Cyanopolyyne line survey towards high-mass star-forming regions with TMRT

Context . Cyanopolyynes (HC 2 n +1 N, n = 1,2,3), which are the linear carbon chain molecules, are precursors for the prebiotic synthesis of simple amino acids. They are important for understanding prebiotic chemistry and may be good tracers of the star formation sequence. Aims . We aim to search fo...

Full description

Saved in:
Bibliographic Details
Published inAstronomy and astrophysics (Berlin) Vol. 663; p. A177
Main Authors Wang, Y. X., Zhang, J. S., Yan, Y. T., Qiu, J. J., Chen, J. L., Zhao, J. Y., Zou, Y. P., Wu, X. C., He, X. L., Gong, Y. B., Cai, J. H.
Format Journal Article
LanguageEnglish
Published 01.07.2022
Online AccessGet full text
ISSN0004-6361
1432-0746
DOI10.1051/0004-6361/202142450

Cover

Abstract Context . Cyanopolyynes (HC 2 n +1 N, n = 1,2,3), which are the linear carbon chain molecules, are precursors for the prebiotic synthesis of simple amino acids. They are important for understanding prebiotic chemistry and may be good tracers of the star formation sequence. Aims . We aim to search for cyanopolyynes in high-mass star-forming regions (HMSFRs) at possibly different evolutionary stages, investigate the evolution of HC 3 N and its relation with shock tracers, and detect the existence of HC 5 N and HC 7 N in HMSFRs with a formed protostar. Methods . We carried out a cyanopolyyne line survey towards a large sample of HMSFRs using the Shanghai Tian Ma 65 m Radio Telescope (TMRT). Our sample consisted of 123 targets taken from the TMRT C band line survey. It included three kinds of sources, namely those with detection of the 6.7 GHz CH 3 OH maser alone, with detection of the radio recombination line (RRL) alone, and with detection of both (hereafter referred to as Maser-only, RRL-only, and Maser-RRL sources, respectively). For our sample with detection of cyanopolyynes, their column densities were derived using the rotational temperature measured from the NH 3 lines. We constructed and fitted the far-infrared (FIR) spectral energy distributions (SED; obtained from the Herschel FIR data and the Atacama Pathfinder Experiment data at 870 µm) of our HC 3 N sources. Moreover, by analysing the relation between HC 3 N and other shock tracers, we also investigate whether HC 3 N is a good tracer of shocks. Results . We detected HC 3 N in 38 sources, HC 5 N in 11 sources, and HC 7 N in G24.790+0.084, with the highest detection rate being found for Maser-RRL sources and a very low detection rate found for RRL-only sources. The mean column density of HC 3 N was found to be (1.75 ± 0.42) × 10 13 , (2.84 ± 0.47) × 10 13 , and (0.82 ± 0.15) × 10 13 cm −2 for Maser-only, Maser-RRL, and RRL-only sources, respectively. Based on a fit of the FIR SED, we derive their dust temperatures, H 2 column densities, and abundances of cyanopolyynes relative to H 2 . The mean relative abundance of HC 3 N was found to be (1.22 ± 0.52) × 10 −10 for Maser-only, (5.40 ± 1.45) × 10 −10 for Maser-RRL, and (1.65 ± 1.50) × 10 −10 for RRL-only sources, respectively. Conclusions . The detection rate, the column density, and the relative abundance of HC 3 N increase from Maser-only to Maser-RRL sources and decrease from Maser-RRL to RRL-only sources. This trend is consistent with the proposed evolutionary trend of HC 3 N under the assumption that our Maser-only, Maser-RRL, and RRL-only sources correspond to massive young stellar objects, ultracompact H ii regions, and normal classical H ii regions, respectively. Our detections enlarge the sample of HC 3 N in HMSFRs and support the idea that unsaturated complex organic molecules can exist in HMSFRs with a formed protostar. Furthermore, a statistical analysis of the integrated line intensity and column density of HC 3 N and shock-tracing molecules (SiO, H 2 CO) enabled us to find positive correlations between them. This suggests that HC 3 N may be another tracer of shocks, and should therefore be the subject of further observations and corresponding chemical simulations. Our results indirectly support the idea that the neutral-neutral reaction between C 2 H 2 and CN is the dominant formation pathway of HC 3 N.
