Unsupervised Domain Adaptation via Spatial Pattern Alignment for VEP-Based Identity Recognition
Electroencephalography (EEG) biometrics has garnered significant attention in recent years owing to its nonintrusive nature, real-time detection capabilities, concealment, and high complexity. Despite these promising attributes, the practical deployment of EEG-based identity recognition systems rema...
Saved in:
Published in | IEEE internet of things journal Vol. 11; no. 20; pp. 33722 - 33733 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
15.10.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Electroencephalography (EEG) biometrics has garnered significant attention in recent years owing to its nonintrusive nature, real-time detection capabilities, concealment, and high complexity. Despite these promising attributes, the practical deployment of EEG-based identity recognition systems remains hindered by limited cross-day recognition performance. While some studies have reported cross-day recognition, they often suffer from slow recognition speeds, failing to meet the basic requirements for practical applications. To address this issue, we propose an unsupervised domain adaptation algorithm based on spatial pattern alignment for visual-evoked potential (VEP)-based identity recognition. This method employs rotational alignment of spatial patterns to correct cross-day spatial filters and utilizes forward selection to identify optimal sub-bands. By utilizing this approach, significant improvements of speed and accuracy in cross-day recognition can be achieved. We validate the proposed algorithm on three existing VEP data sets: 1) Data Set I (25 subjects across 30 days); 2) Data Set II (21 subjects across 5 days); and 3) Data Set III (15 subjects across 200 days). The results demonstrate a significant superiority over the compared algorithms. Furthermore, we conduct online experiments with 15 individuals across over 1000 days, and the outcomes remain consistent. Analyzing the data set over nearly three years in terms of the temporal dimension, we observe evident performance differences caused by template aging effect: 30 days > 200 days > 1000 days. However, the proposed method effectively mitigates template aging, resulting in minimal performance differences among the various data sets. The introduced algorithm substantially enhances speed and accuracy in cross-day recognition, paving the way for the long-term stability and practicality of online brainwave recognition systems. |
---|---|
AbstractList | 200 days > 1000 days. However, the proposed method effectively mitigates template aging, resulting in minimal performance differences among the various data sets. The introduced algorithm substantially enhances speed and accuracy in cross-day recognition, paving the way for the long-term stability and practicality of online brainwave recognition systems. Electroencephalography (EEG) biometrics has garnered significant attention in recent years owing to its nonintrusive nature, real-time detection capabilities, concealment, and high complexity. Despite these promising attributes, the practical deployment of EEG-based identity recognition systems remains hindered by limited cross-day recognition performance. While some studies have reported cross-day recognition, they often suffer from slow recognition speeds, failing to meet the basic requirements for practical applications. To address this issue, we propose an unsupervised domain adaptation algorithm based on spatial pattern alignment for visual-evoked potential (VEP)-based identity recognition. This method employs rotational alignment of spatial patterns to correct cross-day spatial filters and utilizes forward selection to identify optimal sub-bands. By utilizing this approach, significant improvements of speed and