Extension of the multilevel radiative transfer code PyRaTE to model linear polarization of molecular lines
Context. Linear polarization of spectral lines, commonly known as the Goldreich-Kylafis effect within the star formation community, is one of the most underutilized techniques for probing magnetic fields in the dense and cold interstellar medium. Aims. In this study, we implement linear polarization...
Saved in:
Published in | Astronomy and astrophysics (Berlin) Vol. 692; p. A75 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
01.12.2024
|
Online Access | Get full text |
Cover
Loading…
Abstract | Context.
Linear polarization of spectral lines, commonly known as the Goldreich-Kylafis effect within the star formation community, is one of the most underutilized techniques for probing magnetic fields in the dense and cold interstellar medium.
Aims.
In this study, we implement linear polarization of molecular spectral lines into the multilevel, non-local thermodynamic equilibrium radiative transfer code P
Y
R
A
TE.
Methods.
Different modes of polarized radiation are treated individually, with separate optical depths computed for each polarization direction. Our implementation is valid in the so-called strong magnetic field limit and is exact for either a system satisfying the large-velocity-gradient approximation, and/or for any system with a uniform magnetic field. We benchmark our implementation against analytical results and provide tests for various limiting cases.
Results.
In agreement with previous theoretical results, we find that in the multilevel case the amount of fractional polarization decreases when compared to the two-level approximation, but this result is subject to the relative importance between radiative and collisional processes. Finally, we post-process an axially symmetric, nonideal magnetohydrodynamic chemo-dynamical simulation of a collapsing prestellar core and provide theoretical predictions regarding the shape (as a function of velocity) of the polarization fraction of CO during the early stages in the evolution of molecular clouds. |
---|---|
AbstractList | Context.
Linear polarization of spectral lines, commonly known as the Goldreich-Kylafis effect within the star formation community, is one of the most underutilized techniques for probing magnetic fields in the dense and cold interstellar medium.
Aims.
In this study, we implement linear polarization of molecular spectral lines into the multilevel, non-local thermodynamic equilibrium radiative transfer code P
Y
R
A
TE.
Methods.
Different modes of polarized radiation are treated individually, with separate optical depths computed for each polarization direction. Our implementation is valid in the so-called strong magnetic field limit and is exact for either a system satisfying the large-velocity-gradient approximation, and/or for any system with a uniform magnetic field. We benchmark our implementation against analytical results and provide tests for various limiting cases.
Results.
In agreement with previous theoretical results, we find that in the multilevel case the amount of fractional polarization decreases when compared to the two-level approximation, but this result is subject to the relative importance between radiative and collisional processes. Finally, we post-process an axially symmetric, nonideal magnetohydrodynamic chemo-dynamical simulation of a collapsing prestellar core and provide theoretical predictions regarding the shape (as a function of velocity) of the polarization fraction of CO during the early stages in the evolution of molecular clouds. |
