Accuracy of IGBT Junction Temperature Prediction: An Improved Sailfish Algorithm to Optimize Support Vector Machine

This study improves the accuracy of junction temperature prediction, as the insulated gate bipolar transistor (IGBT) reliability is important for the safe operation of its working system due to junction temperature is limited in its actual performance and reliability. A model based on an improved sa...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on power electronics Vol. 39; no. 6; pp. 6864 - 6876
Main Authors Li, Lingling, Liu, Jiaqi, Tseng, Ming-Lang, Lim, Ming K.
Format Journal Article
LanguageEnglish
Published New York IEEE 01.06.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This study improves the accuracy of junction temperature prediction, as the insulated gate bipolar transistor (IGBT) reliability is important for the safe operation of its working system due to junction temperature is limited in its actual performance and reliability. A model based on an improved sailfish optimization algorithm to optimize support vector machine (ISFO-SVM) is proposed to solve the problem that the junction temperature prediction accuracy is not high enough. The proposed algorithm is improved by adaptive nonlinear iterative factor, Le'vy flight and differential mutation strategy to optimize the support vector machine (SVM) internal parameters to predict junction temperature. The results indicate that ISFO-SVM performs better under the same evaluation indexes. The root mean squared error average value decreased by 67.189%, and the mean absolute percentage error average value decreased by 63.189%, compared with the sailfish optimization algorithm to optimize the SVM. The prediction error of ISFO-SVM is smaller and the error value is in the [−5 °C, 5 °C] range accounting for 98.270% of the total test samples. ISFO-SVM has a higher fitting degree than the actual junction temperature and the R2 has reached 99.660%. The model predicts the junction temperature of IGBT modules and provides scientific guidance for system reliability evaluation to maintain safe and stable operation effectively.
AbstractList This study improves the accuracy of junction temperature prediction, as the insulated gate bipolar transistor (IGBT) reliability is important for the safe operation of its working system due to junction temperature is limited in its actual performance and reliability. A model based on an improved sailfish optimization algorithm to optimize support vector machine (ISFO-SVM) is proposed to solve the problem that the junction temperature prediction accuracy is not high enough. The proposed algorithm is improved by adaptive nonlinear iterative factor, Le'vy flight and differential mutation strategy to optimize the support vector machine (SVM) internal parameters to predict junction temperature. The results indicate that ISFO-SVM performs better under the same evaluation indexes. The root mean squared error average value decreased by 67.189%, and the mean absolute percentage error average value decreased by 63.189%, compared with the sailfish optimization algorithm to optimize the SVM. The prediction error of ISFO-SVM is smaller and the error value is in the [−5 °C, 5 °C] range accounting for 98.270% of the total test samples. ISFO-SVM has a higher fitting degree than the actual junction temperature and the R2 has reached 99.660%. The model predicts the junction temperature of IGBT modules and provides scientific guidance for system reliability evaluation to maintain safe and stable operation effectively.
Author Lim, Ming K.
Tseng, Ming-Lang
Liu, Jiaqi
Li, Lingling
Author_xml – sequence: 1
  givenname: Lingling
  orcidid: 0000-0003-3919-8539
  surname: Li
  fullname: Li, Lingling
  email: lilingling@.hebut.edu.cn
  organization: State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin, China
– sequence: 2
  givenname: Jiaqi
  orcidid: 0000-0002-4632-5914
  surname: Liu
  fullname: Liu, Jiaqi
  email: 201921401082@stu.hebut.edu.cn
  organization: State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin, China
– sequence: 3
  givenname: Ming-Lang
  orcidid: 0000-0002-2702-3590
  surname: Tseng
  fullname: Tseng, Ming-Lang
  email: tsengminglang@gmail.com
  organization: Institute of Innovation and Circular Economy, Asia University, Taichung, Taiwan
– sequence: 4
  givenname: Ming K.
  orcidid: 0000-0003-0809-9431
  surname: Lim
  fullname: Lim, Ming K.
