Unsupervised Domain Adaptation via Spatial Pattern Alignment for VEP-Based Identity Recognition

Electroencephalography (EEG) biometrics has garnered significant attention in recent years owing to its nonintrusive nature, real-time detection capabilities, concealment, and high complexity. Despite these promising attributes, the practical deployment of EEG-based identity recognition systems rema...

Full description

Saved in:
Bibliographic Details
Published inIEEE internet of things journal Vol. 11; no. 20; pp. 33722 - 33733
Main Authors Zhao, Hongze, Wang, Yijun, Gao, Xiaorong
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 15.10.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Electroencephalography (EEG) biometrics has garnered significant attention in recent years owing to its nonintrusive nature, real-time detection capabilities, concealment, and high complexity. Despite these promising attributes, the practical deployment of EEG-based identity recognition systems remains hindered by limited cross-day recognition performance. While some studies have reported cross-day recognition, they often suffer from slow recognition speeds, failing to meet the basic requirements for practical applications. To address this issue, we propose an unsupervised domain adaptation algorithm based on spatial pattern alignment for visual-evoked potential (VEP)-based identity recognition. This method employs rotational alignment of spatial patterns to correct cross-day spatial filters and utilizes forward selection to identify optimal sub-bands. By utilizing this approach, significant improvements of speed and accuracy in cross-day recognition can be achieved. We validate the proposed algorithm on three existing VEP data sets: 1) Data Set I (25 subjects across 30 days); 2) Data Set II (21 subjects across 5 days); and 3) Data Set III (15 subjects across 200 days). The results demonstrate a significant superiority over the compared algorithms. Furthermore, we conduct online experiments with 15 individuals across over 1000 days, and the outcomes remain consistent. Analyzing the data set over nearly three years in terms of the temporal dimension, we observe evident performance differences caused by template aging effect: 30 days > 200 days > 1000 days. However, the proposed method effectively mitigates template aging, resulting in minimal performance differences among the various data sets. The introduced algorithm substantially enhances speed and accuracy in cross-day recognition, paving the way for the long-term stability and practicality of online brainwave recognition systems.
AbstractList 200 days > 1000 days. However, the proposed method effectively mitigates template aging, resulting in minimal performance differences among the various data sets. The introduced algorithm substantially enhances speed and accuracy in cross-day recognition, paving the way for the long-term stability and practicality of online brainwave recognition systems.
Electroencephalography (EEG) biometrics has garnered significant attention in recent years owing to its nonintrusive nature, real-time detection capabilities, concealment, and high complexity. Despite these promising attributes, the practical deployment of EEG-based identity recognition systems remains hindered by limited cross-day recognition performance. While some studies have reported cross-day recognition, they often suffer from slow recognition speeds, failing to meet the basic requirements for practical applications. To address this issue, we propose an unsupervised domain adaptation algorithm based on spatial pattern alignment for visual-evoked potential (VEP)-based identity recognition. This method employs rotational alignment of spatial patterns to correct cross-day spatial filters and utilizes forward selection to identify optimal sub-bands. By utilizing this approach, significant improvements of speed and accuracy in cross-day recognition can be achieved. We validate the proposed algorithm on three existing VEP data sets: 1) Data Set I (25 subjects across 30 days); 2) Data Set II (21 subjects across 5 days); and 3) Data Set III (15 subjects across 200 days). The results demonstrate a significant superiority over the compared algorithms. Furthermore, we conduct online experiments with 15 individuals across over 1000 days, and the outcomes remain consistent. Analyzing the data set over nearly three years in terms of the temporal dimension, we observe evident performance differences caused by template aging effect: 30 days > 200 days > 1000 days. However, the proposed method effectively mitigates template aging, resulting in minimal performance differences among the various data sets. The introduced algorithm substantially enhances speed and accuracy in cross-day recognition, paving the way for the long-term stability and practicality of online brainwave recognition systems.
