A Multi-Position Approach in a Smart Fiber-Optic Surveillance System for Pipeline Integrity Threat Detection
We present a new pipeline integrity surveillance system for long gas pipeline threat detection and classification. The system is based on distributed acoustic sensing with phase-sensitive optical time domain reflectometry (ϕ-OTDR) and pattern recognition for event classification. The proposal incorp...
Saved in:
Published in | Electronics (Basel) Vol. 10; no. 6; p. 712 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
18.03.2021
|
Online Access | Get full text |
ISSN | 2079-9292 2079-9292 |
DOI | 10.3390/electronics10060712 |
Cover
Abstract | We present a new pipeline integrity surveillance system for long gas pipeline threat detection and classification. The system is based on distributed acoustic sensing with phase-sensitive optical time domain reflectometry (ϕ-OTDR) and pattern recognition for event classification. The proposal incorporates a multi-position approach in a Gaussian Mixture Model (GMM)-based pattern classification system which operates in a real-field scenario with a thorough experimental procedure. The objective is exploiting the availability of vibration-related data at positions nearby the one actually producing the main disturbance to improve the robustness of the trained models. The system integrates two classification tasks: (1) machine + activity identification, which identifies the machine that is working over the pipeline along with the activity being carried out, and (2) threat detection, which aims to detect suspicious threats for the pipeline integrity (independently of the activity being carried out). For the machine + activity identification mode, the multi-position approach for model training obtains better performance than the previously presented single-position approach for activities that show consistent behavior and high energy (between 6% and 11% absolute) with an overall increase of 3% absolute in the classification accuracy. For the threat detection mode, the proposed approach gets an 8% absolute reduction in the false alarm rate with an overall increase of 4.5% absolute in the classification accuracy. |
---|---|
AbstractList | We present a new pipeline integrity surveillance system for long gas pipeline threat detection and classification. The system is based on distributed acoustic sensing with phase-sensitive optical time domain reflectometry (ϕ-OTDR) and pattern recognition for event classification. The proposal incorporates a multi-position approach in a Gaussian Mixture Model (GMM)-based pattern classification system which operates in a real-field scenario with a thorough experimental procedure. The objective is exploiting the availability of vibration-related data at positions nearby the one actually producing the main disturbance to improve the robustness of the trained models. The system integrates two classification tasks: (1) machine + activity identification, which identifies the machine that is working over the pipeline along with the activity being carried out, and (2) threat detection, which aims to detect suspicious threats for the pipeline integrity (independently of the activity being carried out). For the machine + activity identification mode, the multi-position approach for model training obtains better performance than the previously presented single-position approach for activities that show consistent behavior and high energy (between 6% and 11% absolute) with an overall increase of 3% absolute in the classification accuracy. For the threat detection mode, the proposed approach gets an 8% absolute reduction in the false alarm rate with an overall increase of 4.5% absolute in the classification accuracy. |