  email: ming.lim@glasgow.ac.uk
  organization: Adam Smith Business School, University of Glasgow, Glasgow, U.K
BookMark eNp9kFFLwzAUhYNMcFN_gOBDwOfOpE2Wxrc55pxMFDZ9LWl24zLWpqapMH-9rfNBfPDpwuV8955zBqhXuhIQuqBkSCmR16vn6WIYk5gNk0SQkSRHqE8loxGhRPRQn6Qpj1IpkxM0qOstIZRxQvuoHmvdeKX32Bk8n92u8ENT6mBdiVdQVOBVaDzgZw9r-72-weMSz4vKuw9Y46WyO2PrDR7v3py3YVPg4PBTFWxhPwEvm6pyPuBX0MF5_Kj0xpZwho6N2tVw_jNP0cvddDW5jxZPs_lkvIh0LFmIJNUmBkVjxkSstFC5SBMWG0GM5mmecy4BGDMm5TJnLJdqJLXUWjCesFyr5BRdHe62Zt8bqEO2dY0v25dZQhjlhJNEtCpxUGnv6tqDybQNqosafJsuoyTrGs66hrOu4eyn4Zakf8jK20L5_b_M5YGxAPBLz0a0s_MFrGqJ6A
CODEN ITPEE8
CitedBy_id crossref_primary_10_1016_j_jocs_2024_102436
crossref_primary_10_1002_cta_4391
crossref_primary_10_1080_10589759_2024_2378908
Cites_doi 10.1109/TPEL.2023.3274126
10.1109/TED.2021.3061517
10.1109/ACCESS.2020.2991543
10.1109/TPEL.2015.2418711
10.1016/j.asoc.2023.111087
10.1016/j.energy.2021.121407
10.1109/TPEL.2019.2895695
10.1109/ECCE.2016.7854953
10.1109/ESTS49166.2021.9512370
10.1016/j.ijepes.2021.107057
10.1016/j.engappai.2019.01.001
10.1109/tie.2023.3342316
10.1016/j.knosys.2015.07.006
10.1016/j.egyr.2020.11.007
10.1109/TKDE.2021.3079836
10.1109/TPEL.2023.3254899
10.1109/TPEL.2023.3314738
10.1016/j.microrel.2021.114267
10.1109/TIE.2023.3270542
10.1109/ACEPT.2017.8168600
10.1109/TPEL.2023.3286096
10.1109/TPEL.2021.3054336
10.1016/j.jclepro.2018.09.143
10.5267/j.ijiec.2019.4.002
10.1016/j.eswa.2023.121406
10.1109/TIE.2019.2898600
10.1109/JESTPE.2022.3231718
10.1109/ACCESS.2019.2909928
10.1007/s00521-017-3228-9
10.1109/TIA.2020.3030753
10.1007/s10586-018-2360-3
10.1109/TPEL.2020.3042495
10.1002/tee.23285
10.1016/j.asoc.2019.02.035
10.1109/tie.2020.3022526
10.1109/TPEL.2023.3237771
10.1109/TIE.2018.2854568
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
7TB
8FD
FR3
JQ2
KR7
L7M
DOI 10.1109/TPEL.2024.3370690
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Engineering Research Database
Advanced Technologies Database with Aerospace
DatabaseTitleList
Civil Engineering Abstracts
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1941-0107
EndPage 6876
ExternalDocumentID 10_1109_TPEL_2024_3370690
10461050
Genre orig-research
GrantInformation_xml – fundername: Ministry of Education of the People's Republic of China
  grantid: HZKY20220242
  funderid: 10.13039/501100002338
– fundername: S&T Program of Hebei
  grantid: 21567605H; 225676163GH
GroupedDBID -~X
0R~
29I
3EH
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACKIV
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BKOMP
BPEOZ
CS3
DU5
E.L
EBS
EJD
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
RXW
TAE
TAF
TN5
VH1
VJK
AAYXX
CITATION
RIG
7SP
7TB
8FD
FR3
JQ2
KR7
L7M
ID FETCH-LOGICAL-c294t-91cf2ea124472ac7ab78342f70fc58bb559ee44ff859b44b9a69c9cc74534bca3
IEDL.DBID RIE
ISSN 0885-8993
IngestDate Sun Jun 29 15:19:39 EDT 2025
Thu Apr 24 23:03:46 EDT 2025
Tue Jul 01 02:39:40 EDT 2025
