Extension of the multilevel radiative transfer code PyRaTE to model linear polarization of molecular lines

Context. Linear polarization of spectral lines, commonly known as the Goldreich-Kylafis effect within the star formation community, is one of the most underutilized techniques for probing magnetic fields in the dense and cold interstellar medium. Aims. In this study, we implement linear polarization...

Full description

Saved in:
Bibliographic Details
Published inAstronomy and astrophysics (Berlin) Vol. 692; p. A75
Main Authors Tritsis, A., Kylafis, N.
Format Journal Article
LanguageEnglish
Published 01.12.2024
Online AccessGet full text

Cover

Loading…
Abstract Context. Linear polarization of spectral lines, commonly known as the Goldreich-Kylafis effect within the star formation community, is one of the most underutilized techniques for probing magnetic fields in the dense and cold interstellar medium. Aims. In this study, we implement linear polarization of molecular spectral lines into the multilevel, non-local thermodynamic equilibrium radiative transfer code P Y R A TE. Methods. Different modes of polarized radiation are treated individually, with separate optical depths computed for each polarization direction. Our implementation is valid in the so-called strong magnetic field limit and is exact for either a system satisfying the large-velocity-gradient approximation, and/or for any system with a uniform magnetic field. We benchmark our implementation against analytical results and provide tests for various limiting cases. Results. In agreement with previous theoretical results, we find that in the multilevel case the amount of fractional polarization decreases when compared to the two-level approximation, but this result is subject to the relative importance between radiative and collisional processes. Finally, we post-process an axially symmetric, nonideal magnetohydrodynamic chemo-dynamical simulation of a collapsing prestellar core and provide theoretical predictions regarding the shape (as a function of velocity) of the polarization fraction of CO during the early stages in the evolution of molecular clouds.
AbstractList Context. Linear polarization of spectral lines, commonly known as the Goldreich-Kylafis effect within the star formation community, is one of the most underutilized techniques for probing magnetic fields in the dense and cold interstellar medium. Aims. In this study, we implement linear polarization of molecular spectral lines into the multilevel, non-local thermodynamic equilibrium radiative transfer code P Y R A TE. Methods. Different modes of polarized radiation are treated individually, with separate optical depths computed for each polarization direction. Our implementation is valid in the so-called strong magnetic field limit and is exact for either a system satisfying the large-velocity-gradient approximation, and/or for any system with a uniform magnetic field. We benchmark our implementation against analytical results and provide tests for various limiting cases. Results. In agreement with previous theoretical results, we find that in the multilevel case the amount of fractional polarization decreases when compared to the two-level approximation, but this result is subject to the relative importance between radiative and collisional processes. Finally, we post-process an axially symmetric, nonideal magnetohydrodynamic chemo-dynamical simulation of a collapsing prestellar core and provide theoretical predictions regarding the shape (as a function of velocity) of the polarization fraction of CO during the early stages in the evolution of molecular clouds.
Author Kylafis, N.
Tritsis, A.
Author_xml – sequence: 1
  givenname: A.
  orcidid: 0000-0003-4987-7754
  surname: Tritsis
  fullname: Tritsis, A.
– sequence: 2
  givenname: N.
  surname: Kylafis
  fullname: Kylafis, N.