Author | Kylafis, N. Tritsis, A. |
Author_xml | – sequence: 1 givenname: A. orcidid: 0000-0003-4987-7754 surname: Tritsis fullname: Tritsis, A. – sequence: 2 givenname: N. surname: Kylafis fullname: Kylafis, N. |
BookMark | eNp9kEtLAzEUhYNUsFZ_gZv8gbF5zSNLKfUBBUXqekiTG0zJTEqSFuuvd9pKFy5cXc7lnAPnu0ajPvSA0B0l95SUdEoIEUXFKzplhHFR15JeoDEVnBWkFtUIjc-OK3Sd0nqQjDZ8jNbzrwx9cqHHweL8Cbjb-uw87MDjqIxT2e0A56j6ZCFiHQzgt_27Ws5xDrgbpMfe9aAi3gSvovseEqe2LnjQ2-F3NKQbdGmVT3D7eyfo43G-nD0Xi9enl9nDotBMilw0tlkZqqVVhNjGSLkygvFaiZIxEFKB5VIqRpQm2rCmNFquRANU1LpUoqr5BPFTr44hpQi23UTXqbhvKWkPuNoDjPYAoz3jGlLyT0q7fJwybHf-3-wP45ly6Q |
CitedBy_id | crossref_primary_10_1051_0004_6361_202452013 |
Cites_doi | 10.1103/RevModPhys.44.169 10.1093/mnras/149.2.111 10.1086/151852 10.1086/154835 10.3847/1538-4357/acac27 10.1093/mnras/stab3806 10.1088/0004-637X/692/1/844 10.1086/183446 10.1086/145731 10.1086/150748 10.1051/0004-6361:200811056 10.1016/0370-1573(71)90011-1 10.1038/s41586-020-2649-2 10.1051/0004-6361/202038196 10.4159/harvard.9780674864658 10.1088/0004-637X/741/1/21 10.1111/j.1365-2966.2010.17110.x 10.1007/BF01331827 10.3847/1538-4357/ac28a1 10.1007/BF00148255 10.1051/0004-6361/202037509 10.1093/mnras/stab3740 10.1109/MCSE.2007.55 10.1137/S1064827503422932 10.1007/1-4020-2415-0 10.1146/annurev-astro-041122-031043 10.3847/1538-4357/aa70a0 10.1086/159663 10.1086/307107 10.3847/1538-4357/ac7c0f 10.1038/s41592-019-0686-2 10.1103/PhysRev.81.890.2 10.1016/0022-4073(70)90002-6 10.1051/0004-6361:20041729 10.1051/0004-6361:200809577 10.1086/162483 10.1007/978-94-011-4509-1_9 10.1023/B:ASTR.0000045007.35868.17 10.1086/168722 10.1086/305624 10.3847/1538-4357/aba122 10.1093/mnras/stw1678 10.1086/190523 10.1086/587546 10.1051/0004-6361/202039779 10.2172/6997568 10.1051/0004-6361/201935064 10.1086/160851 10.1093/mnras/stad829 10.1086/430815 10.1088/0067-0049/192/1/9 10.1086/378769 10.1051/0004-6361:20066820 10.1145/2833157.2833162 10.1051/0004-6361/201015333 10.1051/0004-6361/201321742 |
ContentType | Journal Article |
DBID | AAYXX CITATION |
DOI | 10.1051/0004-6361/202347791 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Astronomy & Astrophysics Physics |
EISSN | 1432-0746 |
ExternalDocumentID | 10_1051_0004_6361_202347791 |
GroupedDBID | -DZ -~X 2.D 23N 2WC 4.4 5GY 5VS 6TJ 85S AACRX AAFNC AAFWJ AAJMC AAOGA AAOTM AAYXX ABDNZ ABDPE ABNSH ABPPZ ABUBZ ABZDU ACACO ACGFS ACNCT ACRPL ACYGS ACYRX ADCOW ADHUB ADIYS ADNMO AEILP AENEX AGQPQ AI. AIZTS ALMA_UNASSIGNED_HOLDINGS ASPBG AVWKF AZFZN AZPVJ CITATION CS3 E.L E3Z EBS EJD F5P FRP GI~ HG6 I09 IL9 LAS MVM OHT OK1 RED RHV RIG RNS SDH SJN TR2 UPT UQL VH1 VOH WH7 XOL ZY4 |
ID | FETCH-LOGICAL-c294t-8f8bd1c9fa00f8d99bd4237a4522e49aef399a20ac0cd285dc9b48e147c5a4673 |
ISSN | 0004-6361 |
IngestDate | Tue Jul 01 02:08:26 EDT 2025 Thu Apr 24 22:59:24 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c294t-8f8bd1c9fa00f8d99bd4237a4522e49aef399a20ac0cd285dc9b48e147c5a4673 |
ORCID | 0000-0003-4987-7754 |
OpenAccessLink | https://www.aanda.org/10.1051/0004-6361/202347791/pdf |
ParticipantIDs | crossref_primary_10_1051_0004_6361_202347791 crossref_citationtrail_10_1051_0004_6361_202347791 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-12-01 |