AbstractList Context . Cyanopolyynes (HC 2 n +1 N, n = 1,2,3), which are the linear carbon chain molecules, are precursors for the prebiotic synthesis of simple amino acids. They are important for understanding prebiotic chemistry and may be good tracers of the star formation sequence. Aims . We aim to search for cyanopolyynes in high-mass star-forming regions (HMSFRs) at possibly different evolutionary stages, investigate the evolution of HC 3 N and its relation with shock tracers, and detect the existence of HC 5 N and HC 7 N in HMSFRs with a formed protostar. Methods . We carried out a cyanopolyyne line survey towards a large sample of HMSFRs using the Shanghai Tian Ma 65 m Radio Telescope (TMRT). Our sample consisted of 123 targets taken from the TMRT C band line survey. It included three kinds of sources, namely those with detection of the 6.7 GHz CH 3 OH maser alone, with detection of the radio recombination line (RRL) alone, and with detection of both (hereafter referred to as Maser-only, RRL-only, and Maser-RRL sources, respectively). For our sample with detection of cyanopolyynes, their column densities were derived using the rotational temperature measured from the NH 3 lines. We constructed and fitted the far-infrared (FIR) spectral energy distributions (SED; obtained from the Herschel FIR data and the Atacama Pathfinder Experiment data at 870 µm) of our HC 3 N sources. Moreover, by analysing the relation between HC 3 N and other shock tracers, we also investigate whether HC 3 N is a good tracer of shocks. Results . We detected HC 3 N in 38 sources, HC 5 N in 11 sources, and HC 7 N in G24.790+0.084, with the highest detection rate being found for Maser-RRL sources and a very low detection rate found for RRL-only sources. The mean column density of HC 3 N was found to be (1.75 ± 0.42) × 10 13 , (2.84 ± 0.47) × 10 13 , and (0.82 ± 0.15) × 10 13 cm −2 for Maser-only, Maser-RRL, and RRL-only sources, respectively. Based on a fit of the FIR SED, we derive their dust temperatures, H 2 column densities, and abundances of cyanopolyynes relative to H 2 . The mean relative abundance of HC 3 N was found to be (1.22 ± 0.52) × 10 −10 for Maser-only, (5.40 ± 1.45) × 10 −10 for Maser-RRL, and (1.65 ± 1.50) × 10 −10 for RRL-only sources, respectively. Conclusions . The detection rate, the column density, and the relative abundance of HC 3 N increase from Maser-only to Maser-RRL sources and decrease from Maser-RRL to RRL-only sources. This trend is consistent with the proposed evolutionary trend of HC 3 N under the assumption that our Maser-only, Maser-RRL, and RRL-only sources correspond to massive young stellar objects, ultracompact H ii regions, and normal classical H ii regions, respectively. Our detections enlarge the sample of HC 3 N in HMSFRs and support the idea that unsaturated complex organic molecules can exist in HMSFRs with a formed protostar. Furthermore, a statistical analysis of the integrated line intensity and column density of HC 3 N and shock-tracing molecules (SiO, H 2 CO) enabled us to find positive correlations between them. This suggests that HC 3 N may be another tracer of shocks, and should therefore be the subject of further observations and corresponding chemical simulations. Our results indirectly support the idea that the neutral-neutral reaction between C 2 H 2 and CN is the dominant formation pathway of HC 3 N.
Author Zhang, J. S.
Qiu, J. J.
Zhao, J. Y.
Cai, J. H.
Zou, Y. P.
Wu, X. C.
Yan, Y. T.
Chen, J. L.
He, X. L.
Wang, Y. X.
Gong, Y. B.
Author_xml – sequence: 1
  givenname: Y. X.
  orcidid: 0000-0001-9155-0777
  surname: Wang
  fullname: Wang, Y. X.
– sequence: 2
  givenname: J. S.
  orcidid: 0000-0002-5161-8180
  surname: Zhang
  fullname: Zhang, J. S.
– sequence: 3
  givenname: Y. T.
  orcidid: 0000-0001-5574-0549
  surname: Yan
  fullname: Yan, Y. T.
– sequence: 4
  givenname: J. J.
  orcidid: 0000-0002-9829-8655
  surname: Qiu
  fullname: Qiu, J. J.
– sequence: 5
  givenname: J. L.
  surname: Chen
  fullname: Chen, J. L.
– sequence: 6
  givenname: J. Y.
  surname: Zhao
  fullname: Zhao, J. Y.
– sequence: 7
  givenname: Y. P.
  surname: Zou
  fullname: Zou, Y. P.
– sequence: 8