Author | Macias-Guarasa, Javier Gonzalez-Herraez, Miguel Tejedor, Javier Martins, Hugo F. Martin-Lopez, Sonia |
Author_xml | – sequence: 1 givenname: Javier orcidid: 0000-0001-7699-5620 surname: Tejedor fullname: Tejedor, Javier – sequence: 2 givenname: Javier orcidid: 0000-0002-3303-3963 surname: Macias-Guarasa fullname: Macias-Guarasa, Javier – sequence: 3 givenname: Hugo F. orcidid: 0000-0003-3927-8125 surname: Martins fullname: Martins, Hugo F. – sequence: 4 givenname: Sonia surname: Martin-Lopez fullname: Martin-Lopez, Sonia – sequence: 5 givenname: Miguel surname: Gonzalez-Herraez fullname: Gonzalez-Herraez, Miguel |
BookMark | eNp9kE9LAzEQxYNUsNZ-Ai_5AqvJpvsnx1KtCpUW2vuSTmftSJpdklTotzdFDyLiXOYd5vd4867ZwHUOGbuV4k4pLe7RIkTfOYIghShFJfMLNsxFpTOd63zwQ1-xcQjvIo2WqlZiyOyUvx5tpGzVBYrUOT7te98Z2HNy3PD1wfjI57RFny37SMDXR_-BZK1xgHx9ChEPvO08X1GPlhzyFxfxzVM88c3eo4n8AWNKmLxv2GVrbMDx9x6xzfxxM3vOFsunl9l0kUGuJzGrVSFLuZOlqgtVy9poIUwhsQQoJxIABe6KSicpTQtSw1als7Yqcigr1aoRU1-24LsQPLZN7yn9cWqkaM6VNX9Ulij9iwKK5hw7ekP2X_YTDzN4kg |
CitedBy_id | crossref_primary_10_3390_s22197550 crossref_primary_10_1007_s11042_024_19386_3 crossref_primary_10_1007_s00502_024_01284_z crossref_primary_10_3390_electronics12061476 crossref_primary_10_3390_s21227527 crossref_primary_10_1016_j_oceaneng_2024_118293 crossref_primary_10_3390_electronics12071617 crossref_primary_10_1093_gji_ggac229 crossref_primary_10_1016_j_ymssp_2023_110346 crossref_primary_10_3390_s22031033 crossref_primary_10_1016_j_optcom_2023_129708 crossref_primary_10_1785_0220220078 crossref_primary_10_3390_s23167116 crossref_primary_10_1109_TGRS_2022_3143120 crossref_primary_10_1093_gji_ggae382 crossref_primary_10_1177_14759217241236365 |
Cites_doi | 10.1016/j.ijleo.2016.01.165 10.1117/12.2262108 10.1016/j.ijleo.2018.12.074 10.1364/OL.39.004313 10.1007/s13320-016-0308-x 10.1016/j.yofte.2018.06.005 10.1109/LPT.2011.2182643 10.1007/s13320-017-0360-1 10.1109/JLT.2015.2396359 10.1117/12.2059729 10.1109/ICInfA.2015.7279402 10.1109/JLT.2017.2780126 10.1364/OFS.2018.ThE22 10.1109/WMVC.2007.27 10.1117/12.2058504 10.3390/s20020450 10.1109/JLT.2019.2923839 10.1109/JSEN.2019.2891750 10.1109/JLT.2015.2421953 10.1109/ACCESS.2019.2945338 10.1016/j.yofte.2020.102149 10.1117/12.2547712 10.1364/OFS.2018.ThE35 10.1117/1.OE.57.1.016103 10.3390/app7080841 10.1109/JPHOT.2016.2636747 10.1016/j.yofte.2019.101980 10.1016/j.yofte.2019.102060 10.1364/OFS.2018.WF36 10.3390/s17020355 10.1117/12.484911 10.3390/s19153322 10.1186/s13673-017-0101-x 10.1002/rob.21828 10.1364/AO.46.001968 10.1038/s41598-020-77147-2 10.1109/JLT.2016.2542981 10.3390/s19153421 10.1109/ACCESS.2020.3004207 10.1007/s00779-009-0225-8 10.1002/mop.30886 10.1364/OL.39.005866 10.3390/s150921957 10.1117/12.2045268 10.1364/OE.27.023682 10.1364/OE.22.013804 10.1109/JLT.2005.849924 10.1364/OFS.2018.ThE97 10.1109/JLT.2014.2308354 10.1109/JLT.2019.2908816 10.3390/s18092841 10.1117/12.2071255 10.1109/CyberC.2018.00059 10.1117/12.2058503 10.3390/s18092839 10.1109/JPHOT.2016.2538078 10.3788/CJL201542.1105005 10.1109/JSEN.2016.2642221 10.1364/OFS.2018.WF42 10.1109/JLT.2019.2926745 10.1109/JLT.2013.2286223 10.1364/ACPC.2015.ASu2A.145 10.1016/j.patcog.2005.10.028 10.1109/JSEN.2020.3043277 10.1007/s10462-019-09718-3 10.3390/s150715179 10.1007/s11227-016-1672-4 10.1515/mms-2015-0009 |