BookMark eNp9kEtLAzEUhYNUsFZ_gZv8gbF5zSNLKfUBBUXqekiTG0zJTEqSFuuvd9pKFy5cXc7lnAPnu0ajPvSA0B0l95SUdEoIEUXFKzplhHFR15JeoDEVnBWkFtUIjc-OK3Sd0nqQjDZ8jNbzrwx9cqHHweL8Cbjb-uw87MDjqIxT2e0A56j6ZCFiHQzgt_27Ws5xDrgbpMfe9aAi3gSvovseEqe2LnjQ2-F3NKQbdGmVT3D7eyfo43G-nD0Xi9enl9nDotBMilw0tlkZqqVVhNjGSLkygvFaiZIxEFKB5VIqRpQm2rCmNFquRANU1LpUoqr5BPFTr44hpQi23UTXqbhvKWkPuNoDjPYAoz3jGlLyT0q7fJwybHf-3-wP45ly6Q
CitedBy_id crossref_primary_10_1051_0004_6361_202452013
Cites_doi 10.1103/RevModPhys.44.169
10.1093/mnras/149.2.111
10.1086/151852
10.1086/154835
10.3847/1538-4357/acac27
10.1093/mnras/stab3806
10.1088/0004-637X/692/1/844
10.1086/183446
10.1086/145731
10.1086/150748
10.1051/0004-6361:200811056
10.1016/0370-1573(71)90011-1
10.1038/s41586-020-2649-2
10.1051/0004-6361/202038196
10.4159/harvard.9780674864658
10.1088/0004-637X/741/1/21
10.1111/j.1365-2966.2010.17110.x
10.1007/BF01331827
10.3847/1538-4357/ac28a1
10.1007/BF00148255
10.1051/0004-6361/202037509
10.1093/mnras/stab3740
10.1109/MCSE.2007.55
10.1137/S1064827503422932
10.1007/1-4020-2415-0
10.1146/annurev-astro-041122-031043
10.3847/1538-4357/aa70a0
10.1086/159663
10.1086/307107
10.3847/1538-4357/ac7c0f
10.1038/s41592-019-0686-2
10.1103/PhysRev.81.890.2
10.1016/0022-4073(70)90002-6
10.1051/0004-6361:20041729
10.1051/0004-6361:200809577
10.1086/162483
10.1007/978-94-011-4509-1_9
10.1023/B:ASTR.0000045007.35868.17
10.1086/168722
10.1086/305624
10.3847/1538-4357/aba122
10.1093/mnras/stw1678
10.1086/190523
10.1086/587546
10.1051/0004-6361/202039779
10.2172/6997568
10.1051/0004-6361/201935064
10.1086/160851
10.1093/mnras/stad829
10.1086/430815
10.1088/0067-0049/192/1/9
10.1086/378769
10.1051/0004-6361:20066820
10.1145/2833157.2833162
10.1051/0004-6361/201015333
10.1051/0004-6361/201321742
ContentType Journal Article
DBID AAYXX
CITATION
DOI 10.1051/0004-6361/202347791
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Astronomy & Astrophysics
Physics
EISSN 1432-0746
ExternalDocumentID 10_1051_0004_6361_202347791
GroupedDBID -DZ
-~X
2.D
23N
2WC
4.4
5GY
5VS
6TJ
85S
AACRX
AAFNC
AAFWJ
AAJMC
AAOGA
AAOTM
AAYXX
ABDNZ
ABDPE
ABNSH
ABPPZ
ABUBZ
ABZDU
ACACO
ACGFS
ACNCT
ACRPL
ACYGS
ACYRX
ADCOW
ADHUB
ADIYS
ADNMO
AEILP
AENEX
AGQPQ
AI.
AIZTS
ALMA_UNASSIGNED_HOLDINGS
ASPBG
AVWKF
AZFZN
AZPVJ
CITATION
CS3
E.L
E3Z
EBS
EJD
F5P
FRP
GI~
HG6
I09
IL9
LAS
MVM
OHT
OK1
RED
RHV
RIG
RNS
SDH
SJN
TR2
UPT
UQL
VH1
VOH
WH7
XOL
ZY4
ID FETCH-LOGICAL-c294t-8f8bd1c9fa00f8d99bd4237a4522e49aef399a20ac0cd285dc9b48e147c5a4673
ISSN 0004-6361
IngestDate Tue Jul 01 02:08:26 EDT 2025
Thu Apr 24 22:59:24 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c294t-8f8bd1c9fa00f8d99bd4237a4522e49aef399a20ac0cd285dc9b48e147c5a4673
ORCID 0000-0003-4987-7754
OpenAccessLink https://www.aanda.org/10.1051/0004-6361/202347791/pdf
ParticipantIDs crossref_primary_10_1051_0004_6361_202347791
crossref_citationtrail_10_1051_0004_6361_202347791
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-12-01
PublicationDateYYYYMMDD 2024-12-01
PublicationDate_xml – month: 12
  year: 2024
  text: 2024-12-01
  day: 01
PublicationDecade 2020
PublicationTitle Astronomy and astrophysics (Berlin)
PublicationYear 2024
References Crutcher (R10) 2009; 692
Castor (R5) 1970; 149
Virtanen (R68) 2020; 17
Chapman (R7) 2011; 741
Happer (R23) 1972; 44
Panopoulou (R47) 2016; 462
Cortés (R9) 2021; 923
Skalidis (R52) 2021; 647
Schöier (R51) 2005; 432
Hunter (R28) 2007; 9
Deguchi (R12) 1984; 285
Stenflo (R56) 1980; 84
Troland (R62) 2008; 680
Caselli (R4) 1998; 499
Lankhaar (R38) 2020; 636