  givenname: X. C.
  surname: Wu
  fullname: Wu, X. C.
– sequence: 9
  givenname: X. L.
  surname: He
  fullname: He, X. L.
– sequence: 10
  givenname: Y. B.
  surname: Gong
  fullname: Gong, Y. B.
– sequence: 11
  givenname: J. H.
  surname: Cai
  fullname: Cai, J. H.
BookMark eNp9kM1KAzEUhYNUsK0-gZu8QOzN73SWUvwpVASp6yHJZDqR6aQk0TJv7xSlCxdu7uXC_Q7nnBma9KF3CN1SuKMg6QIABFFc0QUDRgUTEi7QlArOCBRCTdD0_HGFZil9jCejSz5F69Wg-3AI3TD0Dnd-HOkzfrkB53DUsU649buW7HVKOGUdSRPi3vc7HN3Ohz7ho88t3r68ba_RZaO75G5-9xy9Pz5sV89k8_q0Xt1viGWlyGTZuMKaWoHRtTWldFYAyFpaXtScMWEtGKeElVKCMgy0YbJcAhiljS6N43NU_ujaGFKKrqmszzqPZnLUvqsoVKdOqlPi6pS4OncysvwPe4h-r-PwL_UNpM9m0g
CitedBy_id crossref_primary_10_1088_1402_4896_ad9e3e
crossref_primary_10_3847_1538_4365_acafe6
crossref_primary_10_3847_1538_3881_ad428d
Cites_doi 10.3847/1538-4357/ab001e
10.1051/0004-6361/201219567
10.1051/0004-6361/201015332
10.1088/0004-637X/691/1/823
10.1088/0004-637X/741/2/120
10.1093/mnras/stu1207
10.1088/2041-8205/740/1/L3
10.1051/0004-6361/201322725
10.1093/mnras/stu1349
10.1051/0004-6361:20065420
10.1088/0004-637X/699/2/1153
10.1051/0004-6361/201014582
10.1051/0004-6361/201322541
10.1093/mnras/stz1498
10.1111/j.1365-2966.2011.19594.x
10.3847/1538-4357/ab2d9e
10.1111/j.1365-2966.2009.15831.x
10.1051/0004-6361/201425404
10.1051/0004-6361:20078661
10.1088/0004-637X/736/2/163
10.3847/1538-4357/aade97
10.1051/0004-6361/202039274
10.1146/annurev.astro.40.060401.093845
10.1086/307195
10.1093/mnras/stz2431
10.1088/0004-637X/777/2/157
10.1093/mnras/stab2733
10.1111/j.1365-2966.2007.11615.x
10.1093/mnras/stab3511
10.1093/mnras/stab1352
10.1051/0004-6361/201220465
10.1093/mnras/stv1058
10.1051/0004-6361:200809481
10.1088/0004-637X/783/2/130
10.1051/0004-6361/200811568
10.3847/0004-637X/824/2/136
10.1088/0004-637X/722/2/1633
10.1051/0004-6361/201321096
10.3847/1538-4357/aadd0c
10.1093/mnras/staa3059
10.3847/1538-4365/ab818e
10.1051/0004-6361/201833718
10.1086/524096
10.1051/0004-6361/201424126
10.3847/1538-4365/aa956a
10.1086/191102
10.1051/0004-6361:20065560
10.1086/310732
10.1086/310254
10.1051/0004-6361/201322596
10.1146/annurev-astro-082708-101654
10.1088/1538-3873/aac8e9
10.3847/1538-4357/833/2/248
10.1051/0004-6361/201117112
10.1086/590110
10.3847/1538-4357/aacf9d
10.1051/0004-6361/201526275
10.3847/0004-637X/830/2/106
10.1086/680342
10.1111/j.1365-8711.1998.02014.x
10.1051/0004-6361/201731728
10.1051/0004-6361/202039670
10.1051/0004-6361/201014651
10.1093/mnras/stx2258
10.1051/0004-6361/201833140
10.1086/311188
10.1051/0004-6361:20030465
10.1088/0004-637X/699/1/585
10.1051/0004-6361/202039110
10.1088/0004-637X/764/1/61
10.1086/587050
10.1093/mnras/stz154
10.1088/0004-637X/815/2/130
10.1086/588185
10.3847/1538-4357/833/2/291
10.1093/mnras/stt1559
10.1093/pasj/psab012
10.1051/0004-6361/201732168
10.3847/0004-637X/819/2/140
10.1051/0004-6361/201526841
10.3847/1538-4365/ab06fb
10.1086/498673
10.1051/0004-6361/201220155
10.1093/mnras/sty180
10.1051/0004-6361/201526380
10.1051/0004-6361/201730791
10.1111/j.1365-2966.2008.14144.x
10.1051/0004-6361:20047186
10.1007/s10509-016-2773-5
10.1093/mnras/stw2302
10.1088/0067-0049/212/1/1
10.1051/0004-6361/201423677
10.1086/518595
10.3847/0004-637X/822/2/59
10.1051/0004-6361:20031704
10.1088/0004-637X/702/2/1025
10.1086/680323
10.1086/190919
10.1086/171456
10.3847/1538-4365/aa8098
10.3847/0004-6256/152/4/92
10.1051/0004-6361:20078900
10.1088/0067-0049/194/2/32
10.3847/1538-4357/aaa66f
10.3847/1538-4357/aa961d
10.1051/0004-6361/201015158
10.1051/0004-6361/201118107
10.1146/annurev-astro-032620-021927
10.1051/0004-6361:200809472
10.1086/153953
10.1051/0004-6361/201322073
10.3847/1538-4357/ab4a11
10.3847/1538-4357/aa8668
10.3847/1538-4365/abd0fb
10.1051/0004-6361/202140469
10.3847/0004-637X/822/2/85
10.1051/0004-6361:20034123
ContentType Journal Article
DBID AAYXX
CITATION
DOI 10.1051/0004-6361/202142450
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Astronomy & Astrophysics
Physics
EISSN 1432-0746
ExternalDocumentID 10_1051_0004_6361_202142450
GroupedDBID -DZ
-~X
2.D
23N
2WC
4.4
5GY
5VS
6TJ
85S
AACRX
AAFNC
AAFWJ
AAJMC
AAOGA
AAOTM
AAYXX
ABDNZ
ABDPE
ABNSH
ABPPZ
ABUBZ
ABZDU
ACACO
ACGFS
ACNCT
ACRPL
ACYGS
ACYRX
ADCOW
ADHUB
ADIYS
ADNMO
AEILP
AENEX
AGQPQ
AI.