ContentType | Journal Article |
DBID | AAYXX CITATION |
DOI | 10.3390/electronics10060712 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2079-9292 |
ExternalDocumentID | 10_3390_electronics10060712 |
GroupedDBID | 5VS 8FE 8FG AAYXX ADMLS AFKRA ALMA_UNASSIGNED_HOLDINGS ARAPS BENPR BGLVJ CCPQU CITATION HCIFZ IAO KQ8 MODMG M~E OK1 P62 PHGZM PHGZT PIMPY PROAC |
ID | FETCH-LOGICAL-c294t-835161d163853818a900a51e6cc641cce0ed57941c1afc19cb3381f752c673f3 |
ISSN | 2079-9292 |
IngestDate | Tue Jul 01 02:00:21 EDT 2025 Thu Apr 24 23:01:08 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c294t-835161d163853818a900a51e6cc641cce0ed57941c1afc19cb3381f752c673f3 |
ORCID | 0000-0002-3303-3963 0000-0001-7699-5620 0000-0003-3927-8125 |
OpenAccessLink | https://www.mdpi.com/2079-9292/10/6/712/pdf?version=1616142019 |
ParticipantIDs | crossref_primary_10_3390_electronics10060712 crossref_citationtrail_10_3390_electronics10060712 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-03-18 |
PublicationDateYYYYMMDD | 2021-03-18 |
PublicationDate_xml | – month: 03 year: 2021 text: 2021-03-18 day: 18 |
PublicationDecade | 2020 |
PublicationTitle | Electronics (Basel) |
PublicationYear | 2021 |
References | ref_50 Cong (ref_51) 2017; 15 Wang (ref_8) 2014; 39 Peng (ref_77) 2020; 10 Deb (ref_36) 2020; 53 ref_58 ref_57 ref_12 Huang (ref_68) 2020; 55 ref_11 ref_55 ref_53 ref_52 Kim (ref_82) 2009; 13 Martins (ref_16) 2013; 31 ref_19 Miro (ref_43) 2018; 35 ref_18 Huang (ref_64) 2017; 9 ref_15 Wang (ref_5) 2014; 39 He (ref_14) 2019; 181 ref_61 Shi (ref_13) 2015; 15 Tejedor (ref_26) 2016; 34 ref_67 ref_22 ref_66 ref_21 ref_20 Martins (ref_7) 2015; 33 Zhang (ref_74) 2019; 52 Zhaoyong (ref_62) 2015; 42 Huh (ref_35) 2019; 7 Qu (ref_65) 2016; 127 ref_28 Huh (ref_34) 2016; 72 ref_27 Wu (ref_56) 2020; 8 Huang (ref_76) 2018; 45 Wu (ref_24) 2015; 33 Xu (ref_63) 2017; 59 Martins (ref_6) 2014; 32 ref_71 Wu (ref_73) 2019; 37 Kumar (ref_38) 2020; 7 Bi (ref_60) 2016; 6 ref_79 Ambati (ref_44) 2020; 2311 ref_78 ref_32 ref_31 Wang (ref_59) 2019; 27 ref_30 Sifta (ref_45) 2015; XXII Tejedor (ref_84) 2017; 36 Tejedor (ref_29) 2019; 37 Huh (ref_33) 2017; 7 ref_39 Xu (ref_70) 2018; 57 Peng (ref_9) 2014; 22 ref_37 Bai (ref_75) 2019; 53 Wang (ref_48) 2017; 17 Juarez (ref_4) 2005; 23 ref_83 Wu (ref_72) 2019; 37 ref_81 Permuter (ref_80) 2006; 39 Juarez (ref_10) 2007; 46 Sun (ref_23) 2015; 15 ref_47 ref_46 Jia (ref_69) 2019; 19 Quin (ref_17) 2012; 24 ref_42 ref_41 ref_40 ref_1 ref_3 ref_2 ref_49 Wu (ref_25) 2017; 7 Liang (ref_54) 2016; 8 |
References_xml | – volume: 127 start-page: 4461 year: 2016 ident: ref_65 article-title: A new two-dimensional method to detect harmful intrusion vibrations for optical fiber pre-warning system publication-title: Optik doi: 10.1016/j.ijleo.2016.01.165 – ident: ref_55 doi: 10.1117/12.2262108 – ident: ref_78 – volume: 181 start-page: 343 year: 2019 ident: ref_14 article-title: Application of distributed acoustic sensor technology in train running condition monitoring of the heavy-haul railway publication-title: Optik doi: 10.1016/j.ijleo.2018.12.074 – volume: 39 start-page: 4313 year: 2014 ident: ref_5 article-title: Phase-sensitive optical time-domain reflectometry with Brillouin amplification publication-title: Opt. Lett. doi: 10.1364/OL.39.004313 – volume: 6 start-page: 143 year: 2016 ident: ref_60 article-title: A Novel Fiber Optic Based Surveillance System for Prevention of Pipeline Integrity Threats publication-title: Photonic Sens. doi: 10.1007/s13320-016-0308-x – volume: 45 start-page: 64 year: 2018 ident: ref_76 article-title: Fully modelling based intrusion discrimination in optical fiber perimeter security system publication-title: Opt. Fiber Technol. doi: 10.1016/j.yofte.2018.06.005 – volume: 24 start-page: 542 year: 2012 ident: ref_17 article-title: Wavelet denoising method for improving detection performance of distributed vibration sensor publication-title: IEEE Photonics Technol. Lett. doi: 10.1109/LPT.2011.2182643 – volume: 7 start-page: 305 year: 2017 ident: ref_25 article-title: Feature Extraction and Identification in Distributed Optical-Fiber Vibration Sensing System for Oil Pipeline Safety Monitoring publication-title: Photonic Sens. doi: 10.1007/s13320-017-0360-1 – volume: 33 start-page: 2628 year: 2015 ident: ref_7 article-title: Distributed vibration sensing over 125 km with enhanced SNR using ϕ-OTDR over a URFL cavity publication-title: J. Light. Technol. doi: 10.1109/JLT.2015.2396359 – volume: 42 start-page: 167 year: 2015 ident: ref_62 article-title: Fast Pattern Recognition Based on Frequency Spectrum Analysis Used for Intrusion Alarming in Optical Fiber Fence publication-title: Chin. J. Lasers – ident: ref_18 doi: 10.1117/12.2059729 – ident: ref_39 doi: 10.1109/ICInfA.2015.7279402 – volume: 36 start-page: 1052 year: 2017 ident: ref_84 article-title: Real Field Deployment of a Smart Fiber Optic Surveillance System for Pipeline Integrity Threat Detection: Architectural Issues and Blind Field Test Results publication-title: J. Light. Technol. doi: 10.1109/JLT.2017.2780126 – ident: ref_61 doi: 10.1364/OFS.2018.ThE22 – ident: ref_1 – ident: ref_81 doi: 10.1109/WMVC.2007.27 – ident: ref_20 doi: 10.1117/12.2058504 – ident: ref_15 doi: 10.3390/s20020450 – volume: 37 start-page: 4359 year: 2019 ident: ref_72 article-title: 1-D CNN based intelligent recognition of vibrations in pipeline monitoring with DAS publication-title: J. Light. Technol. doi: 10.1109/JLT.2019.2923839 – ident: ref_31 – volume: 19 start-page: 3683 year: 2019 ident: ref_69 article-title: A k-Nearest Neighbor Algorithm-Based Near Category Support Vector Machine Method for Event Identification of ϕ-OTDR publication-title: IEEE Sens. doi: 10.1109/JSEN.2019.2891750 – volume: 33 start-page: 3156 year: 2015 ident: ref_24 article-title: Separation and Determination of the Disturbing Signals in Phase-Sensitive Optical Time Domain Reflectometry (ϕ-OTDR) publication-title: J. Light. Technol. doi: 10.1109/JLT.2015.2421953 – volume: 7 start-page: 164229 year: 2019 ident: ref_35 article-title: Understanding Edge Computing: Engineering Evolution With Artificial Intelligence publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2945338 – volume: 55 start-page: 102149:1 year: 2020 ident: ref_68 article-title: Building safety monitoring based on extreme gradient boosting in distributed optical fiber sensing publication-title: Opt. Fiber Technol. doi: 10.1016/j.yofte.2020.102149 – ident: ref_71 doi: 10.1117/12.2547712 – ident: ref_47 doi: 10.1364/OFS.2018.ThE35 – volume: 15 start-page: 1 year: 2017 ident: ref_51 article-title: Practical Pattern Recognition System for Distributed Optical Fiber Intrusion Monitoring Based on ϕ-COTDR publication-title: ZTE Commun. – volume: 57 start-page: 016103:1 year: 2018 ident: ref_70 article-title: Pattern recognition based on time-frequency analysis and convolutional neural networks for vibrational events in ϕ-OTDR publication-title: Opt. Eng. doi: 10.1117/1.OE.57.1.016103 – ident: ref_83 – ident: ref_32 doi: 10.3390/app7080841 – volume: 9 start-page: 7800212:1 year: 2017 ident: ref_64 article-title: Hybrid Feature Extraction-Based Intrusion Discrimination in Optical Fiber Perimeter Security System publication-title: IEEE Photonics J. doi: 10.1109/JPHOT.2016.2636747 – volume: 52 start-page: 101980:1 year: 2019 ident: ref_74 article-title: Event detection method comparison for distributed acoustic sensors using ϕ-OTDR publication-title: Opt. Fiber Technol. doi: 10.1016/j.yofte.2019.101980 – volume: 53 start-page: 102060:1 year: 2019 ident: ref_75 article-title: Detection and identification of external intrusion signals from 33 km optical fiber sensing system based on deep learning publication-title: Opt. Fiber Technol. doi: 10.1016/j.yofte.2019.102060 – ident: ref_41 – ident: ref_28 doi: 10.1364/OFS.2018.WF36 – ident: ref_27 doi: 10.3390/s17020355 – ident: ref_3 doi: 10.1117/12.484911 – ident: ref_49 doi: 10.3390/s19153322 – volume: 7 start-page: 20:1 year: 2017 ident: ref_33 article-title: PLC-based design of monitoring system for ICT-integrated vertical fish farm publication-title: Hum. Centric Comput. Inf. Sci. doi: 10.1186/s13673-017-0101-x – volume: 35 start-page: 1293 year: 2018 ident: ref_43 article-title: Robotic pipeline wall thickness evaluation for dense nondestructive testing inspection publication-title: J. Field Robot. doi: 10.1002/rob.21828 – volume: 46 start-page: 1968 year: 2007 ident: ref_10 article-title: Field test of a distributed fiber-optic intrusion sensor system for long perimeters publication-title: Appl. Opt. doi: 10.1364/AO.46.001968 – volume: 10 start-page: 21014:1 year: 2020 ident: ref_77 article-title: Identifcations and classifcations of human locomotion using Rayleigh‑enhanced distributed fber acoustic sensors with deep neural networks publication-title: Sci. Rep. doi: 10.1038/s41598-020-77147-2 – volume: 34 start-page: 4445 year: 2016 ident: ref_26 article-title: Toward Prevention of Pipeline Integrity Threats using a Smart Fiber Optic Surveillance System publication-title: J. Light. Technol. doi: 10.1109/JLT.2016.2542981 – ident: ref_30 – ident: ref_58 doi: 10.3390/s19153421 – volume: 8 start-page: 119448 year: 2020 ident: ref_56 article-title: A novel DAS signal recognition method based on spatiotemporal information extraction with 1DCNNs-BiLSTM network publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3004207 – volume: 13 start-page: 499 year: 2009 ident: ref_82 article-title: An efficient scheme of target classification and information fusion in wireless sensor networks publication-title: Pers. Ubiquitous Comput. doi: 10.1007/s00779-009-0225-8 – volume: 59 start-page: 3134 year: 2017 ident: ref_63 article-title: Pattern recognition based on enhanced multifeature parameters for vibration events in ϕ-OTDR