PublicationDateYYYYMMDD | 2024-12-01 |
PublicationDate_xml | – month: 12 year: 2024 text: 2024-12-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Astronomy and astrophysics (Berlin) |
PublicationYear | 2024 |
References | Crutcher (R10) 2009; 692 Castor (R5) 1970; 149 Virtanen (R68) 2020; 17 Chapman (R7) 2011; 741 Happer (R23) 1972; 44 Panopoulou (R47) 2016; 462 Cortés (R9) 2021; 923 Skalidis (R52) 2021; 647 Schöier (R51) 2005; 432 Hunter (R28) 2007; 9 Deguchi (R12) 1984; 285 Stenflo (R56) 1980; 84 Troland (R62) 2008; 680 Caselli (R4) 1998; 499 Lankhaar (R38) 2020; 636 Štěpán (R57) 2013; 557 Goldreich (R19) 1982; 253 Landi Degl’Innocenti (R34) 1978; 66 Hanle (R22) 1924; 30 Harris (R24) 2020; 585 Huang (R27) 2020; 899 Goldreich (R18) 1981; 243 R70 Lucy (R40) 1971; 163 R32 Tritsis (R61) 2023; 521 Lai (R31) 2003; 598 R36 Stenflo (R55) 1997; 321 Tritsis (R60) 2022; 510 Brinch (R3) 2010; 523 de Jong (R14) 1980; 91 Girart (R17) 2004; 292 Davis (R11) 1951; 81 Trujillo Bueno (R63) 2001; 236 Ward-Thompson (R69) 2017; 842 Kunz (R29) 2010; 408 Houde (R25) 2022; 511 Trujillo Bueno (R64) 2022; 60 Lamb (R33) 1971; 2 Mouschovias (R45) 1999; 540 Bino (R2) 2022; 936 Green (R21) 1978; 37 R43 Trujillo Bueno (R65) 1999; 516 R42 Mouschovias (R46) 1976; 210 Barnes (R1) 2023; 945 van der Tak (R67) 2007; 468 R48 Falgarone (R15) 2008; 487 Meerts (R41) 1977; 22 Rasch (R50) 2003; 25 Turk (R66) 2011; 192 Tritsis (R59) 2018; 478 Chandrasekhar (R6) 1953; 118 Cortes (R8) 2005; 628 Forbrich (R16) 2008; 492 Lankhaar (R39) 2020; 638 Landi Degl’Innocenti (R35) 1983; 85 Goldreich (R20) 1973; 179 Kylafis (R30) 1983; 267 R54 Deguchi (R13) 1990; 354 R53 Lankhaar (R37) 2019; 628 R58 Morris (R44) 1985; 142 House (R26) 1970; 10 Powell (R49) 1964; 7 |
References_xml | – volume: 478 start-page: 2056 year: 2018 ident: R59 publication-title: MNRAS – volume: 44 start-page: 169 year: 1972 ident: R23 publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.44.169 – volume: 149 start-page: 111 year: 1970 ident: R5 publication-title: MNRAS doi: 10.1093/mnras/149.2.111 – volume: 179 start-page: 111 year: 1973 ident: R20 publication-title: ApJ doi: 10.1086/151852 – volume: 210 start-page: 326 year: 1976 ident: R46 publication-title: ApJ doi: 10.1086/154835 – ident: R42 – volume: 321 start-page: 927 year: 1997 ident: R55 publication-title: A&A – volume: 945 start-page: 34 year: 2023 ident: R1 publication-title: ApJ doi: 10.3847/1538-4357/acac27 – volume: 511 start-page: 295 year: 2022 ident: R25 publication-title: MNRAS doi: 10.1093/mnras/stab3806 – volume: 692 start-page: 844 year: 2009 ident: R10 publication-title: ApJ doi: 10.1088/0004-637X/692/1/844 – volume: 243 start-page: L75 year: 1981 ident: R18 publication-title: ApJ doi: 10.1086/183446 – volume: 118 start-page: 113 year: 1953 ident: R6 publication-title: ApJ doi: 10.1086/145731 – volume: 163 start-page: 95 year: 1971 ident: R40 publication-title: ApJ doi: 10.1086/150748 – volume: 492 start-page: 757 year: 2008 ident: R16 publication-title: A&A doi: 10.1051/0004-6361:200811056 – volume: 142 start-page: 107 year: 1985 ident: R44 publication-title: A&A – volume: 2 start-page: 253 year: 1971 ident: R33 publication-title: Phys. Rep. doi: 10.1016/0370-1573(71)90011-1 – volume: 585 start-page: 357 year: 2020 ident: R24 publication-title: Nature doi: 