Author Gao, Xiaorong
Wang, Yijun
Zhao, Hongze
Author_xml – sequence: 1
  givenname: Hongze
  orcidid: 0000-0001-7934-3468
  surname: Zhao
  fullname: Zhao, Hongze
  email: zhaohz23@mails.tsinghua.edu.cn
  organization: Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China
– sequence: 2
  givenname: Yijun
  orcidid: 0000-0002-8161-2150
  surname: Wang
  fullname: Wang, Yijun
  email: wangyj@semi.ac.cn
  organization: State Key Laboratory on Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, China
– sequence: 3
  givenname: Xiaorong
  orcidid: 0000-0003-0499-2740
  surname: Gao
  fullname: Gao, Xiaorong
  email: gxr-dea@mail.tsinghua.edu.cn
  organization: Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China
BookMark eNp9kE1PwkAQhjcGExH5ASYemngu7nfZIyIqhgSi4HWz3W7JkrKt24WEf2-bciAePM2bmXlmkucW9FzpDAD3CI4QguLpY75cjzDEdEQoQZiQK9DHBCcx5Rz3LvINGNb1DkLYYAwJ3gdy4-pDZfzR1iaLXsq9si6aZKoKKtjSRUeroq-qyaqIVioE45txYbdub1yI8tJH37NV_Kxaep41PRtO0afR5dbZ9sAduM5VUZvhuQ7A5nW2nr7Hi-XbfDpZxBoLGuJxYlLGudFMIZhylGFmkBAiSwXJGc50DhOdZWMoUoQUzKmGXECWK2joWFFCBuCxu1v58udg6iB35cG75qUkCFHGCWO02ULdlvZlXXuTy8rbvfIniaBsVcpWpWxVyrPKhkn-MNp2coJXtviXfOhIa4y5-MShSAQiv6O_gzE
CODEN IITJAU
CitedBy_id crossref_primary_10_1016_j_cose_2024_104281
crossref_primary_10_1109_TIFS_2024_3452628
Cites_doi 10.1049/iet-bmt.2014.0075
10.1109/TNSRE.2016.2573819
10.1109/EMBC.2014.6944263
10.1088/1741-2552/abcb6e
10.1109/MSMC.2017.2703651
10.1117/12.462719
10.3390/app14020534
10.1109/JBHI.2023.3315974
10.3390/s17051014
10.1109/TIFS.2017.2778010
10.1049/ip-smt:20040003
10.1109/TIFS.2019.2912272
10.1007/BF02289451
10.1109/TIFS.2016.2543524
10.1016/j.neucom.2020.09.017
10.1007/s00521-023-08539-4
10.23919/EUSIPCO54536.2021.9616098
10.1016/j.neucom.2015.04.025
10.1109/TIFS.2017.2699944
10.1142/S0129065720500203
10.1142/S0129065714500191
10.1016/j.heliyon.2024.e25999
10.1088/1741-2552/ac494f
10.1016/j.compeleceng.2013.11.024
10.1016/j.tics.2011.03.006
10.1007/s10115-012-0487-8
10.1109/IEMBS.2009.5334858
10.1016/S0042-6989(99)00031-0
10.1109/TBME.2021.3105331
10.1109/TIFS.2024.3369405
10.3389/fnins.2022.863359
10.1109/TBME.2019.2913914
10.1088/1741-2560/12/4/046006
10.1109/TNSRE.2023.3288397
10.1109/LSP.2016.2516043
10.1109/TIFS.2014.2308640
10.1016/j.eswa.2021.114961
10.1109/TPAMI.2007.1013
10.14257/ijbsbt.2014.6.4.07
10.1016/j.neucom.2020.06.009
10.1109/TCDS.2018.2826840
10.1109/TBME.2017.2694818
10.1109/JIOT.2021.3061727
10.1109/IECBES.2016.7843492
10.1109/TBME.2014.2317881
10.1073/pnas.1508080112
10.1109/TBME.2019.2929745
10.1088/1741-2560/12/4/046008
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/JIOT.2024.3431233
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2327-4662
EndPage 33733
ExternalDocumentID 10_1109_JIOT_2024_3431233
10609791
Genre orig-research
GrantInformation_xml – fundername: National Key Research and Development Program of China
  grantid: 2022YFF1202303
– fundername: Key Research and Development Program of Ningxia; Key Research and Development Program of Ningxia Hui Autonomous Region
  grantid: 2023BEG02063
  funderid: 10.13039/100016692
– fundername: National Natural Science Foundation of China
  grantid: 62071447; U2241208
  funderid: 10.13039/501100001809
GroupedDBID 0R~
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
IFIPE
IPLJI
JAVBF
M43
OCL
PQQKQ
RIA
RIE
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c294t-87eb566ec5a10b61d25e1999db93f52dcf07cdd809b11a0f4c06905fa0e48a433
IEDL.DBID RIE
ISSN 2327-4662
IngestDate Mon Jun 30 15:19:39 EDT 2025
Tue Jul 01 00:38:11 EDT 2025
Thu Apr 24 22:57:23 EDT 2025
Wed Aug 27 02:19:22 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 20
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c294t-87eb566ec5a10b61d25e1999db93f52dcf07cdd809b11a0f4c06905fa0e48a433