distributed optical fiber sensing system publication-title: Microw. Opt. Technol. Lett. doi: 10.1002/mop.30886 – ident: ref_11 – volume: 39 start-page: 5866 year: 2014 ident: ref_8 article-title: Ultra-long phase-sensitive OTDR with hybrid distributed amplification publication-title: Opt. Lett. doi: 10.1364/OL.39.005866 – volume: 15 start-page: 21957 year: 2015 ident: ref_13 article-title: A Long Distance Phase-Sensitive Optical Time Domain Reflectometer with Simple Structure and High Locating Accuracy publication-title: Sensors doi: 10.3390/s150921957 – ident: ref_40 – ident: ref_19 doi: 10.1117/12.2045268 – ident: ref_67 – ident: ref_37 – volume: 27 start-page: 23682 year: 2019 ident: ref_59 article-title: Practical multi-class event classification approach for distributed vibration sensing using deep dual path network publication-title: Opt. Express doi: 10.1364/OE.27.023682 – volume: 22 start-page: 13804 year: 2014 ident: ref_9 article-title: Ultra-long high-sensitivity ϕ-OTDR for high spatial resolution intrusion detection of pipelines publication-title: Opt. Express doi: 10.1364/OE.22.013804 – ident: ref_79 – volume: 23 start-page: 2081 year: 2005 ident: ref_4 article-title: Distributed Fiber-Optic Intrusion Sensor System publication-title: J. Light. Technol. doi: 10.1109/JLT.2005.849924 – ident: ref_46 doi: 10.1364/OFS.2018.ThE97 – volume: 32 start-page: 1510 year: 2014 ident: ref_6 article-title: Phase-sensitive Optical Time Domain Reflectometer Assisted by First-order Raman Amplification for Distributed Vibration Sensing Over > 100 km publication-title: J. Light. Technol. doi: 10.1109/JLT.2014.2308354 – ident: ref_2 – volume: 2311 start-page: 60002:1 year: 2020 ident: ref_44 article-title: A review on pipeline inspection robot publication-title: AIP Conf. Proc. – volume: 37 start-page: 4514 year: 2019 ident: ref_29 article-title: A contextual GMM-HMM smart fiber optic surveillance system for pipeline in-tegrity threat detection publication-title: J. Light. Technol. doi: 10.1109/JLT.2019.2908816 – ident: ref_50 doi: 10.3390/s18092841 – ident: ref_12 doi: 10.1117/12.2071255 – ident: ref_57 doi: 10.1109/CyberC.2018.00059 – ident: ref_21 doi: 10.1117/12.2058503 – volume: 7 start-page: 57 year: 2020 ident: ref_38 article-title: Pipe inspection robot publication-title: Int. Res. J. Eng. Technol. – ident: ref_53 doi: 10.3390/s18092839 – volume: 8 start-page: 6802112:1 year: 2016 ident: ref_54 article-title: Combination of Phase-Sensitive OTDR and Michelson Interferometer for Nuisance Alarm Rate Reducing and Event Identification publication-title: IEEE Photonics J. doi: 10.1109/JPHOT.2016.2538078 – ident: ref_66 doi: 10.3788/CJL201542.1105005 – volume: 17 start-page: 1333 year: 2017 ident: ref_48 article-title: Real-time distributed vibration monitoring system using ϕ-OTDR publication-title: IEEE Sens. doi: 10.1109/JSEN.2016.2642221 – ident: ref_52 doi: 10.1364/OFS.2018.WF42 – volume: 37 start-page: 4991 year: 2019 ident: ref_73 article-title: A Dynamic Time Sequence Recognition and Knowledge Mining Method Based on the Hidden Markov Models (HMMs) for Pipeline Safety Monitoring With ϕ-OTDR publication-title: J. Light. Technol. doi: 10.1109/JLT.2019.2926745 – volume: 31 start-page: 3631 year: 2013 ident: ref_16 article-title: Coherent noise reduction in high visibility phase sensitive optical time domain reflectometer