Wed Aug 27 02:09:07 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c294t-91cf2ea124472ac7ab78342f70fc58bb559ee44ff859b44b9a69c9cc74534bca3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-3919-8539
0000-0002-2702-3590
0000-0002-4632-5914
0000-0003-0809-9431
PQID 3041505037
PQPubID 37080
PageCount 13
ParticipantIDs proquest_journals_3041505037
crossref_citationtrail_10_1109_TPEL_2024_3370690
ieee_primary_10461050
crossref_primary_10_1109_TPEL_2024_3370690
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-06-01
PublicationDateYYYYMMDD 2024-06-01
PublicationDate_xml – month: 06
  year: 2024
  text: 2024-06-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on power electronics
PublicationTitleAbbrev TPEL
PublicationYear 2024
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
ref12
ref34
ref15
ref37
ref14
ref36
ref31
ref30
ref11
ref33
ref10
ref32
ref2
ref1
ref17
ref16
ref19
ref18
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref25
  doi: 10.1109/TPEL.2023.3274126
– ident: ref2
  doi: 10.1109/TED.2021.3061517
– ident: ref33
  doi: 10.1109/ACCESS.2020.2991543
– ident: ref10
  doi: 10.1109/TPEL.2015.2418711
– ident: ref27
  doi: 10.1016/j.asoc.2023.111087
– ident: ref34
  doi: 10.1016/j.energy.2021.121407
– ident: ref8
  doi: 10.1109/TPEL.2019.2895695
– ident: ref12
  doi: 10.1109/ECCE.2016.7854953
– ident: ref15
  doi: 10.1109/ESTS49166.2021.9512370
– ident: ref17
  doi: 10.1016/j.ijepes.2021.107057
– ident: ref31
  doi: 10.1016/j.engappai.2019.01.001
– ident: ref18
  doi: 10.1109/tie.2023.3342316
– ident: ref35
  doi: 10.1016/j.knosys.2015.07.006
– ident: ref28
  doi: 10.1016/j.egyr.2020.11.007
– ident: ref26
  doi: 10.1109/TKDE.2021.3079836
– ident: ref23
  doi: 10.1109/TPEL.2023.3254899
– ident: ref9
  doi: 10.1109/TPEL.2023.3314738
– ident: ref24
  doi: 10.1016/j.microrel.2021.114267
– ident: ref21
  doi: 10.1109/TIE.2023.3270542
– ident: ref11
  doi: 10.1109/ACEPT.2017.8168600
– ident: ref16
  doi: 10.1109/TPEL.2023.3286096
– ident: ref20
  doi: 10.1109/TPEL.2021.3054336
– ident: ref30
  doi: 10.1016/j.jclepro.2018.09.143
– ident: ref32
  doi: 10.5267/j.ijiec.2019.4.002
– ident: ref3
  doi: 10.1016/j.eswa.2023.121406
– ident: ref13
  doi: 10.1109/TIE.2019.2898600
– ident: ref19
  doi: 10.1109/JESTPE.2022.3231718
– ident: ref14
  doi: 10.1109/ACCESS.2019.2909928
– ident: ref36
  doi: 10.1007/s00521-017-3228-9
– ident: ref1
  doi: 10.1109/TIA.2020.3030753
– ident: ref37
  doi: 10.1007/s10586-018-2360-3
– ident: ref4
  doi: 10.1109/TPEL.2020.3042495
– ident: ref5
  doi: 10.1002/tee.23285
– ident: ref29
  doi: 10.1016/j.asoc.2019.02.035
– ident: ref22
  doi: 10.1109/tie.2020.3022526
– ident: ref7
  doi: 10.1109/TPEL.2023.3237771
– ident: ref6
  doi: 10.1109/TIE.2018.2854568
SSID ssj0014501
Score 2.5048683