AIZTS
ALMA_UNASSIGNED_HOLDINGS
ASPBG
AVWKF
AZFZN
AZPVJ
CITATION
CS3
E.L
E3Z
EBS
EJD
F5P
FRP
GI~
HG6
I09
IL9
LAS
MVM
OHT
OK1
RED
RHV
RIG
RNS
SDH
SJN
TR2
UPT
UQL
VH1
VOH
WH7
XOL
ZY4
ID FETCH-LOGICAL-c294t-8fe7cbd60badcb95ec4005d5c37d3224cc0be64c55506b20ab259800b6aba9be3
ISSN 0004-6361
IngestDate Tue Jul 01 03:54:00 EDT 2025
Thu Apr 24 22:55:03 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c294t-8fe7cbd60badcb95ec4005d5c37d3224cc0be64c55506b20ab259800b6aba9be3
ORCID 0000-0001-9155-0777
0000-0002-9829-8655
0000-0001-5574-0549
0000-0002-5161-8180
OpenAccessLink https://www.aanda.org/articles/aa/pdf/2022/07/aa42450-21.pdf
ParticipantIDs crossref_citationtrail_10_1051_0004_6361_202142450
crossref_primary_10_1051_0004_6361_202142450
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-07-01
PublicationDateYYYYMMDD 2022-07-01
PublicationDate_xml – month: 07
  year: 2022
  text: 2022-07-01
  day: 01
PublicationDecade 2020
PublicationTitle Astronomy and astrophysics (Berlin)
PublicationYear 2022
References Zhang (R130) 2017; 606
Reid (R83) 2014; 783
Xu (R123) 2008; 485
Tang (R100) 2018; 611
Reid (R84) 2019; 885
Codella (R23) 1999; 343
Loomis (R65) 2016; 463
Molinari (R78) 2016; 591
Cernicharo (R16) 2020; 642
Zhang (R131) 2021; 648
Gong (R43) 2015; 581
Wakelam (R116) 2004; 422
Ragan (R81) 2011; 736
Molinari (R77) 2008; 481
Levshakov (R61) 2010; 524
Walsh (R117) 1998; 301
Breen (R12) 2010; 401
Gieser (R41) 2021; 648
Sakai (R88) 2007; 663
Urquhart (R110) 2014; 568
Mitchell (R76) 1984; 54
Gerner (R39) 2014; 563
Svoboda (R96) 2016; 822
Taniguchi (R102) 2018; 866
Bernasconi (R11) 1996; 307
Kauffmann (R57) 2008; 487
Mangum (R68) 2015; 127
Chen (R19) 2020; 248
Rolffs (R85) 2011; 536
Mendoza (R73) 2018; 475
Contreras (R26) 2013; 549
Hoq (R54) 2013; 777
Graninger (R44) 2016; 819
Yu (R127) 2016; 833
Taniguchi (R105) 2019; 881
König (R58) 2017; 599
Taniguchi (R104) 2018; 854
Calcutt (R14) 2018; 617
Condon (R25) 2016; 4.3
McCarthy (R70) 1998; 494
Yang (R125) 2019; 241
Garrod (R38) 2006; 457
Hosokawa (R55) 2009; 691
Miettinen (R74) 2014; 562
Taniguchi (R101) 2016; 830
Taniguchi (R106) 2019; 872
Hassel (R50) 2008; 681
Suzuki (R95) 1992; 392
Bell (R7) 1997; 483
Ceccarelli (R15) 2017; 850
Takano (R99) 1998; 329
Duarte-Cabral (R31) 2014; 570
Tafalla (R98) 2010; 522
Jørgensen (R56) 2020; 58
Travers (R108) 1996; 469
Araki (R5) 2016; 833
R59
Rathborne (R82) 2011; 741
Anderson (R2) 2011; 194
Urquhart (R112) 2018; 473
Wienen (R121) 2012; 544
Csengeri (R28) 2016; 586
Beltrân (R9) 2004; 416
Herbst (R52) 2009; 47
Wu (R122) 2019; 488
Zhang (R132) 2022; 510
Cyganowski (R30) 2013; 764
Green (R46) 2014; 443
Schuller (R92) 2009; 504
Viti (R115) 2011; 740
Li (R62) 2016; 152
Hirota (R53) 2009; 699
Widicus Weaver (R120) 2017; 232
Martin-Pintado (R69) 1992; 254
Sakai (R91) 2010; 722
Luisi (R67) 2018; 130
McElroy (R71) 2013; 550
Ellingsen (R33) 2006; 638
Elia (R32) 2010; 518
Wang (R118) 2017; 58
Wang (R119) 2020; 499
Codella (R24) 2010; 518
Sakai (R89) 2008; 678
Anderson (R3) 2014; 212
McGee (R72) 1975; 202
Esplugues (R35) 2013; 559
Tafalla (R97) 2004; 416
Abuter (R45) 2018; 615
Law (R60) 2018; 863
R79
Feng (R37) 2021; 73
Taniguchi (R103) 2018; 866
Yu (R126) 2015; 451
Benedettini (R10) 2013; 436
Ossenkopf (R80) 1994; 291
Sabatini (R87) 2021; 652
Cosentino (R27) 2018; 474
Anderson (R4) 2018; 234
Minier (R75) 2003; 403
Thaddeus (R107) 2001; 57
Urquhart (R114) 2022; 510
Yang (R124) 2017; 846
He (R51) 2021; 253
Sobolev (R94) 1994; 291
Giannetti (R40) 2017; 606
Chung (R21) 1991; 24
Yu (R128) 2019; 489
Ellingsen (R34) 2007; 377
Belloche (R8) 2013; 559
Churchwell (R22) 2002; 40
Shirley (R93) 2015; 127
Urquhart (R111) 2014; 443
Urquhart (R113) 2019; 484
Sakai (R90) 2009; 702
Gusdorf (R47) 2008; 482
Guzmân (R49) 2015; 815
Chapman (R18) 2009; 394
Cummins (R29) 1986; 60
Feng (R36) 2015; 581
Arce (R6) 2008; 681
Urquhart (R109) 2011; 418
Zhang (R129) 2016; 361
Aikawa (R1) 2008; 674
Goldsmith (R42) 1999; 517
Güsten (R48) 2006; 454
Liu (R64) 2021; 505
Li (R63) 2016; 824
Bussa (R13) 2012; 219
Roman-Duval (R86) 2009; 699
Cesaroni (R17) 2005; 227
Löpez-Sepulcre (R66) 2016; 822
Chira (R20) 2013; 552
References_xml – volume: 872