10.1038/s41586-020-2649-2 – volume: 638 start-page: L7 year: 2020 ident: R39 publication-title: A&A doi: 10.1051/0004-6361/202038196 – ident: R53 doi: 10.4159/harvard.9780674864658 – volume: 22 start-page: 319 year: 1977 ident: R41 publication-title: CP – volume: 741 start-page: 21 year: 2011 ident: R7 publication-title: ApJ doi: 10.1088/0004-637X/741/1/21 – volume: 408 start-page: 322 year: 2010 ident: R29 publication-title: MNRAS doi: 10.1111/j.1365-2966.2010.17110.x – volume: 30 start-page: 93 year: 1924 ident: R22 publication-title: Z. Phys. doi: 10.1007/BF01331827 – volume: 66 start-page: 119 year: 1978 ident: R34 publication-title: A&A – volume: 923 start-page: 204 year: 2021 ident: R9 publication-title: ApJ doi: 10.3847/1538-4357/ac28a1 – volume: 85 start-page: 33 year: 1983 ident: R35 publication-title: Sol. Phys. doi: 10.1007/BF00148255 – volume: 636 start-page: A14 year: 2020 ident: R38 publication-title: A&A doi: 10.1051/0004-6361/202037509 – volume: 7 start-page: 155 year: 1964 ident: R49 publication-title: CompJ – volume: 510 start-page: 4420 year: 2022 ident: R60 publication-title: MNRAS doi: 10.1093/mnras/stab3740 – volume: 9 start-page: 90 year: 2007 ident: R28 publication-title: Comput. Sci. Eng. doi: 10.1109/MCSE.2007.55 – volume: 25 start-page: 1416 year: 2003 ident: R50 publication-title: SIAM J. Sci. Comput. doi: 10.1137/S1064827503422932 – ident: R70 – ident: R36 doi: 10.1007/1-4020-2415-0 – volume: 60 start-page: 415 year: 2022 ident: R64 publication-title: ARA&A doi: 10.1146/annurev-astro-041122-031043 – volume: 842 start-page: 66 year: 2017 ident: R69 publication-title: ApJ doi: 10.3847/1538-4357/aa70a0 – volume: 253 start-page: 606 year: 1982 ident: R19 publication-title: ApJ doi: 10.1086/159663 – volume: 516 start-page: 436 year: 1999 ident: R65 publication-title: ApJ doi: 10.1086/307107 – volume: 936 start-page: 29 year: 2022 ident: R2 publication-title: ApJ doi: 10.3847/1538-4357/ac7c0f – volume: 17 start-page: 261 year: 2020 ident: R68 publication-title: Nat. Methods doi: 10.1038/s41592-019-0686-2 – volume: 81 start-page: 890 year: 1951 ident: R11 publication-title: Phys. Rev. doi: 10.1103/PhysRev.81.890.2 – volume: 10 start-page: 1171 year: 1970 ident: R26 publication-title: J. Quant. Spectr. Rad. Transf. doi: 10.1016/0022-4073(70)90002-6 – volume: 432 start-page: 369 year: 2005 ident: R51 publication-title: A&A doi: 10.1051/0004-6361:20041729 – volume: 487 start-page: 247 year: 2008 ident: R15 publication-title: A&A doi: 10.1051/0004-6361:200809577 – volume: 285 start-page: 126 year: 1984 ident: R12 publication-title: ApJ doi: 10.1086/162483 – ident: R58 – volume: 540 start-page: 305 year: 1999 ident: R45 publication-title: The Origin of Stars and Planetary Systems doi: 10.1007/978-94-011-4509-1_9 – ident: R54 – volume: 292 start-page: 119 year: 2004 ident: R17 publication-title: Ap&SS doi: 10.1023/B:ASTR.0000045007.35868.17 – volume: 236 start-page: 161 year: 2001 ident: R63 publication-title: ASP Conf. Ser. – volume: 84 start-page: 60 year: 1980 ident: R56 publication-title: A&A – volume: 354 start-page: 649 year: 1990 ident: R13 publication-title: ApJ doi: 10.1086/168722 – volume: 499 start-page: 234 year: 1998 ident: R4 publication-title: ApJ doi: 10.1086/305624 – volume: 899 start-page: 152 year: 2020 ident: R27 publication-title: ApJ doi: 10.3847/1538-4357/aba122 – volume: 462 start-page: 1517 