for distributed sensing of ultrasonic waves publication-title: J. Light. Technol. doi: 10.1109/JLT.2013.2286223 – ident: ref_22 doi: 10.1364/ACPC.2015.ASu2A.145 – volume: 39 start-page: 695 year: 2006 ident: ref_80 article-title: A study of Gaussian mixture models of color and texture features for image classification and segmentation publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2005.10.028 – ident: ref_42 doi: 10.1109/JSEN.2020.3043277 – volume: 53 start-page: 1737 year: 2020 ident: ref_36 article-title: Recent Studies on Chicken Swarm Optimization algorithm: A review (2014–2018) publication-title: Artif. Intell. Rev. doi: 10.1007/s10462-019-09718-3 – volume: 15 start-page: 15179 year: 2015 ident: ref_23 article-title: Recognition of a Phase-Sensitivity OTDR Sensing System Based on Morphologic Feature Extraction publication-title: Sensors doi: 10.3390/s150715179 – volume: 72 start-page: 1862 year: 2016 ident: ref_34 article-title: Advanced metering infrastructure design and test bed experiment using intelligent agents: Focusing on the PLC network base technology for Smart Grid system publication-title: J. Supercomput. doi: 10.1007/s11227-016-1672-4 – volume: XXII start-page: 111 year: 2015 ident: ref_45 article-title: Distributed fiber-optic sensor for detection and localization of acoustic vibrations publication-title: Metrol. Meas. Syst. doi: 10.1515/mms-2015-0009 |
SSID | ssj0000913830 |
Score | 2.2896118 |
Snippet | We present a new pipeline integrity surveillance system for long gas pipeline threat detection and classification. The system is based on distributed acoustic... |
SourceID | crossref |
SourceType | Enrichment Source Index Database |
StartPage | 712 |
Title | A Multi-Position Approach in a Smart Fiber-Optic Surveillance System for Pipeline Integrity Threat Detection |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NbxMxELVCe4FDxacoBeQDt8VlvZ_xMVCigFqolEXqLbK93hIUNlGz4cDv4YcyY2-2TrWqKJdV5PVOlMzb8fNo_IaQN1mZVqWB93uYcMESqeGd03nFVFImOg9FbmyPpbMv2eRb8vkivRgM_nhVS5tGHevfvedK_serMAZ-xVOyd_BsZxQG4DP4F67gYbj-k49HgT0_y87byivklO6E1LwOZDD9Cc8EY6wJYV9XqMw63Vz9MthnyApwWhFnW2d4Pl8Zyzc_WfUIZObFd5s8ODGNLdaqd1L4Xe8cm7N9DyvhwkspFOYHNjBxRbi47npp77lcM4SlXMu--6hpYJE12Vwug_Hx7h12uly5jPcUvlz6GYvIlmz5QTYKc8GAlrkobHrGtpE59BDoh9nclV7fDP9xLLBe8rqB0Jqj3kw7e1ds-8Yi2JUmwqYIzcx6jNwj-1GeYzHA_ujk7HTa5fJQW3Vo29p0P8MJXKGldz2WPBLksZniITlotyF05DD1iAxM_Zg88MQpn5DFiO6ii27RRec1ldSii3rooj66qEMXBXTRLbpohy7q0EU7dD0lxfhj8WHC2t4cTEciaRgQd9grlMjmUyR9UoShTLnJtM4SrrUJTZlCrOeay0pzoVUM06o8jXSWx1X8jOzVy9o8J1RKrmClM6HMVCJ0pSQweBWqoRFDUSX8kETb_2qmW916bJ-ymN3iqkPytnto5WRbbpv-4m7Tj8j9a1y_JHvN1ca8Am7aqNctNP4Cge6Uzw |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Multi-Position+Approach+in+a+Smart+Fiber-Optic+Surveillance+System+for+Pipeline+Integrity+Threat+Detection&rft.jtitle=Electronics+%28Basel%29&rft.au=Tejedor%2C+Javier&rft.au=Macias-Guarasa%2C+Javier&rft.au=Martins%2C+Hugo+F.&rft.au=Martin-Lopez%2C+Sonia&rft.date=2021-03-18&rft.issn=2079-9292&rft.eissn=2079-9292&rft.volume=10&rft.issue=6&rft.spage=712&rft_id=info:doi/10.3390%2Felectronics10060712&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_electronics10060712 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2079-9292&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2079-9292&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2079-9292&client=summon |