  start-page: 154
  year: 2019
  ident: R106
  publication-title: ApJ
  doi: 10.3847/1538-4357/ab001e
– volume: 552
  start-page: A40
  year: 2013
  ident: R20
  publication-title: A&A
  doi: 10.1051/0004-6361/201219567
– volume: 524
  start-page: A32
  year: 2010
  ident: R61
  publication-title: A&A
  doi: 10.1051/0004-6361/201015332
– volume: 691
  start-page: 823
  year: 2009
  ident: R55
  publication-title: ApJ
  doi: 10.1088/0004-637X/691/1/823
– ident: R59
– volume: 741
  start-page: 120
  year: 2011
  ident: R82
  publication-title: ApJ
  doi: 10.1088/0004-637X/741/2/120
– volume: 443
  start-page: 1555
  year: 2014
  ident: R111
  publication-title: MNRAS
  doi: 10.1093/mnras/stu1207
– volume: 740
  start-page: L3
  year: 2011
  ident: R115
  publication-title: ApJ
  doi: 10.1088/2041-8205/740/1/L3
– volume: 581
  start-page: A71
  year: 2015
  ident: R36
  publication-title: A&A
  doi: 10.1051/0004-6361/201322725
– volume: 443
  start-page: 2252
  year: 2014
  ident: R46
  publication-title: MNRAS
  doi: 10.1093/mnras/stu1349
– volume: 454
  start-page: L13
  year: 2006
  ident: R48
  publication-title: A&A
  doi: 10.1051/0004-6361:20065420
– volume: 699
  start-page: 1153
  year: 2009
  ident: R86
  publication-title: ApJ
  doi: 10.1088/0004-637X/699/2/1153
– volume: 518
  start-page: L112
  year: 2010
  ident: R24
  publication-title: A&A
  doi: 10.1051/0004-6361/201014582
– volume: 563
  start-page: A97
  year: 2014
  ident: R39
  publication-title: A&A
  doi: 10.1051/0004-6361/201322541
– volume: 488
  start-page: 495
  year: 2019
  ident: R122
  publication-title: MNRAS
  doi: 10.1093/mnras/stz1498
– volume: 418
  start-page: 1689
  year: 2011
  ident: R109
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2011.19594.x
– volume: 881
  start-page: 57
  year: 2019
  ident: R105
  publication-title: ApJ
  doi: 10.3847/1538-4357/ab2d9e
– volume: 401
  start-page: 2219
  year: 2010
  ident: R12
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2009.15831.x
– volume: 586
  start-page: A149
  year: 2016
  ident: R28
  publication-title: A&A
  doi: 10.1051/0004-6361/201425404
– volume: 481
  start-page: 345
  year: 2008
  ident: R77
  publication-title: A&A
  doi: 10.1051/0004-6361:20078661
– ident: R79
– volume: 736
  start-page: 163
  year: 2011
  ident: R81
  publication-title: ApJ
  doi: 10.1088/0004-637X/736/2/163
– volume: 866
  start-page: 150
  year: 2018
  ident: R103
  publication-title: ApJ
  doi: 10.3847/1538-4357/aade97
– volume: 642
  start-page: L8
  year: 2020
  ident: R16
  publication-title: A&A
  doi: 10.1051/0004-6361/202039274
– volume: 40
  start-page: 27
  year: 2002
  ident: R22
  publication-title: ARA&A
  doi: 10.1146/annurev.astro.40.060401.093845
– volume: 517
  start-page: 209
  year: 1999
  ident: R42
  publication-title: ApJ
  doi: 10.1086/307195
– volume: 489
  start-page: 4497
  year: 2019
  ident: R128
  publication-title: MNRAS
  doi: 10.1093/mnras/stz2431
– volume: 777
  start-page: 157
  year: 2013
  ident: R54
  publication-title: ApJ
  doi: 10.1088/0004-637X/777/2/157
– volume: 510
  start-page: 4998
  year: 2022
  ident: R132
  publication-title: MNRAS
  doi: 10.1093/mnras/stab2733
– volume: 343
  start-page: 585
  year: 1999
  ident: R23
  publication-title: A&A
– volume: 377
  start-page: 571
  year: 2007
  ident: R34
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2007.11615.x
– volume: 510
  start-page: 3389
  year: 2022
  ident: R114
  publication-title: MNRAS
  doi: 10.1093/mnras/stab3511
– volume: 505
  start-page: 2801
  year: 2021
  ident: R64
  publication-title: MNRAS
  doi: 10.1093/mnras/stab1352
– volume: 550
  start-page: A36
  year: 2013
  ident: R71
  publication-title: A&A
  doi: 10.1051/0004-6361/201220465
– volume: 451
  start-page: 2507
  year: 2015
  ident: R126
  publication-title: MNRAS
  doi: 10.1093/mnras/stv1058
– volume: 487
  start-page: 993
  year: 2008
  ident: R57
  publication-title: A&A
  doi: 10.1051/0004-6361:200809481
– volume: 783
  start-page: 130
  year: 2014
  ident: R83
  publication-title: ApJ
  doi: 10.1088/0004-637X/783/2/130
– volume: 504
  start-page: 415
  year: 2009
  ident: R92