Štěpán (R57) 2013; 557
Goldreich (R19) 1982; 253
Landi Degl’Innocenti (R34) 1978; 66
Hanle (R22) 1924; 30
Harris (R24) 2020; 585
Huang (R27) 2020; 899
Goldreich (R18) 1981; 243
R70
Lucy (R40) 1971; 163
R32
Tritsis (R61) 2023; 521
Lai (R31) 2003; 598
R36
Stenflo (R55) 1997; 321
Tritsis (R60) 2022; 510
Brinch (R3) 2010; 523
de Jong (R14) 1980; 91
Girart (R17) 2004; 292
Davis (R11) 1951; 81
Trujillo Bueno (R63) 2001; 236
Ward-Thompson (R69) 2017; 842
Kunz (R29) 2010; 408
Houde (R25) 2022; 511
Trujillo Bueno (R64) 2022; 60
Lamb (R33) 1971; 2
Mouschovias (R45) 1999; 540
Bino (R2) 2022; 936
Green (R21) 1978; 37
R43
Trujillo Bueno (R65) 1999; 516
R42
Mouschovias (R46) 1976; 210
Barnes (R1) 2023; 945
van der Tak (R67) 2007; 468
R48
Falgarone (R15) 2008; 487
Meerts (R41) 1977; 22
Rasch (R50) 2003; 25
Turk (R66) 2011; 192
Tritsis (R59) 2018; 478
Chandrasekhar (R6) 1953; 118
Cortes (R8) 2005; 628
Forbrich (R16) 2008; 492
Lankhaar (R39) 2020; 638
Landi Degl’Innocenti (R35) 1983; 85
Goldreich (R20) 1973; 179
Kylafis (R30) 1983; 267
R54
Deguchi (R13) 1990; 354
R53
Lankhaar (R37) 2019; 628
R58
Morris (R44) 1985; 142
House (R26) 1970; 10
Powell (R49) 1964; 7
References_xml – volume: 478
  start-page: 2056
  year: 2018
  ident: R59
  publication-title: MNRAS
– volume: 44
  start-page: 169
  year: 1972
  ident: R23
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.44.169
– volume: 149
  start-page: 111
  year: 1970
  ident: R5
  publication-title: MNRAS
  doi: 10.1093/mnras/149.2.111
– volume: 179
  start-page: 111
  year: 1973
  ident: R20
  publication-title: ApJ
  doi: 10.1086/151852
– volume: 210
  start-page: 326
  year: 1976
  ident: R46
  publication-title: ApJ
  doi: 10.1086/154835
– ident: R42
– volume: 321
  start-page: 927
  year: 1997
  ident: R55
  publication-title: A&A
– volume: 945
  start-page: 34
  year: 2023
  ident: R1
  publication-title: ApJ
  doi: 10.3847/1538-4357/acac27
– volume: 511
  start-page: 295
  year: 2022
  ident: R25
  publication-title: MNRAS
  doi: 10.1093/mnras/stab3806
– volume: 692
  start-page: 844
  year: 2009
  ident: R10
  publication-title: ApJ
  doi: 10.1088/0004-637X/692/1/844
– volume: 243
  start-page: L75
  year: 1981
  ident: R18
  publication-title: ApJ
  doi: 10.1086/183446
– volume: 118
  start-page: 113
  year: 1953
  ident: R6
  publication-title: ApJ
  doi: 10.1086/145731
– volume: 163
  start-page: 95
  year: 1971
  ident: R40
  publication-title: ApJ
  doi: 10.1086/150748
– volume: 492
  start-page: 757
  year: 2008
  ident: R16
  publication-title: A&A
  doi: 10.1051/0004-6361:200811056
– volume: 142
  start-page: 107
  year: 1985
  ident: R44
  publication-title: A&A
– volume: 2
  start-page: 253
  year: 1971
  ident: R33
  publication-title: Phys. Rep.
  doi: 10.1016/0370-1573(71)90011-1
– volume: 585
  start-page: 357
  year: 2020
  ident: R24
  publication-title: Nature
  doi: 10.1038/s41586-020-2649-2
– volume: 638
  start-page: L7
  year: 2020
  ident: R39
  publication-title: A&A
  doi: 10.1051/0004-6361/202038196
– ident: R53
  doi: 10.4159/harvard.9780674864658
– volume: 22
  start-page: 319
  year: 1977
  ident: R41
  publication-title: CP
– volume: 741
  start-page: 21
  year: 2011
  ident: R7
  publication-title: ApJ
  doi: 10.1088/0004-637X/741/1/21
– volume: 408
  start-page: 322
  year: 2010
  ident: R29
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2010.17110.x
– volume: 30
  start-page: 93
  year: 1924
  ident: R22
  publication-title: Z. Phys.
