Cyanopolyyne line survey towards high-mass star-forming regions with TMRT
Context . Cyanopolyynes (HC 2 n +1 N, n = 1,2,3), which are the linear carbon chain molecules, are precursors for the prebiotic synthesis of simple amino acids. They are important for understanding prebiotic chemistry and may be good tracers of the star formation sequence. Aims . We aim to search fo...
Saved in:
Published in | Astronomy and astrophysics (Berlin) Vol. 663; p. A177 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
01.07.2022
|
Online Access | Get full text |
ISSN | 0004-6361 1432-0746 |
DOI | 10.1051/0004-6361/202142450 |
Cover
Abstract | Context
. Cyanopolyynes (HC
2
n
+1
N,
n
= 1,2,3), which are the linear carbon chain molecules, are precursors for the prebiotic synthesis of simple amino acids. They are important for understanding prebiotic chemistry and may be good tracers of the star formation sequence.
Aims
. We aim to search for cyanopolyynes in high-mass star-forming regions (HMSFRs) at possibly different evolutionary stages, investigate the evolution of HC
3
N and its relation with shock tracers, and detect the existence of HC
5
N and HC
7
N in HMSFRs with a formed protostar.
Methods
. We carried out a cyanopolyyne line survey towards a large sample of HMSFRs using the Shanghai Tian Ma 65 m Radio Telescope (TMRT). Our sample consisted of 123 targets taken from the TMRT C band line survey. It included three kinds of sources, namely those with detection of the 6.7 GHz CH
3
OH maser alone, with detection of the radio recombination line (RRL) alone, and with detection of both (hereafter referred to as Maser-only, RRL-only, and Maser-RRL sources, respectively). For our sample with detection of cyanopolyynes, their column densities were derived using the rotational temperature measured from the NH
3
lines. We constructed and fitted the far-infrared (FIR) spectral energy distributions (SED; obtained from the Herschel FIR data and the Atacama Pathfinder Experiment data at 870 µm) of our HC
3
N sources. Moreover, by analysing the relation between HC
3
N and other shock tracers, we also investigate whether HC
3
N is a good tracer of shocks.
Results
. We detected HC
3
N in 38 sources, HC
5
N in 11 sources, and HC
7
N in G24.790+0.084, with the highest detection rate being found for Maser-RRL sources and a very low detection rate found for RRL-only sources. The mean column density of HC
3
N was found to be (1.75 ± 0.42) × 10
13
, (2.84 ± 0.47) × 10
13
, and (0.82 ± 0.15) × 10
13
cm
−2
for Maser-only, Maser-RRL, and RRL-only sources, respectively. Based on a fit of the FIR SED, we derive their dust temperatures, H
2
column densities, and abundances of cyanopolyynes relative to H
2
. The mean relative abundance of HC
3
N was found to be (1.22 ± 0.52) × 10
−10
for Maser-only, (5.40 ± 1.45) × 10
−10
for Maser-RRL, and (1.65 ± 1.50) × 10
−10
for RRL-only sources, respectively.
Conclusions
. The detection rate, the column density, and the relative abundance of HC
3
N increase from Maser-only to Maser-RRL sources and decrease from Maser-RRL to RRL-only sources. This trend is consistent with the proposed evolutionary trend of HC
3
N under the assumption that our Maser-only, Maser-RRL, and RRL-only sources correspond to massive young stellar objects, ultracompact H
ii
regions, and normal classical H
ii
regions, respectively. Our detections enlarge the sample of HC
3
N in HMSFRs and support the idea that unsaturated complex organic molecules can exist in HMSFRs with a formed protostar. Furthermore, a statistical analysis of the integrated line intensity and column density of HC
3
N and shock-tracing molecules (SiO, H
2
CO) enabled us to find positive correlations between them. This suggests that HC
3
N may be another tracer of shocks, and should therefore be the subject of further observations and corresponding chemical simulations. Our results indirectly support the idea that the neutral-neutral reaction between C
2
H
2
and CN is the dominant formation pathway of HC
3
N. |
---|---|
AbstractList | Context
. Cyanopolyynes (HC
2
n
+1
N,
n
= 1,2,3), which are the linear carbon chain molecules, are precursors for the prebiotic synthesis of simple amino acids. They are important for understanding prebiotic chemistry and may be good tracers of the star formation sequence.
Aims
. We aim to search for cyanopolyynes in high-mass star-forming regions (HMSFRs) at possibly different evolutionary stages, investigate the evolution of HC
3
N and its relation with shock tracers, and detect the existence of HC
5
N and HC
7
N in HMSFRs with a formed protostar.
Methods
. We carried out a cyanopolyyne line survey towards a large sample of HMSFRs using the Shanghai Tian Ma 65 m Radio Telescope (TMRT). Our sample consisted of 123 targets taken from the TMRT C band line survey. It included three kinds of sources, namely those with detection of the 6.7 GHz CH
3
OH maser alone, with detection of the radio recombination line (RRL) alone, and with detection of both (hereafter referred to as Maser-only, RRL-only, and Maser-RRL sources, respectively). For our sample with detection of cyanopolyynes, their column densities were derived using the rotational temperature measured from the NH
3
lines. We constructed and fitted the far-infrared (FIR) spectral energy distributions (SED; obtained from the Herschel FIR data and the Atacama Pathfinder Experiment data at 870 µm) of our HC
3
N sources. Moreover, by analysing the relation between HC
3
N and other shock tracers, we also investigate whether HC
3
N is a good tracer of shocks.