year: 2016 ident: R47 publication-title: MNRAS doi: 10.1093/mnras/stw1678 – volume: 37 start-page: 169 year: 1978 ident: R21 publication-title: ApJS doi: 10.1086/190523 – volume: 680 start-page: 457 year: 2008 ident: R62 publication-title: ApJ doi: 10.1086/587546 – volume: 91 start-page: 68 year: 1980 ident: R14 publication-title: A&A – volume: 647 start-page: A186 year: 2021 ident: R52 publication-title: A&A doi: 10.1051/0004-6361/202039779 – ident: R43 doi: 10.2172/6997568 – ident: R48 – volume: 628 start-page: A14 year: 2019 ident: R37 publication-title: A&A doi: 10.1051/0004-6361/201935064 – volume: 267 start-page: 137 year: 1983 ident: R30 publication-title: ApJ doi: 10.1086/160851 – volume: 521 start-page: 5087 year: 2023 ident: R61 publication-title: MNRAS doi: 10.1093/mnras/stad829 – volume: 628 start-page: 780 year: 2005 ident: R8 publication-title: ApJ doi: 10.1086/430815 – volume: 192 start-page: 9 year: 2011 ident: R66 publication-title: ApJS doi: 10.1088/0067-0049/192/1/9 – volume: 598 start-page: 392 year: 2003 ident: R31 publication-title: ApJ doi: 10.1086/378769 – volume: 468 start-page: 627 year: 2007 ident: R67 publication-title: A&A doi: 10.1051/0004-6361:20066820 – ident: R32 doi: 10.1145/2833157.2833162 – volume: 523 start-page: A25 year: 2010 ident: R3 publication-title: A&A doi: 10.1051/0004-6361/201015333 – volume: 557 start-page: A143 year: 2013 ident: R57 publication-title: A&A doi: 10.1051/0004-6361/201321742 |
SSID | ssj0002183 |
Score | 2.474744 |
Snippet | Context.
Linear polarization of spectral lines, commonly known as the Goldreich-Kylafis effect within the star formation community, is one of the most... |
SourceID | crossref |
SourceType | Enrichment Source Index Database |
StartPage | A75 |
Title | Extension of the multilevel radiative transfer code PyRaTE to model linear polarization of molecular lines |
Volume | 692 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swEBddy2AvZes2-rWhh7KXzKk_pNh-DCNrN2gpI4W-BVmWYCNNSuJC24f-7b3T2YrYSmn3YmwhK-D75fS7030wdgD2lk10YeEvXphIlDqLKh2LKAdlWZtYpcp1UTg5HRyfi58XMjhod9klTdXXd4_mlfyPVGEM5IpZsi-QrF8UBuAe5AtXkDBcnyXj0Y2LPyfKhwzShQdOMQ6ot8CiAy4uqHHc1Cx6mL7eO7v9pcYjpJyuCU4PaSaWu0YTt83JdGfuXdtcN2EZctjhEt3n80uq3KTwifwjzoFL9bMCB8N48btZtk2P-16_306VpcHTfuh5SEUQxdFpUxENMiqm3jekQEWG0aytW7HVsANqd9fqyCG1SvlHd4N6oGBHWhRTVYBQiDwvk9Vm1R3Q_7WH-chCd6YuEzxTFxNcZuIXecU2UrAlsM3F0Y97v10jRyQbiX63K00lk0M_dugXCehLwEPGb9lma0DwIaHhHVszsy227WXCv_BhIJEt9vqM7t6zPx4ufG45wIWv4MI9XHgHF45w4QQX3sy5gwsnuPAQLriah4ubsPzAzr-Pxt-Oo7bVRqTTUjRRYYuqTnRpVRzboi7LqsZ4KYX19o0olbFAZFUaKx3rOi1krctKFCYRuZYK9trsI1ufzWdmm_GBVLaOM_jUshbAN1WWVbrIlTUKrFcpd1jafcGJbuvQYzuU6eQJ2e2wr_6lKyrD8tT03ZdN32NvVvjeZ-vN4tp8Aq7ZVJ8dVh4AI-B5DA |
linkProvider | EDP |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Extension+of+the+multilevel+radiative+transfer+code+PyRaTE+to+model+linear+polarization+of+molecular+lines&rft.jtitle=Astronomy+and+astrophysics+%28Berlin%29&rft.au=Tritsis%2C+A.&rft.au=Kylafis%2C+N.&rft.date=2024-12-01&rft.issn=0004-6361&rft.eissn=1432-0746&rft.volume=692&rft.spage=A75&rft_id=info:doi/10.1051%2F0004-6361%2F202347791&rft.externalDBID=n%2Fa&rft.externalDocID=10_1051_0004_6361_202347791 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0004-6361&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0004-6361&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0004-6361&client=summon |