  doi: 10.1007/BF01331827
– volume: 66
  start-page: 119
  year: 1978
  ident: R34
  publication-title: A&A
– volume: 923
  start-page: 204
  year: 2021
  ident: R9
  publication-title: ApJ
  doi: 10.3847/1538-4357/ac28a1
– volume: 85
  start-page: 33
  year: 1983
  ident: R35
  publication-title: Sol. Phys.
  doi: 10.1007/BF00148255
– volume: 636
  start-page: A14
  year: 2020
  ident: R38
  publication-title: A&A
  doi: 10.1051/0004-6361/202037509
– volume: 7
  start-page: 155
  year: 1964
  ident: R49
  publication-title: CompJ
– volume: 510
  start-page: 4420
  year: 2022
  ident: R60
  publication-title: MNRAS
  doi: 10.1093/mnras/stab3740
– volume: 9
  start-page: 90
  year: 2007
  ident: R28
  publication-title: Comput. Sci. Eng.
  doi: 10.1109/MCSE.2007.55
– volume: 25
  start-page: 1416
  year: 2003
  ident: R50
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/S1064827503422932
– ident: R70
– ident: R36
  doi: 10.1007/1-4020-2415-0
– volume: 60
  start-page: 415
  year: 2022
  ident: R64
  publication-title: ARA&A
  doi: 10.1146/annurev-astro-041122-031043
– volume: 842
  start-page: 66
  year: 2017
  ident: R69
  publication-title: ApJ
  doi: 10.3847/1538-4357/aa70a0
– volume: 253
  start-page: 606
  year: 1982
  ident: R19
  publication-title: ApJ
  doi: 10.1086/159663
– volume: 516
  start-page: 436
  year: 1999
  ident: R65
  publication-title: ApJ
  doi: 10.1086/307107
– volume: 936
  start-page: 29
  year: 2022
  ident: R2
  publication-title: ApJ
  doi: 10.3847/1538-4357/ac7c0f
– volume: 17
  start-page: 261
  year: 2020
  ident: R68
  publication-title: Nat. Methods
  doi: 10.1038/s41592-019-0686-2
– volume: 81
  start-page: 890
  year: 1951
  ident: R11
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.81.890.2
– volume: 10
  start-page: 1171
  year: 1970
  ident: R26
  publication-title: J. Quant. Spectr. Rad. Transf.
  doi: 10.1016/0022-4073(70)90002-6
– volume: 432
  start-page: 369
  year: 2005
  ident: R51
  publication-title: A&A
  doi: 10.1051/0004-6361:20041729
– volume: 487
  start-page: 247
  year: 2008
  ident: R15
  publication-title: A&A
  doi: 10.1051/0004-6361:200809577
– volume: 285
  start-page: 126
  year: 1984
  ident: R12
  publication-title: ApJ
  doi: 10.1086/162483
– ident: R58
– volume: 540
  start-page: 305
  year: 1999
  ident: R45
  publication-title: The Origin of Stars and Planetary Systems
  doi: 10.1007/978-94-011-4509-1_9
– ident: R54
– volume: 292
  start-page: 119
  year: 2004
  ident: R17
  publication-title: Ap&SS
  doi: 10.1023/B:ASTR.0000045007.35868.17
– volume: 236
  start-page: 161
  year: 2001
  ident: R63
  publication-title: ASP Conf. Ser.