Results
. We detected HC
3
N in 38 sources, HC
5
N in 11 sources, and HC
7
N in G24.790+0.084, with the highest detection rate being found for Maser-RRL sources and a very low detection rate found for RRL-only sources. The mean column density of HC
3
N was found to be (1.75 ± 0.42) × 10
13
, (2.84 ± 0.47) × 10
13
, and (0.82 ± 0.15) × 10
13
cm
−2
for Maser-only, Maser-RRL, and RRL-only sources, respectively. Based on a fit of the FIR SED, we derive their dust temperatures, H
2
column densities, and abundances of cyanopolyynes relative to H
2
. The mean relative abundance of HC
3
N was found to be (1.22 ± 0.52) × 10
−10
for Maser-only, (5.40 ± 1.45) × 10
−10
for Maser-RRL, and (1.65 ± 1.50) × 10
−10
for RRL-only sources, respectively.
Conclusions
. The detection rate, the column density, and the relative abundance of HC
3
N increase from Maser-only to Maser-RRL sources and decrease from Maser-RRL to RRL-only sources. This trend is consistent with the proposed evolutionary trend of HC
3
N under the assumption that our Maser-only, Maser-RRL, and RRL-only sources correspond to massive young stellar objects, ultracompact H
ii
regions, and normal classical H
ii
regions, respectively. Our detections enlarge the sample of HC
3
N in HMSFRs and support the idea that unsaturated complex organic molecules can exist in HMSFRs with a formed protostar. Furthermore, a statistical analysis of the integrated line intensity and column density of HC
3
N and shock-tracing molecules (SiO, H
2
CO) enabled us to find positive correlations between them. This suggests that HC
3
N may be another tracer of shocks, and should therefore be the subject of further observations and corresponding chemical simulations. Our results indirectly support the idea that the neutral-neutral reaction between C
2
H
2
and CN is the dominant formation pathway of HC
3
N. |
Author | Zhang, J. S. Qiu, J. J. Zhao, J. Y. Cai, J. H. Zou, Y. P. Wu, X. C. Yan, Y. T. Chen, J. L. He, X. L. Wang, Y. X. Gong, Y. B. |
Author_xml | – sequence: 1 givenname: Y. X. orcidid: 0000-0001-9155-0777 surname: Wang fullname: Wang, Y. X. – sequence: 2 givenname: J. S. orcidid: 0000-0002-5161-8180 surname: Zhang fullname: Zhang, J. S. – sequence: 3 givenname: Y. T. orcidid: 0000-0001-5574-0549 surname: Yan fullname: Yan, Y. T. – sequence: 4 givenname: J. J. orcidid: 0000-0002-9829-8655 surname: Qiu fullname: Qiu, J. J. – sequence: 5 givenname: J. L. surname: Chen fullname: Chen, J. L. – sequence: 6 givenname: J. Y. surname: Zhao fullname: Zhao, J. Y. – sequence: 7 givenname: Y. P. surname: Zou fullname: Zou, Y. P. – sequence: 8 givenname: X. C. surname: Wu fullname: Wu, X. C. – sequence: 9 givenname: X. L. surname: He fullname: He, X. L. – sequence: 10 givenname: Y. B. surname: Gong fullname: Gong, Y. B. – sequence: 11 givenname: J. H. surname: Cai fullname: Cai, J. H. |
BookMark | eNp9kM1KAzEUhYNUsK0-gZu8QOzN73SWUvwpVASp6yHJZDqR6aQk0TJv7xSlCxdu7uXC_Q7nnBma9KF3CN1SuKMg6QIABFFc0QUDRgUTEi7QlArOCBRCTdD0_HGFZil9jCejSz5F69Wg-3AI3TD0Dnd-HOkzfrkB53DUsU649buW7HVKOGUdSRPi3vc7HN3Ohz7ho88t3r68ba_RZaO75G5-9xy9Pz5sV89k8_q0Xt1viGWlyGTZuMKaWoHRtTWldFYAyFpaXtScMWEtGKeElVKCMgy0YbJcAhiljS6N43NU_ujaGFKKrqmszzqPZnLUvqsoVKdOqlPi6pS4OncysvwPe4h-r-PwL_UNpM9m0g |
CitedBy_id | crossref_primary_10_1088_1402_4896_ad9e3e crossref_primary_10_3847_1538_4365_acafe6 crossref_primary_10_3847_1538_3881_ad428d |