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-8161-2150
0000-0001-7934-3468
0000-0003-0499-2740
PQID 3114563554
PQPubID 2040421
PageCount 12
ParticipantIDs crossref_citationtrail_10_1109_JIOT_2024_3431233
ieee_primary_10609791
proquest_journals_3114563554
crossref_primary_10_1109_JIOT_2024_3431233
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-10-15
PublicationDateYYYYMMDD 2024-10-15
PublicationDate_xml – month: 10
  year: 2024
  text: 2024-10-15
  day: 15
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE internet of things journal
PublicationTitleAbbrev JIoT
PublicationYear 2024
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref11
ref10
ref17
ref16
ref19
ref18
ref50
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref49
Kostílek (ref14)
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref2
ref1
ref39
ref38
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
Van der Maaten (ref43) 2008; 9
ref29
References_xml – ident: ref3
  doi: 10.1049/iet-bmt.2014.0075
– ident: ref46
  doi: 10.1109/TNSRE.2016.2573819
– ident: ref42
  doi: 10.1109/EMBC.2014.6944263
– ident: ref21
  doi: 10.1088/1741-2552/abcb6e
– ident: ref1
  doi: 10.1109/MSMC.2017.2703651
– ident: ref2
  doi: 10.1117/12.462719
– ident: ref50
  doi: 10.3390/app14020534
– ident: ref30
  doi: 10.1109/JBHI.2023.3315974
– ident: ref27
  doi: 10.3390/s17051014
– ident: ref17
  doi: 10.1109/TIFS.2017.2778010
– ident: ref9
  doi: 10.1049/ip-smt:20040003
– ident: ref31
  doi: 10.1109/TIFS.2019.2912272
– ident: ref37
  doi: 10.1007/BF02289451
– ident: ref12
  doi: 10.1109/TIFS.2016.2543524
– ident: ref22
  doi: 10.1016/j.neucom.2020.09.017
– ident: ref19
  doi: 10.1007/s00521-023-08539-4
– ident: ref18
  doi: 10.23919/EUSIPCO54536.2021.9616098
– ident: ref15
  doi: 10.1016/j.neucom.2015.04.025
– ident: ref13
  doi: 10.1109/TIFS.2017.2699944
– ident: ref36
  doi: 10.1142/S0129065720500203
– ident: ref44
  doi: 10.1142/S0129065714500191
– ident: ref48
  doi: 10.1016/j.heliyon.2024.e25999
– ident: ref38
  doi: 10.1088/1741-2552/ac494f
– ident: ref39
  doi: 10.1016/j.compeleceng.2013.11.024
– ident: ref6
  doi: 10.1016/j.tics.2011.03.006
– ident: ref41
  doi: 10.1007/s10115-012-0487-8
– ident: ref10
  doi: 10.1109/IEMBS.2009.5334858
– ident: ref32
  doi: 10.1016/S0042-6989(99)00031-0
– ident: ref25
  doi: 10.1109/TBME.2021.3105331
– ident: ref47
  doi: 10.1109/TIFS.2024.3369405
– ident: ref26
  doi: 10.3389/fnins.2022.863359
– ident: ref28
  doi: 10.1109/TBME.2019.2913914
– volume: 9
  start-page: 2579
  issue: 11
  year: 2008
  ident: ref43
  article-title: Visualizing data using t-SNE
  publication-title: J. Mach. Learn. Res.
– ident: ref23
  doi: 10.1088/1741-2560/12/4/046006
– ident: ref34
  doi: 10.1109/TNSRE.2023.3288397
– ident: ref16
  doi: 10.1109/LSP.2016.2516043
– ident: ref7
  doi: 10.1109/TIFS.2014.2308640
– ident: ref8
  doi: 10.1016/j.eswa.2021.114961
– ident: ref5
  doi: 10.1109/TPAMI.2007.1013
– ident: ref4
  doi: 10.14257/ijbsbt.2014.6.4.07
– ident: ref29
  doi: 10.1016/j.neucom.2020.06.009
– ident: ref40
  doi: 10.1109/TCDS.2018.2826840
– ident: ref35
  doi: 10.1109/TBME.2017.2694818
– ident: ref49
  doi: 10.1109/JIOT.2021.3061727
– ident: ref20
  doi: 10.1109/IECBES.2016.7843492
– ident: ref11
  doi: 10.1109/TBME.2014.2317881
– ident: ref45
  doi: 10.1073/pnas.1508080112
– ident: ref24
  doi: 10.1109/TBME.2019.2929745
– ident: ref33
  doi: 10.1088/1741-2560/12/4/046008
– start-page: 147
  volume-title: Proc. Int. Conf. Appl. Electron.
  ident: ref14
  article-title: EEG biometric identification: Repeatability and influence of movement-related EEG
SSID ssj0001105196
Score 2.339797
Snippet Electroencephalography (EEG) biometrics has garnered significant attention in recent years owing to its nonintrusive nature, real-time detection capabilities,...