  publication-title: A&A
  doi: 10.1051/0004-6361/200811568
– volume: 824
  start-page: 136
  year: 2016
  ident: R63
  publication-title: ApJ
  doi: 10.3847/0004-637X/824/2/136
– volume: 291
  start-page: 943
  year: 1994
  ident: R80
  publication-title: A&A
– volume: 722
  start-page: 1633
  year: 2010
  ident: R91
  publication-title: ApJ
  doi: 10.1088/0004-637X/722/2/1633
– volume: 559
  start-page: A47
  year: 2013
  ident: R8
  publication-title: A&A
  doi: 10.1051/0004-6361/201321096
– volume: 866
  start-page: 32
  year: 2018
  ident: R102
  publication-title: ApJ
  doi: 10.3847/1538-4357/aadd0c
– volume: 499
  start-page: 4432
  year: 2020
  ident: R119
  publication-title: MNRAS
  doi: 10.1093/mnras/staa3059
– volume: 474
  start-page: 3760
  year: 2018
  ident: R27
  publication-title: MNRAS
– volume: 248
  start-page: 3
  year: 2020
  ident: R19
  publication-title: ApJS
  doi: 10.3847/1538-4365/ab818e
– volume: 615
  start-page: L15
  year: 2018
  ident: R45
  publication-title: A&A
  doi: 10.1051/0004-6361/201833718
– volume: 674
  start-page: 984
  year: 2008
  ident: R1
  publication-title: ApJ
  doi: 10.1086/524096
– volume: 568
  start-page: A41
  year: 2014
  ident: R110
  publication-title: A&A
  doi: 10.1051/0004-6361/201424126
– volume: 234
  start-page: 33
  year: 2018
  ident: R4
  publication-title: ApJS
  doi: 10.3847/1538-4365/aa956a
– volume: 60
  start-page: 819
  year: 1986
  ident: R29
  publication-title: ApJS
  doi: 10.1086/191102
– volume: 457
  start-page: 927
  year: 2006
  ident: R38
  publication-title: A&A
  doi: 10.1051/0004-6361:20065560
– volume: 483
  start-page: L61
  year: 1997
  ident: R7
  publication-title: ApJ
  doi: 10.1086/310732
– volume: 469
  start-page: L65
  year: 1996
  ident: R108
  publication-title: ApJ
  doi: 10.1086/310254
– volume: 562
  start-page: A3
  year: 2014
  ident: R74
  publication-title: A&A
  doi: 10.1051/0004-6361/201322596
– volume: 47
  start-page: 427
  year: 2009
  ident: R52
  publication-title: ARA&A
  doi: 10.1146/annurev-astro-082708-101654
– volume: 130
  start-page: 084101
  year: 2018
  ident: R67
  publication-title: PASP
  doi: 10.1088/1538-3873/aac8e9
– volume: 833
  start-page: 248
  year: 2016
  ident: R127
  publication-title: ApJ
  doi: 10.3847/1538-4357/833/2/248
– volume: 536
  start-page: A33
  year: 2011
  ident: R85
  publication-title: A&A
  doi: 10.1051/0004-6361/201117112
– volume: 681
  start-page: L21
  year: 2008
  ident: R6
  publication-title: ApJ
  doi: 10.1086/590110
– volume: 863
  start-page: 88
  year: 2018
  ident: R60
  publication-title: ApJ
  doi: 10.3847/1538-4357/aacf9d
– volume: 581
  start-page: A48
  year: 2015
  ident: R43
  publication-title: A&A
  doi: 10.1051/0004-6361/201526275
– volume: 57
  start-page: 757
  year: 2001
  ident: R107
  publication-title: SAA
– volume: 830
  start-page: 106
  year: 2016
  ident: R101
  publication-title: ApJ
  doi: 10.3847/0004-637X/830/2/106
– volume: 127
  start-page: 299
  year: 2015
  ident: R93
  publication-title: PASP
  doi: 10.1086/680342
– volume: 301
  start-page: 640
  year: 1998
  ident: R117
  publication-title: MNRAS
  doi: 10.1111/j.1365-8711.1998.02014.x
– volume: 606
  start-page: L12
  year: 2017
  ident: R40
  publication-title: A&A
  doi: 10.1051/0004-6361/201731728
– volume: 648
  start-page: A66
  year: 2021
  ident: R41
  publication-title: A&A
  doi: 10.1051/0004-6361/202039670
– volume: 518
  start-page: L97
  year: 2010
  ident: R32
  publication-title: A&A
  doi: 10.1051/0004-6361/201014651
– volume: 473
  start-page: 1059
  year: 2018
  ident: R112
  publication-title: MNRAS
  doi: 10.1093/mnras/stx2258
– volume: 617
  start-page: A95
  year: 2018
  ident: R14
  publication-title: A&A
  doi: 10.1051/0004-6361/201833140
– volume: 494
  start-page: L231
  year: 1998
  ident: R70
  publication-title: ApJ
  doi: 10.1086/311188
– volume: 403
  start-page: 1095
  year: 2003
  ident: R75
  publication-title: A&A
  doi: 10.1051/0004-6361:20030465
– volume: 699
  start-page: 585
  year: 2009
  ident: R53
  publication-title: ApJ
  doi: 10.1088/0004-637X/699/1/585
– volume: 648
  start-page: A83
  year: 2021