Cites_doi | 10.3847/1538-4357/ab001e 10.1051/0004-6361/201219567 10.1051/0004-6361/201015332 10.1088/0004-637X/691/1/823 10.1088/0004-637X/741/2/120 10.1093/mnras/stu1207 10.1088/2041-8205/740/1/L3 10.1051/0004-6361/201322725 10.1093/mnras/stu1349 10.1051/0004-6361:20065420 10.1088/0004-637X/699/2/1153 10.1051/0004-6361/201014582 10.1051/0004-6361/201322541 10.1093/mnras/stz1498 10.1111/j.1365-2966.2011.19594.x 10.3847/1538-4357/ab2d9e 10.1111/j.1365-2966.2009.15831.x 10.1051/0004-6361/201425404 10.1051/0004-6361:20078661 10.1088/0004-637X/736/2/163 10.3847/1538-4357/aade97 10.1051/0004-6361/202039274 10.1146/annurev.astro.40.060401.093845 10.1086/307195 10.1093/mnras/stz2431 10.1088/0004-637X/777/2/157 10.1093/mnras/stab2733 10.1111/j.1365-2966.2007.11615.x 10.1093/mnras/stab3511 10.1093/mnras/stab1352 10.1051/0004-6361/201220465 10.1093/mnras/stv1058 10.1051/0004-6361:200809481 10.1088/0004-637X/783/2/130 10.1051/0004-6361/200811568 10.3847/0004-637X/824/2/136 10.1088/0004-637X/722/2/1633 10.1051/0004-6361/201321096 10.3847/1538-4357/aadd0c 10.1093/mnras/staa3059 10.3847/1538-4365/ab818e 10.1051/0004-6361/201833718 10.1086/524096 10.1051/0004-6361/201424126 10.3847/1538-4365/aa956a 10.1086/191102 10.1051/0004-6361:20065560 10.1086/310732 10.1086/310254 10.1051/0004-6361/201322596 10.1146/annurev-astro-082708-101654 10.1088/1538-3873/aac8e9 10.3847/1538-4357/833/2/248 10.1051/0004-6361/201117112 10.1086/590110 10.3847/1538-4357/aacf9d 10.1051/0004-6361/201526275 10.3847/0004-637X/830/2/106 10.1086/680342 10.1111/j.1365-8711.1998.02014.x 10.1051/0004-6361/201731728 10.1051/0004-6361/202039670 10.1051/0004-6361/201014651 10.1093/mnras/stx2258 10.1051/0004-6361/201833140 10.1086/311188 10.1051/0004-6361:20030465 10.1088/0004-637X/699/1/585 10.1051/0004-6361/202039110 10.1088/0004-637X/764/1/61 10.1086/587050 10.1093/mnras/stz154 10.1088/0004-637X/815/2/130 10.1086/588185 10.3847/1538-4357/833/2/291 10.1093/mnras/stt1559 10.1093/pasj/psab012 10.1051/0004-6361/201732168 10.3847/0004-637X/819/2/140 10.1051/0004-6361/201526841 10.3847/1538-4365/ab06fb 10.1086/498673 10.1051/0004-6361/201220155 10.1093/mnras/sty180 10.1051/0004-6361/201526380 10.1051/0004-6361/201730791 10.1111/j.1365-2966.2008.14144.x 10.1051/0004-6361:20047186 10.1007/s10509-016-2773-5 10.1093/mnras/stw2302 10.1088/0067-0049/212/1/1 10.1051/0004-6361/201423677 10.1086/518595 10.3847/0004-637X/822/2/59 10.1051/0004-6361:20031704 10.1088/0004-637X/702/2/1025 10.1086/680323 10.1086/190919 10.1086/171456 10.3847/1538-4365/aa8098 10.3847/0004-6256/152/4/92 10.1051/0004-6361:20078900 10.1088/0067-0049/194/2/32 10.3847/1538-4357/aaa66f 10.3847/1538-4357/aa961d 10.1051/0004-6361/201015158 10.1051/0004-6361/201118107 10.1146/annurev-astro-032620-021927 10.1051/0004-6361:200809472 10.1086/153953 10.1051/0004-6361/201322073 10.3847/1538-4357/ab4a11 10.3847/1538-4357/aa8668 10.3847/1538-4365/abd0fb 10.1051/0004-6361/202140469 10.3847/0004-637X/822/2/85 10.1051/0004-6361:20034123 |
ContentType | Journal Article |
DBID | AAYXX CITATION |
DOI | 10.1051/0004-6361/202142450 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Astronomy & Astrophysics Physics |
EISSN | 1432-0746 |
ExternalDocumentID | 10_1051_0004_6361_202142450 |
GroupedDBID | -DZ -~X 2.D 23N 2WC 4.4 5GY 5VS 6TJ 85S AACRX AAFNC AAFWJ AAJMC AAOGA AAOTM AAYXX ABDNZ ABDPE ABNSH ABPPZ ABUBZ ABZDU ACACO ACGFS ACNCT ACRPL ACYGS ACYRX ADCOW ADHUB ADIYS ADNMO AEILP AENEX AGQPQ AI. AIZTS ALMA_UNASSIGNED_HOLDINGS ASPBG AVWKF AZFZN AZPVJ CITATION CS3 E.L E3Z EBS EJD F5P FRP GI~ HG6 I09 IL9 LAS MVM OHT OK1 RED RHV RIG RNS SDH SJN TR2 UPT UQL VH1 VOH WH7 XOL ZY4 |
ID | FETCH-LOGICAL-c294t-8fe7cbd60badcb95ec4005d5c37d3224cc0be64c55506b20ab259800b6aba9be3 |
ISSN | 0004-6361 |
IngestDate | Tue Jul 01 03:54:00 EDT 2025 Thu Apr 24 22:55:03 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c294t-8fe7cbd60badcb95ec4005d5c37d3224cc0be64c55506b20ab259800b6aba9be3 |
ORCID | 0000-0001-9155-0777 0000-0002-9829-8655 0000-0001-5574-0549 0000-0002-5161-8180 |
OpenAccessLink | https://www.aanda.org/articles/aa/pdf/2022/07/aa42450-21.pdf |