accuracy in cross-day recognition can be achieved. We validate the proposed algorithm on three existing VEP data sets: 1) Data Set I (25 subjects across 30 days); 2) Data Set II (21 subjects across 5 days); and 3) Data Set III (15 subjects across 200 days). The results demonstrate a significant superiority over the compared algorithms. Furthermore, we conduct online experiments with 15 individuals across over 1000 days, and the outcomes remain consistent. Analyzing the data set over nearly three years in terms of the temporal dimension, we observe evident performance differences caused by template aging effect: 30 days > 200 days > 1000 days. However, the proposed method effectively mitigates template aging, resulting in minimal performance differences among the various data sets. The introduced algorithm substantially enhances speed and accuracy in cross-day recognition, paving the way for the long-term stability and practicality of online brainwave recognition systems. |
Author | Gao, Xiaorong Wang, Yijun Zhao, Hongze |
Author_xml | – sequence: 1 givenname: Hongze orcidid: 0000-0001-7934-3468 surname: Zhao fullname: Zhao, Hongze email: zhaohz23@mails.tsinghua.edu.cn organization: Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China – sequence: 2 givenname: Yijun orcidid: 0000-0002-8161-2150 surname: Wang fullname: Wang, Yijun email: wangyj@semi.ac.cn organization: State Key Laboratory on Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, China – sequence: 3 givenname: Xiaorong orcidid: 0000-0003-0499-2740 surname: Gao fullname: Gao, Xiaorong email: gxr-dea@mail.tsinghua.edu.cn organization: Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China |
BookMark | eNp9kE1PwkAQhjcGExH5ASYemngu7nfZIyIqhgSi4HWz3W7JkrKt24WEf2-bciAePM2bmXlmkucW9FzpDAD3CI4QguLpY75cjzDEdEQoQZiQK9DHBCcx5Rz3LvINGNb1DkLYYAwJ3gdy4-pDZfzR1iaLXsq9si6aZKoKKtjSRUeroq-qyaqIVioE45txYbdub1yI8tJH37NV_Kxaep41PRtO0afR5dbZ9sAduM5VUZvhuQ7A5nW2nr7Hi-XbfDpZxBoLGuJxYlLGudFMIZhylGFmkBAiSwXJGc50DhOdZWMoUoQUzKmGXECWK2joWFFCBuCxu1v58udg6iB35cG75qUkCFHGCWO02ULdlvZlXXuTy8rbvfIniaBsVcpWpWxVyrPKhkn-MNp2coJXtviXfOhIa4y5-MShSAQiv6O_gzE |
CODEN | IITJAU |
CitedBy_id | crossref_primary_10_1016_j_cose_2024_104281 crossref_primary_10_1109_TIFS_2024_3452628 |
Cites_doi | 10.1049/iet-bmt.2014.0075 10.1109/TNSRE.2016.2573819 10.1109/EMBC.2014.6944263 10.1088/1741-2552/abcb6e 10.1109/MSMC.2017.2703651 10.1117/12.462719 10.3390/app14020534 10.1109/JBHI.2023.3315974 10.3390/s17051014 10.1109/TIFS.2017.2778010 10.1049/ip-smt:20040003 10.1109/TIFS.2019.2912272 10.1007/BF02289451 10.1109/TIFS.2016.2543524 10.1016/j.neucom.2020.09.017 10.1007/s00521-023-08539-4 10.23919/EUSIPCO54536.2021.9616098 10.1016/j.neucom.2015.04.025 10.1109/TIFS.2017.2699944 10.1142/S0129065720500203 10.1142/S0129065714500191 10.1016/j.heliyon.2024.e25999 10.1088/1741-2552/ac494f 10.1016/j.compeleceng.2013.11.024 10.1016/j.tics.2011.03.006 10.1007/s10115-012-0487-8 10.1109/IEMBS.2009.5334858 10.1016/S0042-6989(99)00031-0 10.1109/TBME.2021.3105331 10.1109/TIFS.2024.3369405 10.3389/fnins.2022.863359 10.1109/TBME.2019.2913914 10.1088/1741-2560/12/4/046006 10.1109/TNSRE.2023.3288397 10.1109/LSP.2016.2516043 10.1109/TIFS.2014.2308640 10.1016/j.eswa.2021.114961 10.1109/TPAMI.2007.1013 10.14257/ijbsbt.2014.6.4.07 10.1016/j.neucom.2020.06.009 10.1109/TCDS.2018.2826840 10.1109/TBME.2017.2694818 10.1109/JIOT.2021.3061727 10.1109/IECBES.2016.7843492 10.1109/TBME.2014.2317881 10.1073/pnas.1508080112 10.1109/TBME.2019.2929745 10.1088/1741-2560/12/4/046008 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
DBID | 97E RIA RIE AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
DOI | 10.1109/JIOT.2024.3431233 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Computer and Information Systems Abstracts |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 2327-4662 |