  ident: R131
  publication-title: A&A
  doi: 10.1051/0004-6361/202039110
– volume: 764
  start-page: 61
  year: 2013
  ident: R30
  publication-title: ApJ
  doi: 10.1088/0004-637X/764/1/61
– volume: 24
  start-page: 217
  year: 1991
  ident: R21
  publication-title: JKAS
– volume: 678
  start-page: 1049
  year: 2008
  ident: R89
  publication-title: ApJ
  doi: 10.1086/587050
– volume: 484
  start-page: 4444
  year: 2019
  ident: R113
  publication-title: MNRAS
  doi: 10.1093/mnras/stz154
– volume: 815
  start-page: 130
  year: 2015
  ident: R49
  publication-title: ApJ
  doi: 10.1088/0004-637X/815/2/130
– volume: 681
  start-page: 1385
  year: 2008
  ident: R50
  publication-title: ApJ
  doi: 10.1086/588185
– volume: 833
  start-page: 291
  year: 2016
  ident: R5
  publication-title: ApJ
  doi: 10.3847/1538-4357/833/2/291
– volume: 436
  start-page: 179
  year: 2013
  ident: R10
  publication-title: MNRAS
  doi: 10.1093/mnras/stt1559
– volume: 329
  start-page: 1156
  year: 1998
  ident: R99
  publication-title: A&A
– volume: 73
  start-page: 467
  year: 2021
  ident: R37
  publication-title: PASJ
  doi: 10.1093/pasj/psab012
– volume: 611
  start-page: A6
  year: 2018
  ident: R100
  publication-title: A&A
  doi: 10.1051/0004-6361/201732168
– volume: 819
  start-page: 140
  year: 2016
  ident: R44
  publication-title: ApJ
  doi: 10.3847/0004-637X/819/2/140
– volume: 599
  start-page: A139
  year: 2017
  ident: R58
  publication-title: A&A
  doi: 10.1051/0004-6361/201526841
– volume: 241
  start-page: 18
  year: 2019
  ident: R125
  publication-title: ApJS
  doi: 10.3847/1538-4365/ab06fb
– volume: 638
  start-page: 241
  year: 2006
  ident: R33
  publication-title: ApJ
  doi: 10.1086/498673
– volume: 549
  start-page: A45
  year: 2013
  ident: R26
  publication-title: A&A
  doi: 10.1051/0004-6361/201220155
– volume: 58
  start-page: 37
  year: 2017
  ident: R118
  publication-title: AcASn
– volume: 4.3
  start-page: 6
  year: 2016
  ident: R25
  publication-title: Essential Rad. Astron.
– volume: 475
  start-page: 5501
  year: 2018
  ident: R73
  publication-title: MNRAS
  doi: 10.1093/mnras/sty180
– volume: 591
  start-page: A149
  year: 2016
  ident: R78
  publication-title: A&A
  doi: 10.1051/0004-6361/201526380
– volume: 606
  start-page: A74
  year: 2017
  ident: R130
  publication-title: A&A
  doi: 10.1051/0004-6361/201730791
– volume: 394
  start-page: 221
  year: 2009
  ident: R18
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2008.14144.x
– volume: 422
  start-page: 159
  year: 2004
  ident: R116
  publication-title: A&A
  doi: 10.1051/0004-6361:20047186
– volume: 361
  start-page: 191
  year: 2016
  ident: R129
  publication-title: Ap&SS
  doi: 10.1007/s10509-016-2773-5
– volume: 463
  start-page: 4175
  year: 2016
  ident: R65
  publication-title: MNRAS
  doi: 10.1093/mnras/stw2302
– volume: 212
  start-page: 1
  year: 2014
  ident: R3
  publication-title: ApJS
  doi: 10.1088/0067-0049/212/1/1
– volume: 570
  start-page: A1
  year: 2014
  ident: R31
  publication-title: A&A
  doi: 10.1051/0004-6361/201423677
– volume: 219
  start-page: 446
  year: 2012
  ident: R13
  publication-title: AAS Meeting
– volume: 254
  start-page: 315
  year: 1992
  ident: R69
  publication-title: A&A
– volume: 663
  start-page: 1174
  year: 2007
  ident: R88
  publication-title: ApJ
  doi: 10.1086/518595
– volume: 822
  start-page: 59
  year: 2016
  ident: R96
  publication-title: ApJ
  doi: 10.3847/0004-637X/822/2/59
– volume: 416
  start-page: 191
  year: 2004
  ident: R97
  publication-title: A&A
  doi: 10.1051/0004-6361:20031704
– volume: 702
  start-page: 1025
  year: 2009
  ident: R90
  publication-title: ApJ
  doi: 10.1088/0004-637X/702/2/1025
– volume: 127
  start-page: 266
  year: 2015
  ident: R68
  publication-title: PASP
  doi: 10.1086/680323
– volume: 54
  start-page: 81
  year: 1984
  ident: R76
  publication-title: ApJS
  doi: 10.1086/190919
– volume: 227
  start-page: 59
  year: 2005
  ident: R17
  publication-title: in Massive Star Birth: A Crossroads of Astrophysics (Cambridge: Cambridge University Press)
– volume: 392
  start-page: 551
  year: 1992
  ident: R95