ParticipantIDs | crossref_citationtrail_10_1051_0004_6361_202142450 crossref_primary_10_1051_0004_6361_202142450 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-07-01 |
PublicationDateYYYYMMDD | 2022-07-01 |
PublicationDate_xml | – month: 07 year: 2022 text: 2022-07-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Astronomy and astrophysics (Berlin) |
PublicationYear | 2022 |
References | Zhang (R130) 2017; 606 Reid (R83) 2014; 783 Xu (R123) 2008; 485 Tang (R100) 2018; 611 Reid (R84) 2019; 885 Codella (R23) 1999; 343 Loomis (R65) 2016; 463 Molinari (R78) 2016; 591 Cernicharo (R16) 2020; 642 Zhang (R131) 2021; 648 Gong (R43) 2015; 581 Wakelam (R116) 2004; 422 Ragan (R81) 2011; 736 Molinari (R77) 2008; 481 Levshakov (R61) 2010; 524 Walsh (R117) 1998; 301 Breen (R12) 2010; 401 Gieser (R41) 2021; 648 Sakai (R88) 2007; 663 Urquhart (R110) 2014; 568 Mitchell (R76) 1984; 54 Gerner (R39) 2014; 563 Svoboda (R96) 2016; 822 Taniguchi (R102) 2018; 866 Bernasconi (R11) 1996; 307 Kauffmann (R57) 2008; 487 Mangum (R68) 2015; 127 Chen (R19) 2020; 248 Rolffs (R85) 2011; 536 Mendoza (R73) 2018; 475 Contreras (R26) 2013; 549 Hoq (R54) 2013; 777 Graninger (R44) 2016; 819 Yu (R127) 2016; 833 Taniguchi (R105) 2019; 881 König (R58) 2017; 599 Taniguchi (R104) 2018; 854 Calcutt (R14) 2018; 617 Condon (R25) 2016; 4.3 McCarthy (R70) 1998; 494 Yang (R125) 2019; 241 Garrod (R38) 2006; 457 Hosokawa (R55) 2009; 691 Miettinen (R74) 2014; 562 Taniguchi (R101) 2016; 830 Taniguchi (R106) 2019; 872 Hassel (R50) 2008; 681 Suzuki (R95) 1992; 392 Bell (R7) 1997; 483 Ceccarelli (R15) 2017; 850 Takano (R99) 1998; 329 Duarte-Cabral (R31) 2014; 570 Tafalla (R98) 2010; 522 Jørgensen (R56) 2020; 58 Travers (R108) 1996; 469 Araki (R5) 2016; 833 R59 Rathborne (R82) 2011; 741 Anderson (R2) 2011; 194 Urquhart (R112) 2018; 473 Wienen (R121) 2012; 544 Csengeri (R28) 2016; 586 Beltrân (R9) 2004; 416 Herbst (R52) 2009; 47 Wu (R122) 2019; 488 Zhang (R132) 2022; 510 Cyganowski (R30) 2013; 764 Green (R46) 2014; 443 Schuller (R92) 2009; 504 Viti (R115) 2011; 740 Li (R62) 2016; 152 Hirota (R53) 2009; 699 Widicus Weaver (R120) 2017; 232 Martin-Pintado (R69) 1992; 254 Sakai (R91) 2010; 722 Luisi (R67) 2018; 130 McElroy (R71) 2013; 550 Ellingsen (R33) 2006; 638 Elia (R32) 2010; 518 Wang (R118) 2017; 58 Wang (R119) 2020; 499 Codella (R24) 2010; 518 Sakai (R89) 2008; 678 Anderson (R3) 2014; 212 McGee (R72) 1975; 202 Esplugues (R35) 2013; 559 Tafalla (R97) 2004; 416 Abuter (R45) 2018; 615 Law (R60) 2018; 863 R79 Feng (R37) 2021; 73 Taniguchi (R103) 2018; 866 Yu (R126) 2015; 451 Benedettini (R10) 2013; 436 Ossenkopf (R80) 1994; 291 Sabatini (R87) 2021; 652 Cosentino (R27) 2018; 474 Anderson (R4) 2018; 234 Minier (R75) 2003; 403 Thaddeus (R107) 2001; 57 Urquhart (R114) 2022; 510 Yang (R124) 2017; 846 He (R51) 2021; 253 Sobolev (R94) 1994; 291 Giannetti (R40) 2017; 606 Chung (R21) 1991; 24 Yu (R128) 2019; 489 Ellingsen (R34) 2007; 377 Belloche (R8) 2013; 559 Churchwell (R22) 2002; 40 Shirley (R93) 2015; 127 Urquhart (R111) 2014; 443 Urquhart (R113) 2019; 484 Sakai (R90) 2009; 702 Gusdorf (R47) 2008; 482 Guzmân (R49) 2015; 815 Chapman (R18) 2009; 394 Cummins (R29) 1986; 60 Feng (R36) 2015; 581 Arce (R6) 2008; 681 Urquhart (R109) 2011; 418 Zhang (R129) 2016; 361 Aikawa (R1) 2008; 674 Goldsmith (R42) 1999; 517 Güsten (R48) 2006; 454 Liu (R64) 2021; 505 Li (R63) 2016; 824 Bussa (R13) 2012; 219 Roman-Duval (R86) 2009; 699 Cesaroni (R17) 2005; 227 Löpez-Sepulcre (R66) 2016; 822 Chira (R20) 2013; 552 |