– volume: 84
  start-page: 60
  year: 1980
  ident: R56
  publication-title: A&A
– volume: 354
  start-page: 649
  year: 1990
  ident: R13
  publication-title: ApJ
  doi: 10.1086/168722
– volume: 499
  start-page: 234
  year: 1998
  ident: R4
  publication-title: ApJ
  doi: 10.1086/305624
– volume: 899
  start-page: 152
  year: 2020
  ident: R27
  publication-title: ApJ
  doi: 10.3847/1538-4357/aba122
– volume: 462
  start-page: 1517
  year: 2016
  ident: R47
  publication-title: MNRAS
  doi: 10.1093/mnras/stw1678
– volume: 37
  start-page: 169
  year: 1978
  ident: R21
  publication-title: ApJS
  doi: 10.1086/190523
– volume: 680
  start-page: 457
  year: 2008
  ident: R62
  publication-title: ApJ
  doi: 10.1086/587546
– volume: 91
  start-page: 68
  year: 1980
  ident: R14
  publication-title: A&A
– volume: 647
  start-page: A186
  year: 2021
  ident: R52
  publication-title: A&A
  doi: 10.1051/0004-6361/202039779
– ident: R43
  doi: 10.2172/6997568
– ident: R48
– volume: 628
  start-page: A14
  year: 2019
  ident: R37
  publication-title: A&A
  doi: 10.1051/0004-6361/201935064
– volume: 267
  start-page: 137
  year: 1983
  ident: R30
  publication-title: ApJ
  doi: 10.1086/160851
– volume: 521
  start-page: 5087
  year: 2023
  ident: R61
  publication-title: MNRAS
  doi: 10.1093/mnras/stad829
– volume: 628
  start-page: 780
  year: 2005
  ident: R8
  publication-title: ApJ
  doi: 10.1086/430815
– volume: 192
  start-page: 9
  year: 2011
  ident: R66
  publication-title: ApJS
  doi: 10.1088/0067-0049/192/1/9
– volume: 598
  start-page: 392
  year: 2003
  ident: R31
  publication-title: ApJ
  doi: 10.1086/378769
– volume: 468
  start-page: 627
  year: 2007
  ident: R67
  publication-title: A&A
  doi: 10.1051/0004-6361:20066820
– ident: R32
  doi: 10.1145/2833157.2833162
– volume: 523
  start-page: A25
  year: 2010
  ident: R3
  publication-title: A&A
  doi: 10.1051/0004-6361/201015333
– volume: 557
  start-page: A143
  year: 2013
  ident: R57
  publication-title: A&A
  doi: 10.1051/0004-6361/201321742
SSID ssj0002183
Score 2.474744
Snippet Context. Linear polarization of spectral lines, commonly known as the Goldreich-Kylafis effect within the star formation community, is one of the most...
SourceID crossref
SourceType Enrichment Source
Index Database
StartPage A75
Title Extension of the multilevel radiative transfer code PyRaTE to model linear polarization of molecular lines
Volume 692
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swEBddy2AvZes2-rWhh7KXzKk_pNh-DCNrN2gpI4W-BVmWYCNNSuJC24f-7b3T2YrYSmn3YmwhK-D75fS7030wdgD2lk10YeEvXphIlDqLKh2LKAdlWZtYpcp1UTg5HRyfi58XMjhod9klTdXXd4_mlfyPVGEM5IpZsi-QrF8UBuAe5AtXkDBcnyXj0Y2LPyfKhwzShQdOMQ6ot8CiAy4uqHHc1Cx6mL7eO7v9pcYjpJyuCU4PaSaWu0YTt83JdGfuXdtcN2EZctjhEt3n80uq3KTwifwjzoFL9bMCB8N48btZtk2P-16_306VpcHTfuh5SEUQxdFpUxENMiqm3jekQEWG0aytW7HVsANqd9fqyCG1SvlHd4N6oGBHWhRTVYBQiDwvk9Vm1R3Q_7WH-chCd6YuEzxTFxNcZuIXecU2UrAlsM3F0Y97v10jRyQbiX63K00lk0M_dugXCehLwEPGb9lma0DwIaHhHVszsy227WXCv_BhIJEt9vqM7t6zPx4ufG45wIWv4MI9XHgHF45w4QQX3sy5gwsnuPAQLriah4ubsPzAzr-Pxt-Oo7bVRqTTUjRRYYuqTnRpVRzboi7LqsZ4KYX19o0olbFAZFUaKx3rOi1krctKFCYRuZYK9trsI1ufzWdmm_GBVLaOM_jUshbAN1WWVbrIlTUKrFcpd1jafcGJbuvQYzuU6eQJ2e2wr_6lKyrD8tT03ZdN32NvVvjeZ-vN4tp8Aq7ZVJ8dVh4AI-B5DA
linkProvider EDP
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Extension+of+the+multilevel+radiative+transfer+code+PyRaTE+to+model+linear+polarization+of+molecular+lines&rft.jtitle=Astronomy+and+astrophysics+%28Berlin%29&rft.au=Tritsis%2C+A.&rft.au=Kylafis%2C+N.&rft.date=2024-12-01&rft.issn=0004-6361&rft.eissn=1432-0746&rft.volume=692&rft.spage=A75&rft_id=info:doi/10.1051%2F0004-6361%2F202347791&rft.externalDBID=n%2Fa&rft.externalDocID=10_1051_0004_6361_202347791
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0004-6361&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0004-6361&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0004-6361&client=summon