AIRIC: Orchestration of Virtualized Radio Access Networks With Noisy Neighbours
Radio Access Networks virtualization (vRAN) is on its way becoming a reality driven by the new requirements in mobile networks, such as scalability and cost reduction. Unfortunately, there is no free lunch but a high price to be paid in terms of computing overhead introduced by noisy neighbors probl...
Saved in:
Published in | IEEE journal on selected areas in communications Vol. 42; no. 2; pp. 432 - 445 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.02.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Radio Access Networks virtualization (vRAN) is on its way becoming a reality driven by the new requirements in mobile networks, such as scalability and cost reduction. Unfortunately, there is no free lunch but a high price to be paid in terms of computing overhead introduced by noisy neighbors problem when multiple virtualized base station instances share computing platforms. In this paper, first, we thoroughly dissect the multiple sources of computing overhead in a vRAN, quantifying their different contributions to the overall performance degradation. Second, we design an AI-driven Radio Intelligent Controller (AIRIC) to orchestrate vRAN computing resources. AIRIC relies upon a hybrid neural network architecture combining a relation network (RN) and a deep Q-Network (DQN) such that: (<inline-formula> <tex-math notation="LaTeX">i </tex-math></inline-formula>) the demand of concurrent virtual base stations is satisfied considering the overhead posed by the noisy neighbors problem while the operating costs of the vRAN infrastructure is minimized; and (<inline-formula> <tex-math notation="LaTeX">ii </tex-math></inline-formula>) dynamically changing contexts in terms of network demand, signal-to-noise ratio (SNR) and the number of base station instances are efficiently supported. Our results show that AIRIC performs very closely to an offline optimal oracle, attaining up to 30% resource savings, and substantially outperforms existing benchmarks in service guarantees. |
---|---|
AbstractList | Radio Access Networks virtualization (vRAN) is on its way becoming a reality driven by the new requirements in mobile networks, such as scalability and cost reduction. Unfortunately, there is no free lunch but a high price to be paid in terms of computing overhead introduced by noisy neighbors problem when multiple virtualized base station instances share computing platforms. In this paper, first, we thoroughly dissect the multiple sources of computing overhead in a vRAN, quantifying their different contributions to the overall performance degradation. Second, we design an AI-driven Radio Intelligent Controller (AIRIC) to orchestrate vRAN computing resources. AIRIC relies upon a hybrid neural network architecture combining a relation network (RN) and a deep Q-Network (DQN) such that: ([Formula Omitted]) the demand of concurrent virtual base stations is satisfied considering the overhead posed by the noisy neighbors problem while the operating costs of the vRAN infrastructure is minimized; and ([Formula Omitted]) dynamically changing contexts in terms of network demand, signal-to-noise ratio (SNR) and the number of base station instances are efficiently supported. Our results show that AIRIC performs very closely to an offline optimal oracle, attaining up to 30% resource savings, and substantially outperforms existing benchmarks