EndPage | 33733 |
ExternalDocumentID | 10_1109_JIOT_2024_3431233 10609791 |
Genre | orig-research |
GrantInformation_xml | – fundername: National Key Research and Development Program of China grantid: 2022YFF1202303 – fundername: Key Research and Development Program of Ningxia; Key Research and Development Program of Ningxia Hui Autonomous Region grantid: 2023BEG02063 funderid: 10.13039/100016692 – fundername: National Natural Science Foundation of China grantid: 62071447; U2241208 funderid: 10.13039/501100001809 |
GroupedDBID | 0R~ 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABJNI ABQJQ ABVLG AGQYO AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS IFIPE IPLJI JAVBF M43 OCL PQQKQ RIA RIE AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c294t-87eb566ec5a10b61d25e1999db93f52dcf07cdd809b11a0f4c06905fa0e48a433 |
IEDL.DBID | RIE |
ISSN | 2327-4662 |
IngestDate | Mon Jun 30 15:19:39 EDT 2025 Tue Jul 01 00:38:11 EDT 2025 Thu Apr 24 22:57:23 EDT 2025 Wed Aug 27 02:19:22 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 20 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c294t-87eb566ec5a10b61d25e1999db93f52dcf07cdd809b11a0f4c06905fa0e48a433 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-8161-2150 0000-0001-7934-3468 0000-0003-0499-2740 |
PQID | 3114563554 |
PQPubID | 2040421 |
PageCount | 12 |
ParticipantIDs | crossref_citationtrail_10_1109_JIOT_2024_3431233 ieee_primary_10609791 proquest_journals_3114563554 crossref_primary_10_1109_JIOT_2024_3431233 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-10-15 |
PublicationDateYYYYMMDD | 2024-10-15 |
PublicationDate_xml | – month: 10 year: 2024 text: 2024-10-15 day: 15 |
PublicationDecade | 2020 |
PublicationPlace | Piscataway |
PublicationPlace_xml | – name: Piscataway |
PublicationTitle | IEEE internet of things journal |
PublicationTitleAbbrev | JIoT |
PublicationYear | 2024 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref12 ref15 ref11 ref10 ref17 ref16 ref19 ref18 ref50 ref46 ref45 ref48 ref47 ref42 ref41 ref44 ref49 Kostílek (ref14) ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 ref35 ref34 ref37 ref36 ref31 ref30 ref33 ref32 ref2 ref1 ref39 ref38 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 Van der Maaten (ref43) 2008; 9 ref29 |
References_xml | – ident: ref3 doi: 10.1049/iet-bmt.2014.0075 – ident: ref46 doi: 10.1109/TNSRE.2016.2573819 – ident: ref42 doi: 10.1109/EMBC.2014.6944263 – ident: ref21 doi: 10.1088/1741-2552/abcb6e – ident: ref1 doi: 10.1109/MSMC.2017.2703651 – ident: ref2 doi: 10.1117/12.462719 – ident: ref50 doi: 10.3390/app14020534 – ident: ref30 doi: 10.1109/JBHI.2023.3315974 – ident: ref27 doi: 10.3390/s17051014 – ident: ref17 doi: 10.1109/TIFS.2017.2778010 – ident: ref9 doi: 10.1049/ip-smt:20040003 – ident: ref31 doi: 10.1109/TIFS.2019.2912272 – ident: ref37 doi: 10.1007/BF02289451 – ident: ref12 doi: 10.1109/TIFS.2016.2543524 – ident: ref22 doi: 10.1016/j.neucom.2020.09.017 – ident: ref19 doi: 10.1007/s00521-023-08539-4 – ident: ref18 doi: 10.23919/EUSIPCO54536.2021.9616098 – ident: ref15 doi: 10.1016/j.neucom.2015.04.025 – ident: ref13 doi: 10.1109/TIFS.2017.2699944 – ident: ref36 doi: 10.1142/S0129065720500203 – ident: ref44 doi: 10.1142/S0129065714500191 – ident: ref48 doi: 10.1016/j.heliyon.2024.e25999 – ident: ref38 doi: 10.1088/1741-2552/ac494f – ident: ref39 doi: 10.1016/j.compeleceng.2013.11.024 – ident: ref6 doi: 10.1016/j.tics.2011.03.006 – ident: ref41 doi: 10.1007/s10115-012-0487-8 – ident: ref10 doi: 10.1109/IEMBS.2009.5334858 – ident: ref32 doi: 10.1016/S0042-6989(99)00031-0 – ident: ref25 doi: 10.1109/TBME.2021.3105331 – ident: ref47 doi: 10.1109/TIFS.2024.3369405 – ident: ref26 doi: 10.3389/fnins.2022.863359 – ident: ref28 doi: 10.1109/TBME.2019.2913914 – volume: 9 start-page: 2579 issue: 11 year: 2008 ident: ref43 