTS49166.2021.9512370 – ident: ref17 doi: 10.1016/j.ijepes.2021.107057 – ident: ref31 doi: 10.1016/j.engappai.2019.01.001 – ident: ref18 doi: 10.1109/tie.2023.3342316 – ident: ref35 doi: 10.1016/j.knosys.2015.07.006 – ident: ref28 doi: 10.1016/j.egyr.2020.11.007 – ident: ref26 doi: 10.1109/TKDE.2021.3079836 – ident: ref23 doi: 10.1109/TPEL.2023.3254899 – ident: ref9 doi: 10.1109/TPEL.2023.3314738 – ident: ref24 doi: 10.1016/j.microrel.2021.114267 – ident: ref21 doi: 10.1109/TIE.2023.3270542 – ident: ref11 doi: 10.1109/ACEPT.2017.8168600 – ident: ref16 doi: 10.1109/TPEL.2023.3286096 – ident: ref20 doi: 10.1109/TPEL.2021.3054336 – ident: ref30 doi: 10.1016/j.jclepro.2018.09.143 – ident: ref32 doi: 10.5267/j.ijiec.2019.4.002 – ident: ref3 doi: 10.1016/j.eswa.2023.121406 – ident: ref13 doi: 10.1109/TIE.2019.2898600 – ident: ref19 doi: 10.1109/JESTPE.2022.3231718 – ident: ref14 doi: 10.1109/ACCESS.2019.2909928 – ident: ref36 doi: 10.1007/s00521-017-3228-9 – ident: ref1 doi: 10.1109/TIA.2020.3030753 – ident: ref37 doi: 10.1007/s10586-018-2360-3 – ident: ref4 doi: 10.1109/TPEL.2020.3042495 – ident: ref5 doi: 10.1002/tee.23285 – ident: ref29 doi: 10.1016/j.asoc.2019.02.035 – ident: ref22 doi: 10.1109/tie.2020.3022526 – ident: ref7 doi: 10.1109/TPEL.2023.3237771 – ident: ref6 doi: 10.1109/TIE.2018.2854568 |
SSID | ssj0014501 |
Score | 2.5048683 |
Snippet | This study improves the accuracy of junction temperature prediction, as the insulated gate bipolar transistor (IGBT) reliability is important for the safe... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 6864 |
SubjectTerms | Accuracy Algorithms Errors Improved sailfish optimization algorithm insulated gate bipolar transistor Insulated gate bipolar transistors junction temperature prediction Junctions Optimization Optimization algorithms Performance indices Prediction algorithms Predictive models Reliability Reliability analysis Semiconductor devices support vector machine (SVM) Support vector machines System reliability Temperature measurement Temperature sensors |
Title | Accuracy of IGBT Junction Temperature Prediction: An Improved Sailfish Algorithm to Optimize Support Vector Machine |
URI | https://ieeexplore.ieee.org/document/10461050 https://www.proquest.com/docview/3041505037 |
Volume | 39 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NbxMxELUgJzhQCkWEhsoHTkhJdv2RzfYWUNJQQahEgnpb2bPjNiLJVsnmQH49Hu8mKkUgbquVbVl6HnueZ_yGsXdxmsQidt5z82yhrfI89jaHnri6RFjSf0IIWb6T3nimLq_1df1YPbyFQcSQfIYd-gyx_LyALV2VdeOgDk4M_bFnbtVjrUPIQOlQ69hbjW57EiHrEGYcpd3p1fCzp4JCdaRMSJr3t0MoVFX5YysO58voiE32M6vSSn50tqXtwO6BaON_T_05e1Z7mnxQLY1j9ghXL9jTe_qDL9lmALBdG_jJC8c_XXyY8kt_zBFUfIren670lvnVmqI59PucD1a8uofAnH8z84Wbb275YHFTrOfl7ZKXBf_qN6HlfIecCoZ6555_D4EB_iWkbeIJm42G04_jdl2FoQ0iVaXfDcEJNOQHJMJAYizV5hAuiRzovrWekiAq5Vxfp1Ypm5peCilAorRUFox8xRqrYoWvGY-MFs4jghakAm0tRLmRoE0uctnTqsmiPSwZ1BLlVCljkQWqEqUZIZkRklmNZJO9P3S5q_Q5_tX4hJC517ACpclae_Cz2oQ3mSTxAlLLSd78pdspe0KjV4ljLdYo11t8612U0p6FpfkL_Xvh3A |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NTxsxELUqOLQ9FEqpSAvUh56QEnb9kWW5BQQNNKRIXSpuK3t2XKKGbJVsDvDr8Xg3CKiKuK1Wtmzp2Z55nvEbxr7GaRKL2HnPzbOFtiqK2O859MTVJcKS_hNCyPIddvsX6vRSXzaP1cNbGEQMyWfYoc8Qyy9KmNNV2W4c1MGJoS97w6_j-rnWfdBA6VDt2O8b3fY0QjZBzDhKd7Pzo4Eng0J1pExInPeRGQp1Vf45jIOFOV5hw8Xc6sSSP515ZTtw-0S28cWTX2XvGl-T9-rF8Z69wskae_tAgfADm_UA5lMDN7x0_OTbQcZPvaEjsHiG3qOuFZf5-ZTiOfR7n_cmvL6JwIL_NKOxG82ueG_8u5yOqqtrXpX8hz-Grke3yKlkqHfv-a8QGuBnIXET19nF8VF22G83dRjaIFJV-fMQnEBDnkAiDCTGUnUO4ZLIgd6z1pMSRKWc29OpVcqmpptCCpAoLZUFIz-ypUk5wQ3GI6OF84igBalAWwtRYSRoU4hCdrVqsWgBSw6NSDnVyhjngaxEaU5I5oRk3iDZYjv3Xf7WCh3PNV4nZB40rEFpsc0F-HmziWe5JPkC0stJPv2n2xf2up-dDfLByfD7Z_aGRqrTyDbZUjWd45Z3WCq7HZbpHewo5SU |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Accuracy+of+IGBT+Junction+Temperature+Prediction%3A+An+Improved+Sailfish+Algorithm+to+Optimize+Support+Vector+Machine&rft.jtitle=IEEE+transactions+on+power+electronics&rft.au=Li%2C+Lingling&rft.au=Liu%2C+Jiaqi&rft.au=Tseng%2C+Ming-Lang&rft.au=Lim%2C+Ming+K.&rft.date=2024-06-01&rft.pub=IEEE&rft.issn=0885-8993&rft.volume=39&rft.issue=6&rft.spage=6864&rft.epage=6876&rft_id=info:doi/10.1109%2FTPEL.2024.3370690&rft.externalDocID=10461050 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0885-8993&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0885-8993&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0885-8993&client=summon |