in service guarantees. Radio Access Networks virtualization (vRAN) is on its way becoming a reality driven by the new requirements in mobile networks, such as scalability and cost reduction. Unfortunately, there is no free lunch but a high price to be paid in terms of computing overhead introduced by noisy neighbors problem when multiple virtualized base station instances share computing platforms. In this paper, first, we thoroughly dissect the multiple sources of computing overhead in a vRAN, quantifying their different contributions to the overall performance degradation. Second, we design an AI-driven Radio Intelligent Controller (AIRIC) to orchestrate vRAN computing resources. AIRIC relies upon a hybrid neural network architecture combining a relation network (RN) and a deep Q-Network (DQN) such that: (<inline-formula> <tex-math notation="LaTeX">i </tex-math></inline-formula>) the demand of concurrent virtual base stations is satisfied considering the overhead posed by the noisy neighbors problem while the operating costs of the vRAN infrastructure is minimized; and (<inline-formula> <tex-math notation="LaTeX">ii </tex-math></inline-formula>) dynamically changing contexts in terms of network demand, signal-to-noise ratio (SNR) and the number of base station instances are efficiently supported. Our results show that AIRIC performs very closely to an offline optimal oracle, attaining up to 30% resource savings, and substantially outperforms existing benchmarks in service guarantees. |
Author | Garcia-Saavedra, Andres Perez, Xavier Costa Lozano, Josep Xavier Salvat Li, Xi |
Author_xml | – sequence: 1 givenname: Josep Xavier Salvat orcidid: 0000-0001-7188-6310 surname: Lozano fullname: Lozano, Josep Xavier Salvat email: josep.xavier.salvat@neclab.eu organization: NEC Laboratories Europe GmbH, Heidelberg, Germany – sequence: 2 givenname: Andres orcidid: 0000-0003-2005-2222 surname: Garcia-Saavedra fullname: Garcia-Saavedra, Andres email: andres.garcia.saavedra@neclab.eu organization: NEC Laboratories Europe GmbH, Heidelberg, Germany – sequence: 3 givenname: Xi orcidid: 0000-0002-4331-0805 surname: Li fullname: Li, Xi email: xi.li@neclab.eu organization: NEC Laboratories Europe GmbH, Heidelberg, Germany – sequence: 4 givenname: Xavier Costa orcidid: 0000-0002-9654-6109 surname: Perez fullname: Perez, Xavier Costa email: xavier.costa@ieee.org organization: NEC Laboratories Europe GmbH, Heidelberg, Germany |
BookMark | eNp9kEtLAzEUhYNUsK3-AMFFwPXUvGaSuBsGH5XSQn0th0wmY1PrpCZTpP56U-tCXLi6h8s591y-Aei1rjUAnGI0whjJi7v7vBgRROiIUio5kwegj9NUJAgh0QN9xClNBMfZERiEsEQIMyZIH8zy8XxcXMKZ1wsTOq8661roGvhkfbdRK_tpajhXtXUw19qEAKem-3D-NcBn2y3g1NmwjTv7sqjcxodjcNioVTAnP3MIHq-vHorbZDK7GRf5JNFEsi7homGK1LxBshFVFlUlUU24ZIryOqNaZ7Xg0lTUMGp0lISojDGlTUqEFHQIzvd31969b-Ln5TLWt7GyJBKnHMsMs-jCe5f2LgRvmnLt7Zvy2xKjcset3HErd9zKH24xw_9ktO2-sUQ6dvVv8myftMaYX02UpRlK6RdB9XwB |
CODEN | ISACEM |
CitedBy_id | crossref_primary_10_1109_TSC_2024_3440032 |
Cites_doi | 10.1145/3485983.3494849 10.1109/MCOM.011.2001129 10.1109/TMC.2023.3254999 10.1145/3447993.3483266 10.1109/TMC.2020.3043100 10.1109/TNSM.2015.2401568 10.1109/MCOMSTD.101.2000014 10.1145/3098822.3098826 10.1109/ICACT.2016.7423494 10.1145/3341302.3342093 10.1145/3126548 10.1109/INFOCOM42981.2021.9488845 10.1109/PACT.2017.19 10.1145/3474123.3486762 10.1109/MICRO50266.2020.00017 10.1145/3062394 10.1109/ICCV.2015.169 10.1145/2830555 10.1145/3386367.3431296 10.1145/3387514.3405868 10.1145/2980159.2980163 10.1145/3452296.3472894 10.1145/3300061.3345431 10.1145/3018113 10.1109/72.557673 10.1145/1925013.1925015 10.1145/2086696.2086723 10.1145/3387514.3405876 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