References_xml | – volume: 872 start-page: 154 year: 2019 ident: R106 publication-title: ApJ doi: 10.3847/1538-4357/ab001e – volume: 552 start-page: A40 year: 2013 ident: R20 publication-title: A&A doi: 10.1051/0004-6361/201219567 – volume: 524 start-page: A32 year: 2010 ident: R61 publication-title: A&A doi: 10.1051/0004-6361/201015332 – volume: 691 start-page: 823 year: 2009 ident: R55 publication-title: ApJ doi: 10.1088/0004-637X/691/1/823 – ident: R59 – volume: 741 start-page: 120 year: 2011 ident: R82 publication-title: ApJ doi: 10.1088/0004-637X/741/2/120 – volume: 443 start-page: 1555 year: 2014 ident: R111 publication-title: MNRAS doi: 10.1093/mnras/stu1207 – volume: 740 start-page: L3 year: 2011 ident: R115 publication-title: ApJ doi: 10.1088/2041-8205/740/1/L3 – volume: 581 start-page: A71 year: 2015 ident: R36 publication-title: A&A doi: 10.1051/0004-6361/201322725 – volume: 443 start-page: 2252 year: 2014 ident: R46 publication-title: MNRAS doi: 10.1093/mnras/stu1349 – volume: 454 start-page: L13 year: 2006 ident: R48 publication-title: A&A doi: 10.1051/0004-6361:20065420 – volume: 699 start-page: 1153 year: 2009 ident: R86 publication-title: ApJ doi: 10.1088/0004-637X/699/2/1153 – volume: 518 start-page: L112 year: 2010 ident: R24 publication-title: A&A doi: 10.1051/0004-6361/201014582 – volume: 563 start-page: A97 year: 2014 ident: R39 publication-title: A&A doi: 10.1051/0004-6361/201322541 – volume: 488 start-page: 495 year: 2019 ident: R122 publication-title: MNRAS doi: 10.1093/mnras/stz1498 – volume: 418 start-page: 1689 year: 2011 ident: R109 publication-title: MNRAS doi: 10.1111/j.1365-2966.2011.19594.x – volume: 881 start-page: 57 year: 2019 ident: R105 publication-title: ApJ doi: 10.3847/1538-4357/ab2d9e – volume: 401 start-page: 2219 year: 2010 ident: R12 publication-title: MNRAS doi: 10.1111/j.1365-2966.2009.15831.x – volume: 586 start-page: A149 year: 2016 ident: R28 publication-title: A&A doi: 10.1051/0004-6361/201425404 – volume: 481 start-page: 345 year: 2008 ident: R77 publication-title: A&A doi: 10.1051/0004-6361:20078661 – ident: R79 – volume: 736 start-page: 163 year: 2011 ident: R81 publication-title: ApJ doi: 10.1088/0004-637X/736/2/163 – volume: 866 start-page: 150 year: 2018 ident: R103 publication-title: ApJ doi: 10.3847/1538-4357/aade97 – volume: 642 start-page: L8 year: 2020 ident: R16 publication-title: A&A doi: 10.1051/0004-6361/202039274 – volume: 40 start-page: 27 year: 2002 ident: R22 publication-title: ARA&A doi: 10.1146/annurev.astro.40.060401.093845 – volume: 517 start-page: 209 year: 1999 ident: R42 publication-title: ApJ doi: 10.1086/307195 – volume: 489 start-page: 4497 year: 2019 ident: R128 publication-title: MNRAS doi: 10.1093/mnras/stz2431 – volume: 777 start-page: 157 year: 2013 ident: R54 publication-title: ApJ doi: 10.1088/0004-637X/777/2/157 – volume: 510 start-page: 4998 year: 2022 ident: R132 publication-title: MNRAS doi: 10.1093/mnras/stab2733 – volume: 343 start-page: 585 year: 1999 ident: R23 publication-title: A&A – volume: 377 start-page: 571 year: 2007 ident: R34 publication-title: MNRAS doi: 10.1111/j.1365-2966.2007.11615.x – volume: 510 start-page: 3389 year: 2022 ident: R114 publication-title: MNRAS doi: 10.1093/mnras/stab3511 – volume: 505 start-page: 2801 year: 2021 ident: R64 publication-title: MNRAS doi: 10.1093/mnras/stab1352 – volume: 550 start-page: A36 year: 2013 ident: R71 publication-title: A&A doi: 10.1051/0004-6361/201220465 – volume: 451 start-page: 2507 year: 2015 ident: R126 publication-title: MNRAS doi: 10.1093/mnras/stv1058 – volume: 487 start-page: 993 year: 2008 ident: R57 publication-title: A&A doi: 10.1051/0004-6361:200809481 – volume: 783 start-page: 130 year: 2014 ident: R83 publication-title: ApJ doi: 10.1088/0004-637X/783/2/130 – volume: 504 start-page: 415 year: 2009 ident: R92 publication-title: A&A doi: 10.1051/0004-6361/200811568 – volume: 824 start-page: 136 year: 2016 ident: R63 publication-title: ApJ doi: 10.3847/0004-637X/824/2/136 – volume: 291 start-page: 943 year: 1994 ident: R80 publication-title: A&A – volume: 722 start-page: 1633 