200 days > 1000 days. However, the proposed method effectively mitigates template aging, resulting in minimal performance differences among the various data...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 33722
SubjectTerms Accuracy
Aging
Aging effect
Algorithms
biometrics
Classification algorithms
Correlation
domain adaptation
Electroencephalography
electroencephalography (EEG)
Filter banks
Pattern recognition
Spatial filters
transfer learning
Title Unsupervised Domain Adaptation via Spatial Pattern Alignment for VEP-Based Identity Recognition
URI https://ieeexplore.ieee.org/document/10609791
https://www.proquest.com/docview/3114563554
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dS8MwEA-6J1_8nDidkgefhM4kbbr1ceqGCs4hm_hW8lUZzm64TdC_3kua-oniUwtNSuByud_l7neH0KFRlr3IWQBwlQURVTQQzFDwUjg8m-AhOHr0VS8-H0aXd_zOk9UdF8YY45LPTMO-uli-nqiFvSoDDY9J0rRc9WXw3Aqy1seFCrVoJPaRS0qS48uL6wF4gCxqhGAmWRh-sT2umcqPE9iZle4a6pULKrJJHhqLuWyo12-1Gv-94nW06gEmbhc7YgMtmXwTrZXNG7DX5S2UDvPZYmpPipnR-GzyKEY5bmsxLWLz-HkksO1XDPsT910RTvg8Ht277AEMUBffdvrBibCzPdv3Bd-U6UiTvIqG3c7g9Dzw3RYCxZJoDseikYDtjOKCEhlTzbixNQq0TMKMM60y0lRat0giKRUki5QtcswzQUzUElEYbqNKPsnNDsJSaZqZlgTopqOsJQQHUGKakqlEa1D6GiKlHFLlS5Hbjhjj1LkkJEmt6FIrutSLroaO3qdMizocfw2uWlF8GlhIoYbqpbRTr6qzNASPkDvYtfvLtD20Yv9uLRbldVSZPy3MPkCRuTxwW_ANtyzbEQ
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEA6iB734FuszB0_C1iS7abtHn9RXFWnFW8hrpVi3xbaC_non2axPFE-7sAkbmEzmm8x8MwjtWO3Yi5xFAFdZlFBNI8ksBS-Fw7MOHoKnR1-2as1OcnbH7wJZ3XNhrLU--cxW3auP5Zu-HrurMtDwGknrjqs-BYaf04Ku9XGlQh0eqYXYJSXp3tnpVRt8QJZUYzCULI6_WB_fTuXHGewNy8kcapVLKvJJHqrjkarq12_VGv-95nk0GyAm3i_2xAKasPkimivbN-CgzUtIdPLheODOiqE1-Kj_KLs53jdyUETn8XNXYtexGHYovvZlOOFzr3vv8wcwgF18e3wdHUg3O_B9X_BNmZDUz5dR5-S4fdiMQr-FSLM0GcHBaBWgO6u5pETVqGHcuioFRqVxxpnRGalrYxokVZRKkiXalTnmmSQ2acgkjlfQZN7P7SrCShua2YYC8GaSrCElB1hi64rp1BhQ-woipRyEDsXIXU-MnvBOCUmFE51wohNBdBW0-z5lUFTi-GvwshPFp4GFFCpoo5S2CMo6FDH4hNwDr7Vfpm2j6Wb78kJcnLbO19GM-5OzX5RvoMnR09huAjAZqS2_Hd8ASwHeWg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Unsupervised+Domain+Adaptation+via+Spatial+Pattern+Alignment+for+VEP-Based+Identity+Recognition&rft.jtitle=IEEE+internet+of+things+journal&rft.au=Zhao%2C+Hongze&rft.au=Wang%2C+Yijun&rft.au=Gao%2C+Xiaorong&rft.date=2024-10-15&rft.pub=IEEE&rft.eissn=2327-4662&rft.volume=11&rft.issue=20&rft.spage=33722&rft.epage=33733&rft_id=info:doi/10.1109%2FJIOT.2024.3431233&rft.externalDocID=10609791
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2327-4662&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2327-4662&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2327-4662&client=summon