DBID | 97E RIA RIE AAYXX CITATION 7SP 8FD L7M |
DOI | 10.1109/JSAC.2023.3339749 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) - NZ CrossRef Electronics & Communications Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
DatabaseTitleList | Technology Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1558-0008 |
EndPage | 445 |
ExternalDocumentID | 10_1109_JSAC_2023_3339749 10345605 |
Genre | orig-research |
GrantInformation_xml | – fundername: MINECO/NG EU grantid: TSI-063000- 2021-7 – fundername: CERCA Programme – fundername: European Commission grantid: SNS-JU-101097083 (BeGREEN); 101017109 (DAEMON) funderid: 10.13039/501100000780 |
GroupedDBID | -~X .DC 0R~ 29I 3EH 4.4 41~ 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT ADRHT AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ H~9 IBMZZ ICLAB IES IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS TN5 VH1 AAYOK AAYXX CITATION RIG 7SP 8FD L7M |
ID | FETCH-LOGICAL-c294t-78f4a2d7f09f8b62d7b90d2794a37d63cc6d879eb3e43ec87922a644ace528983 |
IEDL.DBID | RIE |
ISSN | 0733-8716 |
IngestDate | Mon Jun 30 10:18:28 EDT 2025 Thu Apr 24 23:09:33 EDT 2025 Tue Jul 01 02:06:34 EDT 2025 Wed Aug 27 02:33:20 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c294t-78f4a2d7f09f8b62d7b90d2794a37d63cc6d879eb3e43ec87922a644ace528983 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-2005-2222 0000-0002-9654-6109 0000-0002-4331-0805 0000-0001-7188-6310 |
PQID | 2915719614 |
PQPubID | 85481 |
PageCount | 14 |
ParticipantIDs | proquest_journals_2915719614 crossref_primary_10_1109_JSAC_2023_3339749 ieee_primary_10345605 crossref_citationtrail_10_1109_JSAC_2023_3339749 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-02-01 |
PublicationDateYYYYMMDD | 2024-02-01 |
PublicationDate_xml | – month: 02 year: 2024 text: 2024-02-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE journal on selected areas in communications |
PublicationTitleAbbrev | J-SAC |
PublicationYear | 2024 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 (ref23) 2021 ref57 ref12 ref56 ref15 ref14 ref58 ref52 ref11 ref55 ref54 ref17 ref16 ref19 ref18 Jacob (ref22) 2010 Panda (ref49) ref51 ref50 (ref27) 2022 Khalid (ref25) ref46 ref48 ref47 ref41 ref43 (ref1) 2019 Mnih (ref35) 2013 DOCOMO (ref6) 2013 Drepper (ref32) 2007; 11 (ref30) 2015 (ref7) 2021 ref4 Patterson (ref31) 2003; 15 (ref28) 2022 Martins (ref53) ref2 (ref21) 2022 ref39 ref38 Kingma (ref45) 2014 (ref8) 2022 Bovet (ref24) 2005 Reading (ref5) 2022 ref20 Gregg (ref33) 2014 Raposo (ref36) 2017 Lei Ba (ref44) 2016 (ref34) 2022 Tootoonchian (ref10) Sutton (ref37) 2018 (ref40) 2022 ref29 Shahid (ref42) 2019 (ref3) 2019 (ref26) 2022 (ref9) 2022 |
References_xml | – volume-title: Cloudifying 5G With an Elastic RAN year: 2022 ident: ref8 – volume: 11 start-page: 2007 year: 2007 ident: ref32 article-title: What every programmer should know about memory publication-title: Red Hat, Inc – ident: ref39 doi: 10.1145/3485983.3494849 – year: 2016 ident: ref44 article-title: Layer normalization publication-title: arXiv:1607.06450 – ident: ref48 doi: 10.1109/MCOM.011.2001129 – volume-title: Systems Performance: Enterprise and the Cloud year: 2014 ident: ref33 – ident: ref47 doi: 10.1109/TMC.2023.3254999 – volume-title: Understanding the Linux Kernel: From I/O Ports to Process Management year: 2005 ident: ref24 – ident: ref4 doi: 10.1145/3447993.3483266 – volume-title: Memory Systems: Cache, DRAM, Disk year: 2010 ident: ref22 – volume-title: Cloud Architecture and Deployment Scenarios for O-RAN Virtualized RAN (O-RAN. WG6.CADS-v04.00) year: 2022 ident: ref9 – volume-title: O-RAN O2 General Aspects and Principles 2.0 year: 2022 ident: ref34 – ident: ref19 doi: 10.1109/TMC.2020.3043100 – volume-title: DOCOMO to Develop Next-Generation Base Stations Utilizing Advanced C-RAN Architecture for LTEAdvanced year: 2013 ident: ref6 – volume: 15 start-page: A57 year: 2003 ident: ref31 article-title: Modern microprocessors: A 90 minute guide publication-title: Cortex – ident: ref51 doi: 10.1109/TNSM.2015.2401568 – volume-title: Evolved Universal Terrestrial Radio Access (E-UTRA); Physical Layer Procedures year: 2022 ident: ref40 – ident: ref2 doi: 10.1109/MCOMSTD.101.2000014 – year: 2014 ident: ref45 article-title: Adam: A method for stochastic optimization publication-title: arXiv:1412.6980 – volume-title: Evolved Universal Terrestrial Radio Access (E-UTRA); Physical Channels and Modulation year: 2022 ident: ref21 – start-page: 283 volume-title: Proc. 15th USENIX NSDI ident: ref10 article-title: ResQ: Enabling SLOs in network function virtualization – ident: ref12 doi: 10.1145/3098822.3098826 – year: 2017 ident: ref36 article-title: Discovering objects and their relations from entangled scene representations publication-title: arXiv:1702.05068 – volume-title: Evolved Universal Terrestrial Radio Access Network (E-UTRAN); S1 General Aspects and Principles year: 2022 ident: ref26 – volume-title: Evolved Universal Terrestrial Radio Access Network (E-UTRAN); X2 Application Protocol (X2AP) year: 2022 ident: ref27 – year: 2013 ident: ref35 article-title: Playing Atari with deep reinforcement learning publication-title: arXiv:1312.5602 – year: 2019 ident: ref42 article-title: Energy of computing on multicore CPUs: Predictive models and energy conservation law publication-title: arXiv:1907.02805 – start-page: 313 volume-title: Proc. 15th USENIX NSDI ident: ref25 article-title: Iron: Isolating network-based CPU in container environments – ident: ref20 doi: 10.1109/ICACT.2016.7423494 – volume-title: O-RAN-WG1-O-RAN Architecture Description—V04.00.00 year: 2021 ident: ref23 – volume-title: Improving Real-Time Performance by Utilizing Cache Allocation Technology year: 2015 ident: ref30 – ident: ref13 doi: 10.1145/3341302.3342093 – volume-title: Operate on Secure Computing State of the Process year: 2022 ident: ref28 – volume-title: Exploring New Centralized Ran and Fronthaul Opportunities year: 2021 ident: ref7 – ident: ref52 doi: 10.1145/3126548 – ident: ref38 doi: 10.1109/INFOCOM42981.2021.9488845 – ident: ref58 doi: 10.1109/PACT.2017.19 – ident: ref50 doi: 10.1145/3474123.3486762 – ident: ref29 doi: 10.1109/MICRO50266.2020.00017 – ident: ref55 doi: 10.1145/3062394 – start-page: 203 volume-title: Proc. 12th USENIX OSDI ident: ref49 article-title: NetBricks: Taking the V out of NFV – year: 2022 ident: ref5 article-title: 5G transport: A 2021 heavy reading survey – ident: ref43 doi: 10.1109/ICCV.2015.169 – volume-title: Reinforcement Learning: An Introduction year: 2018 ident: ref37 – ident: ref54 doi: 10.1145/2830555 – ident: ref16 doi: 10.1145/3386367.3431296 – ident: ref11 doi: 10.1145/3387514.3405868 – ident: ref15 doi: 10.1145/2980159.2980163 – ident: ref17 doi: 10.1145/3452296.3472894 – volume-title: Virtualized Radio Access Network: Architecture, Key Technologies and Benefits year: 2019 ident: ref1 – ident: ref18 doi: 10.1145/3300061.3345431 – ident: ref56 doi: 10.1145/3018113 – ident: ref46 doi: 10.1109/72.557673 – volume-title: Reimagining the End-to-End Mobile Network in the 5G Era year: 2019 ident: ref3 – ident: ref41 doi: 10.1145/1925013.1925015 – start-page: 459 volume-title: Proc. 11th USENIX NSDI ident: ref53 article-title: ClickOS and the art of network function virtualization – ident: ref57 doi: 10.1145/2086696.2086723 – ident: ref14 doi: 10.1145/3387514.3405876 |
SSID | ssj0014482 |
Score | 2.4437222 |
Snippet | Radio Access Networks virtualization (vRAN) is on its way becoming a reality driven by the new requirements in mobile networks, such as scalability and cost... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 432 |
SubjectTerms | Computation deep Q-learning Neural networks Noise measurement noisy neighbours problem Open RAN Performance degradation Radio access networks Radio equipment RAN virtualization Random access memory Resource management Signal to noise ratio Throughput Virtual networks Virtualization |
Title | AIRIC: Orchestration of Virtualized Radio Access Networks With Noisy Neighbours |
URI | https://ieeexplore.ieee.org/document/10345605 https://www.proquest.com/docview/2915719614 |
Volume | 42 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3LS8MwGA-6kx58i9MpOXgSWtsmaRtvZSg6cILvW2leWJRVtu7g_nq_pJ0MRfEWSlLC98iXX74XQscKsD_VMfdYYlKPklh4QiTUi00RxjIUgXElha6H8eUDHTyz5zZZ3eXCaK1d8Jn27dD58lUlp_apDDScgL23FUuXAbk1yVpfLgPAGc5lkBDiWRTQujDDgJ8O7rK-b_uE-4SA_bV1MxeMkOuq8uModvblYh0N5ztrwkpe_WktfDn7VrTx31vfQGvtTRNnjWhsoiU92kKrC_UHt9FNdnV71T_DN2PXNqsRBlwZ_FiObV5JOdMK3xaqrHDmGiviYRM1PsFPZf2Ch1U5-YBvAPDt4-hkBz1cnN_3L722w4InI05rL0kNLSKVmICbVMQwEjxQEehoQRIVEyljlSYcALemREsYRlEBN6hCagZILSW7qDOqRnoPYc00hwmKCc0pMyoVAVMM1FsbIDkpuiiYkzyXbflx2wXjLXcwJOC55VJuuZS3XOqik68l703tjb8m71iqL0xsCN5FvTlj81Y9J3nEQ5bA2RPS_V-WHaAV-Dtt4rN7qFOPp_oQrh-1OHJi9wnZS9R6 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3Na9swFBclPXQ7dOuasXTZqkNPA3u2JdnWbiEsJG3jQj-23Iz1xUxLXBLn0Pz1fZKdEDo6dhNGwuJ96Onpvfd7CJ0p8P2pjrnHEpN6lMTCEyKhXmyKMJahCIyDFJpm8fiOns_YrC1Wd7UwWmuXfKZ9O3SxfFXJlX0qAw0nYO8tYuk-GH4WNeVa26ABeBouaJAQ4lk_oA1ihgH_fn4zGPq2U7hPCFhgi5y5Y4ZcX5W_DmNnYUbvULbZW5NYcu-vauHL9QvYxv_e_Ht02N418aARjiO0p-cf0NsdBMJjdDWYXE-GP_DVwjXOasQBVwb_Khe2sqRca4WvC1VWeOBaK-KsyRtf4t9l_QdnVbl8gm_g4tvn0WUX3Y1-3g7HXttjwZMRp7WXpIYWkUpMwE0qYhgJHqgItLQgiYqJlLFKEw4ut6ZESxhGUQF3qEJqBr5aSj6izrya608Ia6Y5TFBMaE6ZUakImGKg4NoAyUnRQ8GG5LlsAchtH4yH3DkiAc8tl3LLpbzlUg992y55bNA3_jW5a6m-M7EheA_1N4zNWwVd5hEPWQKnT0hPXll2ig7Gt9PL_HKSXXxGb-BPtMnW7qNOvVjpL3AZqcVXJ4LPHfLXxA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=AIRIC%3A+Orchestration+of+Virtualized+Radio+Access+Networks+With+Noisy+Neighbours&rft.jtitle=IEEE+journal+on+selected+areas+in+communications&rft.au=Josep+Xavier+Salvat+Lozano&rft.au=Garcia-Saavedra%2C+Andres&rft.au=Li%2C+Xi&rft.au=Xavier+Costa+Perez&rft.date=2024-02-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=0733-8716&rft.eissn=1558-0008&rft.volume=42&rft.issue=2&rft.spage=432&rft_id=info:doi/10.1109%2FJSAC.2023.3339749&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0733-8716&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0733-8716&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0733-8716&client=summon |