article-title: Visualizing data using t-SNE publication-title: J. Mach. Learn. Res. – ident: ref23 doi: 10.1088/1741-2560/12/4/046006 – ident: ref34 doi: 10.1109/TNSRE.2023.3288397 – ident: ref16 doi: 10.1109/LSP.2016.2516043 – ident: ref7 doi: 10.1109/TIFS.2014.2308640 – ident: ref8 doi: 10.1016/j.eswa.2021.114961 – ident: ref5 doi: 10.1109/TPAMI.2007.1013 – ident: ref4 doi: 10.14257/ijbsbt.2014.6.4.07 – ident: ref29 doi: 10.1016/j.neucom.2020.06.009 – ident: ref40 doi: 10.1109/TCDS.2018.2826840 – ident: ref35 doi: 10.1109/TBME.2017.2694818 – ident: ref49 doi: 10.1109/JIOT.2021.3061727 – ident: ref20 doi: 10.1109/IECBES.2016.7843492 – ident: ref11 doi: 10.1109/TBME.2014.2317881 – ident: ref45 doi: 10.1073/pnas.1508080112 – ident: ref24 doi: 10.1109/TBME.2019.2929745 – ident: ref33 doi: 10.1088/1741-2560/12/4/046008 – start-page: 147 volume-title: Proc. Int. Conf. Appl. Electron. ident: ref14 article-title: EEG biometric identification: Repeatability and influence of movement-related EEG |
SSID | ssj0001105196 |
Score | 2.339797 |
Snippet | Electroencephalography (EEG) biometrics has garnered significant attention in recent years owing to its nonintrusive nature, real-time detection capabilities,... 200 days > 1000 days. However, the proposed method effectively mitigates template aging, resulting in minimal performance differences among the various data... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 33722 |
SubjectTerms | Accuracy Aging Aging effect Algorithms biometrics Classification algorithms Correlation domain adaptation Electroencephalography electroencephalography (EEG) Filter banks Pattern recognition Spatial filters transfer learning |
Title | Unsupervised Domain Adaptation via Spatial Pattern Alignment for VEP-Based Identity Recognition |
URI | https://ieeexplore.ieee.org/document/10609791 https://www.proquest.com/docview/3114563554 |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dS8MwEA-6J1_8nDidkgefhM4kbbr1ceqGCs4hm_hW8lUZzm64TdC_3kua-oniUwtNSuByud_l7neH0KFRlr3IWQBwlQURVTQQzFDwUjg8m-AhOHr0VS8-H0aXd_zOk9UdF8YY45LPTMO-uli-nqiFvSoDDY9J0rRc9WXw3Aqy1seFCrVoJPaRS0qS48uL6wF4gCxqhGAmWRh-sT2umcqPE9iZle4a6pULKrJJHhqLuWyo12-1Gv-94nW06gEmbhc7YgMtmXwTrZXNG7DX5S2UDvPZYmpPipnR-GzyKEY5bmsxLWLz-HkksO1XDPsT910RTvg8Ht277AEMUBffdvrBibCzPdv3Bd-U6UiTvIqG3c7g9Dzw3RYCxZJoDseikYDtjOKCEhlTzbixNQq0TMKMM60y0lRat0giKRUki5QtcswzQUzUElEYbqNKPsnNDsJSaZqZlgTopqOsJQQHUGKakqlEa1D6GiKlHFLlS5Hbjhjj1LkkJEmt6FIrutSLroaO3qdMizocfw2uWlF8GlhIoYbqpbRTr6qzNASPkDvYtfvLtD20Yv9uLRbldVSZPy3MPkCRuTxwW_ANtyzbEQ |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEA6iB734FuszB0_C1iS7abtHn9RXFWnFW8hrpVi3xbaC_non2axPFE-7sAkbmEzmm8x8MwjtWO3Yi5xFAFdZlFBNI8ksBS-Fw7MOHoKnR1-2as1OcnbH7wJZ3XNhrLU--cxW3auP5Zu-HrurMtDwGknrjqs-BYaf04Ku9XGlQh0eqYXYJSXp3tnpVRt8QJZUYzCULI6_WB_fTuXHGewNy8kcapVLKvJJHqrjkarq12_VGv-95nk0GyAm3i_2xAKasPkimivbN-CgzUtIdPLheODOiqE1-Kj_KLs53jdyUETn8XNXYtexGHYovvZlOOFzr3vv8wcwgF18e3wdHUg3O_B9X_BNmZDUz5dR5-S4fdiMQr-FSLM0GcHBaBWgO6u5pETVqGHcuioFRqVxxpnRGalrYxokVZRKkiXalTnmmSQ2acgkjlfQZN7P7SrCShua2YYC8GaSrCElB1hi64rp1BhQ-woipRyEDsXIXU-MnvBOCUmFE51wohNBdBW0-z5lUFTi-GvwshPFp4GFFCpoo5S2CMo6FDH4hNwDr7Vfpm2j6Wb78kJcnLbO19GM-5OzX5RvoMnR09huAjAZqS2_Hd8ASwHeWg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Unsupervised+Domain+Adaptation+via+Spatial+Pattern+Alignment+for+VEP-Based+Identity+Recognition&rft.jtitle=IEEE+internet+of+things+journal&rft.au=Zhao%2C+Hongze&rft.au=Wang%2C+Yijun&rft.au=Gao%2C+Xiaorong&rft.date=2024-10-15&rft.pub=IEEE&rft.eissn=2327-4662&rft.volume=11&rft.issue=20&rft.spage=33722&rft.epage=33733&rft_id=info:doi/10.1109%2FJIOT.2024.3431233&rft.externalDocID=10609791 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2327-4662&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2327-4662&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2327-4662&client=summon |