  publication-title: ApJ
  doi: 10.1086/171456
– volume: 232
  start-page: 3
  year: 2017
  ident: R120
  publication-title: ApJS
  doi: 10.3847/1538-4365/aa8098
– volume: 291
  start-page: 569
  year: 1994
  ident: R94
  publication-title: A&A
– volume: 152
  start-page: 92
  year: 2016
  ident: R62
  publication-title: AJ
  doi: 10.3847/0004-6256/152/4/92
– volume: 482
  start-page: 809
  year: 2008
  ident: R47
  publication-title: A&A
  doi: 10.1051/0004-6361:20078900
– volume: 194
  start-page: 32
  year: 2011
  ident: R2
  publication-title: ApJS
  doi: 10.1088/0067-0049/194/2/32
– volume: 854
  start-page: 133
  year: 2018
  ident: R104
  publication-title: ApJ
  doi: 10.3847/1538-4357/aaa66f
– volume: 850
  start-page: 176
  year: 2017
  ident: R15
  publication-title: ApJ
  doi: 10.3847/1538-4357/aa961d
– volume: 522
  start-page: A91
  year: 2010
  ident: R98
  publication-title: A&A
  doi: 10.1051/0004-6361/201015158
– volume: 544
  start-page: A146
  year: 2012
  ident: R121
  publication-title: A&A
  doi: 10.1051/0004-6361/201118107
– volume: 58
  start-page: 727
  year: 2020
  ident: R56
  publication-title: ARA&A
  doi: 10.1146/annurev-astro-032620-021927
– volume: 485
  start-page: 729
  year: 2008
  ident: R123
  publication-title: A&A
  doi: 10.1051/0004-6361:200809472
– volume: 202
  start-page: 76
  year: 1975
  ident: R72
  publication-title: ApJ
  doi: 10.1086/153953
– volume: 559
  start-page: A51
  year: 2013
  ident: R35
  publication-title: A&A
  doi: 10.1051/0004-6361/201322073
– volume: 885
  start-page: 131
  year: 2019
  ident: R84
  publication-title: ApJ
  doi: 10.3847/1538-4357/ab4a11
– volume: 846
  start-page: 160
  year: 2017
  ident: R124
  publication-title: ApJ
  doi: 10.3847/1538-4357/aa8668
– volume: 253
  start-page: 2
  year: 2021
  ident: R51
  publication-title: ApJS
  doi: 10.3847/1538-4365/abd0fb
– volume: 652
  start-page: A71
  year: 2021
  ident: R87
  publication-title: A&A
  doi: 10.1051/0004-6361/202140469
– volume: 307
  start-page: 829
  year: 1996
  ident: R11
  publication-title: A&A
– volume: 822
  start-page: 85
  year: 2016
  ident: R66
  publication-title: ApJ
  doi: 10.3847/0004-637X/822/2/85
– volume: 416
  start-page: 631
  year: 2004
  ident: R9
  publication-title: A&A
  doi: 10.1051/0004-6361:20034123
SSID ssj0002183
Score 2.4261222
Snippet Context . Cyanopolyynes (HC 2 n +1 N, n = 1,2,3), which are the linear carbon chain molecules, are precursors for the prebiotic synthesis of simple amino...
SourceID crossref
SourceType Enrichment Source
Index Database
StartPage A177
Title Cyanopolyyne line survey towards high-mass star-forming regions with TMRT
Volume 663
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LaxsxEBZtSqGXkCYteRYdSi-ONvKupM0eTWibGFIa4lDnZPQyBBqn-BFwDvntmVnJ8rYpoellWQtZC57PszOfZj4R8tF7iPmtN4w7wRn2MjLtS81kybVxQ-6kwwbn02_q-EJ0-7K_LCuqu0umJrN3f-0r-R-rwhjYFbtkn2HZtCgMwD3YF65gYbj-k42P5nqEhxzM5xAq1vHiZDa-9RhQYjHspIVixOwa4mOkDMYMA1SkBvA0BiyRqUnY3mkUalxo0U6QHb-5DsJMGj8F-qPmZ4M8VoM_-BEJ58us1c8e0dDdrHWeRi8D2Qoze2ns7GoW53WzJgORL6tVl15VMFUEUfXMB0cqCpwX6cXoaVX0ZcFXdtrhAJdHThz8RKh6DKtiz0qtDCeCRO3votl_vMxSiWG9uS7buLkuBrjMIC3ykrzKy7Le1P96cp_e2xgshmQpPHehUSXbB2nsIC3SiGMaAUlvjazGTIJ2Aizekhd-tE42k_XoJ9pp2G6dvP4e7jbISRM3FHFDA25oxA1NuKFN3NCIG4q4oYibd-Tiy-fe0TGLR2owm1diyg6HvrTGKW60s6aS3oIPl07aonTg2oW13HglrITEVZkc_q-QHkNOYZQ2ujK-eE9WRjcjv0mo8RW3kAAL1TaQ9YKfF4ei4BV33uqhVFskX_xAAxv15vHYk5-DJ0yzRfbTl34FuZWnpm8_b_oOebPE7y5ZmY5nfg9iyqn5UEPhAUeja_U
linkProvider EDP
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cyanopolyyne+line+survey+towards+high-mass+star-forming+regions+with+TMRT&rft.jtitle=Astronomy+and+astrophysics+%28Berlin%29&rft.au=Wang%2C+Y.+X.&rft.au=Zhang%2C+J.+S.&rft.au=Yan%2C+Y.+T.&rft.au=Qiu%2C+J.+J.&rft.date=2022-07-01&rft.issn=0004-6361&rft.eissn=1432-0746&rft.volume=663&rft.spage=A177&rft_id=info:doi/10.1051%2F0004-6361%2F202142450&rft.externalDBID=n%2Fa&rft.externalDocID=10_1051_0004_6361_202142450
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0004-6361&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0004-6361&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0004-6361&client=summon