Snippet This study improves the accuracy of junction temperature prediction, as the insulated gate bipolar transistor (IGBT) reliability is important for the safe...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 6864
SubjectTerms Accuracy
Algorithms
Errors
Improved sailfish optimization algorithm
insulated gate bipolar transistor
Insulated gate bipolar transistors
junction temperature prediction
Junctions
Optimization
Optimization algorithms
Performance indices
Prediction algorithms
Predictive models
Reliability
Reliability analysis
Semiconductor devices
support vector machine (SVM)
Support vector machines
System reliability
Temperature measurement
Temperature sensors
Title Accuracy of IGBT Junction Temperature Prediction: An Improved Sailfish Algorithm to Optimize Support Vector Machine
URI https://ieeexplore.ieee.org/document/10461050
https://www.proquest.com/docview/3041505037
Volume 39
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NbxMxELUgJzhQCkWEhsoHTkhJdv2RzfYWUNJQQahEgnpb2bPjNiLJVsnmQH49Hu8mKkUgbquVbVl6HnueZ_yGsXdxmsQidt5z82yhrfI89jaHnri6RFjSf0IIWb6T3nimLq_1df1YPbyFQcSQfIYd-gyx_LyALV2VdeOgDk4M_bFnbtVjrUPIQOlQ69hbjW57EiHrEGYcpd3p1fCzp4JCdaRMSJr3t0MoVFX5YysO58voiE32M6vSSn50tqXtwO6BaON_T_05e1Z7mnxQLY1j9ghXL9jTe_qDL9lmALBdG_jJC8c_XXyY8kt_zBFUfIren670lvnVmqI59PucD1a8uofAnH8z84Wbb275YHFTrOfl7ZKXBf_qN6HlfIecCoZ6555_D4EB_iWkbeIJm42G04_jdl2FoQ0iVaXfDcEJNOQHJMJAYizV5hAuiRzovrWekiAq5Vxfp1Ypm5peCilAorRUFox8xRqrYoWvGY-MFs4jghakAm0tRLmRoE0uctnTqsmiPSwZ1BLlVCljkQWqEqUZIZkRklmNZJO9P3S5q_Q5_tX4hJC517ACpclae_Cz2oQ3mSTxAlLLSd78pdspe0KjV4ljLdYo11t8612U0p6FpfkL_Xvh3A
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NTxsxELUqOLQ9FEqpSAvUh56QEnb9kWW5BQQNNKRIXSpuK3t2XKKGbJVsDvDr8Xg3CKiKuK1Wtmzp2Z55nvEbxr7GaRKL2HnPzbOFtiqK2O859MTVJcKS_hNCyPIddvsX6vRSXzaP1cNbGEQMyWfYoc8Qyy9KmNNV2W4c1MGJoS97w6_j-rnWfdBA6VDt2O8b3fY0QjZBzDhKd7Pzo4Eng0J1pExInPeRGQp1Vf45jIOFOV5hw8Xc6sSSP515ZTtw-0S28cWTX2XvGl-T9-rF8Z69wskae_tAgfADm_UA5lMDN7x0_OTbQcZPvaEjsHiG3qOuFZf5-ZTiOfR7n_cmvL6JwIL_NKOxG82ueG_8u5yOqqtrXpX8hz-Grke3yKlkqHfv-a8QGuBnIXET19nF8VF22G83dRjaIFJV-fMQnEBDnkAiDCTGUnUO4ZLIgd6z1pMSRKWc29OpVcqmpptCCpAoLZUFIz-ypUk5wQ3GI6OF84igBalAWwtRYSRoU4hCdrVqsWgBSw6NSDnVyhjngaxEaU5I5oRk3iDZYjv3Xf7WCh3PNV4nZB40rEFpsc0F-HmziWe5JPkC0stJPv2n2xf2up-dDfLByfD7Z_aGRqrTyDbZUjWd45Z3WCq7HZbpHewo5SU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Accuracy+of+IGBT+Junction+Temperature+Prediction%3A+An+Improved+Sailfish+Algorithm+to+Optimize+Support+Vector+Machine&rft.jtitle=IEEE+transactions+on+power+electronics&rft.au=Li%2C+Lingling&rft.au=Liu%2C+Jiaqi&rft.au=Tseng%2C+Ming-Lang&rft.au=Lim%2C+Ming+K.&rft.date=2024-06-01&rft.pub=IEEE&rft.issn=0885-8993&rft.volume=39&rft.issue=6&rft.spage=6864&rft.epage=6876&rft_id=info:doi/10.1109%2FTPEL.2024.3370690&rft.externalDocID=10461050
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0885-8993&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0885-8993&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0885-8993&client=summon