year: 2010 ident: R91 publication-title: ApJ doi: 10.1088/0004-637X/722/2/1633 – volume: 559 start-page: A47 year: 2013 ident: R8 publication-title: A&A doi: 10.1051/0004-6361/201321096 – volume: 866 start-page: 32 year: 2018 ident: R102 publication-title: ApJ doi: 10.3847/1538-4357/aadd0c – volume: 499 start-page: 4432 year: 2020 ident: R119 publication-title: MNRAS doi: 10.1093/mnras/staa3059 – volume: 474 start-page: 3760 year: 2018 ident: R27 publication-title: MNRAS – volume: 248 start-page: 3 year: 2020 ident: R19 publication-title: ApJS doi: 10.3847/1538-4365/ab818e – volume: 615 start-page: L15 year: 2018 ident: R45 publication-title: A&A doi: 10.1051/0004-6361/201833718 – volume: 674 start-page: 984 year: 2008 ident: R1 publication-title: ApJ doi: 10.1086/524096 – volume: 568 start-page: A41 year: 2014 ident: R110 publication-title: A&A doi: 10.1051/0004-6361/201424126 – volume: 234 start-page: 33 year: 2018 ident: R4 publication-title: ApJS doi: 10.3847/1538-4365/aa956a – volume: 60 start-page: 819 year: 1986 ident: R29 publication-title: ApJS doi: 10.1086/191102 – volume: 457 start-page: 927 year: 2006 ident: R38 publication-title: A&A doi: 10.1051/0004-6361:20065560 – volume: 483 start-page: L61 year: 1997 ident: R7 publication-title: ApJ doi: 10.1086/310732 – volume: 469 start-page: L65 year: 1996 ident: R108 publication-title: ApJ doi: 10.1086/310254 – volume: 562 start-page: A3 year: 2014 ident: R74 publication-title: A&A doi: 10.1051/0004-6361/201322596 – volume: 47 start-page: 427 year: 2009 ident: R52 publication-title: ARA&A doi: 10.1146/annurev-astro-082708-101654 – volume: 130 start-page: 084101 year: 2018 ident: R67 publication-title: PASP doi: 10.1088/1538-3873/aac8e9 – volume: 833 start-page: 248 year: 2016 ident: R127 publication-title: ApJ doi: 10.3847/1538-4357/833/2/248 – volume: 536 start-page: A33 year: 2011 ident: R85 publication-title: A&A doi: 10.1051/0004-6361/201117112 – volume: 681 start-page: L21 year: 2008 ident: R6 publication-title: ApJ doi: 10.1086/590110 – volume: 863 start-page: 88 year: 2018 ident: R60 publication-title: ApJ doi: 10.3847/1538-4357/aacf9d – volume: 581 start-page: A48 year: 2015 ident: R43 publication-title: A&A doi: 10.1051/0004-6361/201526275 – volume: 57 start-page: 757 year: 2001 ident: R107 publication-title: SAA – volume: 830 start-page: 106 year: 2016 ident: R101 publication-title: ApJ doi: 10.3847/0004-637X/830/2/106 – volume: 127 start-page: 299 year: 2015 ident: R93 publication-title: PASP doi: 10.1086/680342 – volume: 301 start-page: 640 year: 1998 ident: R117 publication-title: MNRAS doi: 10.1111/j.1365-8711.1998.02014.x – volume: 606 start-page: L12 year: 2017 ident: R40 publication-title: A&A doi: 10.1051/0004-6361/201731728 – volume: 648 start-page: A66 year: 2021 ident: R41 publication-title: A&A doi: 10.1051/0004-6361/202039670 – volume: 518 start-page: L97 year: 2010 ident: R32 publication-title: A&A doi: 10.1051/0004-6361/201014651 – volume: 473 start-page: 1059 year: 2018 ident: R112 publication-title: MNRAS doi: 10.1093/mnras/stx2258 – volume: 617 start-page: A95 year: 2018 ident: R14 publication-title: A&A doi: 10.1051/0004-6361/201833140 – volume: 494 start-page: L231 year: 1998 ident: R70 publication-title: ApJ doi: 10.1086/311188 – volume: 403 start-page: 1095 year: 2003 ident: R75 publication-title: A&A doi: 10.1051/0004-6361:20030465 – volume: 699 start-page: 585 year: 2009 ident: R53 publication-title: ApJ doi: 10.1088/0004-637X/699/1/585 – volume: 648 start-page: A83 year: 2021 ident: R131 publication-title: A&A doi: 10.1051/0004-6361/202039110 – volume: 764 start-page: 61 year: 2013 ident: R30 publication-title: ApJ doi: 10.1088/0004-637X/764/1/61 – volume: 24 start-page: 217 year: 1991 ident: R21 publication-title: JKAS – volume: 678 start-page: 1049 year: 2008 ident: R89 publication-title: ApJ doi: 10.1086/587050 – volume: 484 start-page: 4444 year: 2019 ident: R113 publication-title: MNRAS doi: 10.1093/mnras/stz154 – volume: 815 start-page: 130 year: 2015 ident: R49 publication-title: ApJ doi: 10.1088/0004-637X/815/2/130 – volume: 681 start-page: 1385 year: 2008 ident: R50 publication-title: ApJ doi: 10.1086/588185 – volume: 833 start-page: 291 year: 2016 ident: R5 publication-title: ApJ doi: 10.3847/1538-4357/833/2/291 – volume: 436 start-page: 179 year: 2013 ident: R10 publication-title: MNRAS doi: 10.1093/mnras/stt1559 – volume: 329 start-page: 1156 year: 1998 ident: R99 publication-title: A&A – volume: 73 start-page: 467 year: 2021 ident: R37 publication-title: PASJ doi: 10.1093/pasj/psab012 – volume: 611 start-page: A6 year: 2018 ident: R100 publication-title: A&A doi: 10.1051/0004-6361/201732168 – volume: 819 start-page: 140 year: 2016 ident: R44 publication-title: ApJ doi: 10.3847/0004-637X/819/2/140 – volume: 599 start-page: A139 year: 2017 ident: R58 publication-title: A&A doi: 10.1051/0004-6361/201526841 – volume: 241 start-page: 18 year: 2019 ident: R125 publication-title: ApJS doi: 10.3847/1538-4365/ab06fb – volume: 638 start-page: 241 year: 2006 ident: R33 publication-title: ApJ doi: 10.1086/498673 – volume: 549 start-page: A45 year: 2013 ident: R26 publication-title: A&A doi: 10.1051/0004-6361/201220155 – volume: 58 start-page: 37 year: 2017 ident: R118 publication-title: AcASn – volume: 4.3 start-page: 6 year: 2016 ident: R25 publication-title: Essential Rad. Astron. – volume: 475 start-page: 5501 year: 2018 ident: R73 publication-title: MNRAS doi: 10.1093/mnras/sty180 – volume: 591 start-page: A149 year: 2016 ident: R78 publication-title: A&A doi: 10.1051/0004-6361/201526380 – volume: 606 start-page: A74 year: 2017 ident: R130 publication-title: A&A doi: 10.1051/0004-6361/201730791 – volume: 394 start-page: 221 year: 2009 ident: R18 publication-title: MNRAS doi: 10.1111/j.1365-2966.2008.14144.x – volume: 422 start-page: 159 year: 2004 ident: R116 publication-title: A&A doi: 10.1051/0004-6361:20047186 – volume: 361 start-page: 191 year: 2016 ident: R129 publication-title: Ap&SS doi: 10.1007/s10509-016-2773-5 – volume: 463 start-page: 4175 year: 2016 ident: R65 publication-title: MNRAS doi: 10.1093/mnras/stw2302 – volume: 212 start-page: 1 year: 2014 ident: R3 publication-title: ApJS doi: 10.1088/0067-0049/212/1/1 – volume: 570 start-page: A1 year: 2014 ident: R31 publication-title: A&A doi: 10.1051/0004-6361/201423677 – volume: 219 start-page: 446 year: 2012 ident: R13 publication-title: AAS Meeting – volume: 254 start-page: 315 year: 1992 ident: R69 publication-title: A&A – volume: 663 start-page: 1174 year: 2007 ident: R88 publication-title: ApJ doi: 10.1086/518595 – volume: 822 start-page: 59 year: 2016 ident: R96 publication-title: ApJ doi: 10.3847/0004-637X/822/2/59 – volume: 416 start-page: 191 year: 2004 ident: R97 publication-title: A&A doi: 10.1051/0004-6361:20031704 – volume: 702 start-page: 1025 year: 2009 ident: R90 publication-title: ApJ doi: 10.1088/0004-637X/702/2/1025 – volume: 127 start-page: 266 year: 2015 ident: R68 publication-title: PASP doi: 10.1086/680323 – volume: 54 start-page: 81 year: 1984 ident: R76 publication-title: ApJS doi: 10.1086/190919 – volume: 227 start-page: 59 year: 2005 ident: R17 publication-title: in Massive Star Birth: A Crossroads of Astrophysics (Cambridge: Cambridge University Press) – volume: 392 start-page: 551 year: 1992 ident: R95 publication-title: ApJ doi: 10.1086/171456 – volume: 232 start-page: 3 year: 2017 ident: R120 publication-title: ApJS doi: 10.3847/1538-4365/aa8098 – volume: 291 start-page: 569 year: 1994 ident: R94 publication-title: A&A – volume: 152 start-page: 92 year: 2016 ident: R62 publication-title: AJ doi: 10.3847/0004-6256/152/4/92 – volume: 482 start-page: 809 year: 2008 ident: R47 publication-title: A&A doi: 10.1051/0004-6361:20078900 – volume: 194 start-page: 32 year: 2011 ident: R2 publication-title: ApJS doi: 10.1088/0067-0049/194/2/32 – volume: 854 start-page: 133 year: 2018 ident: R104 publication-title: ApJ doi: 10.3847/1538-4357/aaa66f – volume: 850 start-page: 176 year: 2017 ident: R15 publication-title: ApJ doi: 10.3847/1538-4357/aa961d – volume: 522 start-page: A91 year: 2010 ident: R98 publication-title: A&A doi: 10.1051/0004-6361/201015158 – volume: 544 start-page: A146 year: 2012 ident: R121 publication-title: A&A doi: 10.1051/0004-6361/201118107 – volume: 58 start-page: 727 year: 2020 ident: R56 publication-title: ARA&A doi: 10.1146/annurev-astro-032620-021927 – volume: 485 start-page: 729 year: 2008 ident: R123 publication-title: A&A doi: 10.1051/0004-6361:200809472 – volume: 202 start-page: 76 year: 1975 ident: R72 publication-title: ApJ doi: 10.1086/153953 – volume: 559 start-page: A51 year: 2013 ident: R35 publication-title: A&A doi: 10.1051/0004-6361/201322073 – volume: 885 start-page: 131 year: 2019 ident: R84 publication-title: ApJ doi: 10.3847/1538-4357/ab4a11 – volume: 846 start-page: 160 year: 2017 ident: R124 publication-title: ApJ doi: 10.3847/1538-4357/aa8668 – volume: 253 start-page: 2 year: 2021 ident: R51 publication-title: ApJS doi: 10.3847/1538-4365/abd0fb – volume: 652 start-page: A71 year: 2021 ident: R87 publication-title: A&A doi: 10.1051/0004-6361/202140469 – volume: 307 start-page: 829 year: 1996 ident: R11 publication-title: A&A – volume: 822 start-page: 85 year: 2016 ident: R66 publication-title: ApJ doi: 10.3847/0004-637X/822/2/85 – volume: 416 start-page: 631 year: 2004 ident: R9 publication-title: A&A doi: 10.1051/0004-6361:20034123 |
SSID | ssj0002183 |
Score | 2.4261222 |
Snippet | Context
. Cyanopolyynes (HC
2
n
+1
N,
n
= 1,2,3), which are the linear carbon chain molecules, are precursors for the prebiotic synthesis of simple amino... |
SourceID | crossref |
SourceType | Enrichment Source Index Database |
StartPage | A177 |
Title | Cyanopolyyne line survey towards high-mass star-forming regions with TMRT |
Volume | 663 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LaxsxEBZtSqGXkCYteRYdSi-ONvKupM0eTWibGFIa4lDnZPQyBBqn-BFwDvntmVnJ8rYpoellWQtZC57PszOfZj4R8tF7iPmtN4w7wRn2MjLtS81kybVxQ-6kwwbn02_q-EJ0-7K_LCuqu0umJrN3f-0r-R-rwhjYFbtkn2HZtCgMwD3YF65gYbj-k42P5nqEhxzM5xAq1vHiZDa-9RhQYjHspIVixOwa4mOkDMYMA1SkBvA0BiyRqUnY3mkUalxo0U6QHb-5DsJMGj8F-qPmZ4M8VoM_-BEJ58us1c8e0dDdrHWeRi8D2Qoze2ns7GoW53WzJgORL6tVl15VMFUEUfXMB0cqCpwX6cXoaVX0ZcFXdtrhAJdHThz8RKh6DKtiz0qtDCeCRO3votl_vMxSiWG9uS7buLkuBrjMIC3ykrzKy7Le1P96cp_e2xgshmQpPHehUSXbB2nsIC3SiGMaAUlvjazGTIJ2Aizekhd-tE42k_XoJ9pp2G6dvP4e7jbISRM3FHFDA25oxA1NuKFN3NCIG4q4oYibd-Tiy-fe0TGLR2owm1diyg6HvrTGKW60s6aS3oIPl07aonTg2oW13HglrITEVZkc_q-QHkNOYZQ2ujK-eE9WRjcjv0mo8RW3kAAL1TaQ9YKfF4ei4BV33uqhVFskX_xAAxv15vHYk5-DJ0yzRfbTl34FuZWnpm8_b_oOebPE7y5ZmY5nfg9iyqn5UEPhAUeja_U |
linkProvider | EDP |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cyanopolyyne+line+survey+towards+high-mass+star-forming+regions+with+TMRT&rft.jtitle=Astronomy+and+astrophysics+%28Berlin%29&rft.au=Wang%2C+Y.+X.&rft.au=Zhang%2C+J.+S.&rft.au=Yan%2C+Y.+T.&rft.au=Qiu%2C+J.+J.&rft.date=2022-07-01&rft.issn=0004-6361&rft.eissn=1432-0746&rft.volume=663&rft.spage=A177&rft_id=info:doi/10.1051%2F0004-6361%2F202142450&rft.externalDBID=n%2Fa&rft.externalDocID=10_1051_0004_6361_202142450 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0004-6361&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0004-6361&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0004-6361&client=summon |