Exploring the impact of flow dynamics on corrosive biofilms under simulated deep-sea high-pressure conditions using bio-electrochemostasis
The formation of biofilms on metal surfaces contributes to the degradation of metallic materials through a process known as microbially influenced corrosion (MIC). While MIC accounts for a substantial portion of the global corrosion-related costs, its study is particularly challenging when related t...
Saved in:
Published in | Frontiers in microbiology Vol. 16; p. 1540664 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
Frontiers Media S.A
28.02.2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The formation of biofilms on metal surfaces contributes to the degradation of metallic materials through a process known as microbially influenced corrosion (MIC). While MIC accounts for a substantial portion of the global corrosion-related costs, its study is particularly challenging when related to infrastructure deployed in extreme environments inhabited by microorganisms, such as the deep sea. Here, this limitation was addressed with the development of a high-pressure bio-electrochemostat able to simulate the conditions of the deep sea more accurately than the traditional closed-batch setups. With this device, the corrosive capabilities of the piezophilic sulfate-reducing bacterium (SRB) Pseudodesulfovibrio profundus were analyzed at 0.1 (atmospheric pressure) and 30 MPa under flow and static conditions on AH36 marine-grade carbon steel. The results highlighted the device’s ability to closely replicate environmental conditions, thereby keeping bacterial communities metabolically active throughout the experiments and allowing for a more accurate assessment of the impact of MIC. Furthermore, the comparison between atmospheric and high hydrostatic pressures clearly showed that MIC represents a threat for metallic structures at the bottom of the ocean as much as at surface level. |
---|---|
AbstractList | The formation of biofilms on metal surfaces contributes to the degradation of metallic materials through a process known as microbially influenced corrosion (MIC). While MIC accounts for a substantial portion of the global corrosion-related costs, its study is particularly challenging when related to infrastructure deployed in extreme environments inhabited by microorganisms, such as the deep sea. Here, this limitation was addressed with the development of a high-pressure bio-electrochemostat able to simulate the conditions of the deep sea more accurately than the traditional closed-batch setups. With this device, the corrosive capabilities of the piezophilic sulfate-reducing bacterium (SRB)
were analyzed at 0.1 (atmospheric pressure) and 30 MPa under flow and static conditions on AH36 marine-grade carbon steel. The results highlighted the device's ability to closely replicate environmental conditions, thereby keeping bacterial communities metabolically active throughout the experiments and allowing for a more accurate assessment of the impact of MIC. Furthermore, the comparison between atmospheric and high hydrostatic pressures clearly showed that MIC represents a threat for metallic structures at the bottom of the ocean as much as at surface level. The formation of biofilms on metal surfaces contributes to the degradation of metallic materials through a process known as microbially influenced corrosion (MIC). While MIC accounts for a substantial portion of the global corrosion-related costs, its study is particularly challenging when related to infrastructure deployed in extreme environments inhabited by microorganisms, such as the deep sea. Here, this limitation was addressed with the development of a high-pressure bio-electrochemostat able to simulate the conditions of the deep sea more accurately than the traditional closed-batch setups. With this device, the corrosive capabilities of the piezophilic sulfate-reducing bacterium (SRB) Pseudodesulfovibrio profundus were analyzed at 0.1 (atmospheric pressure) and 30 MPa under flow and static conditions on AH36 marine-grade carbon steel. The results highlighted the device’s ability to closely replicate environmental conditions, thereby keeping bacterial communities metabolically active throughout the experiments and allowing for a more accurate assessment of the impact of MIC. Furthermore, the comparison between atmospheric and high hydrostatic pressures clearly showed that MIC represents a threat for metallic structures at the bottom of the ocean as much as at surface level. The formation of biofilms on metal surfaces contributes to the degradation of metallic materials through a process known as microbially influenced corrosion (MIC). While MIC accounts for a substantial portion of the global corrosion-related costs, its study is particularly challenging when related to infrastructure deployed in extreme environments inhabited by microorganisms, such as the deep sea. Here, this limitation was addressed with the development of a high-pressure bio-electrochemostat able to simulate the conditions of the deep sea more accurately than the traditional closed-batch setups. With this device, the corrosive capabilities of the piezophilic sulfate-reducing bacterium (SRB) Pseudodesulfovibrio profundus were analyzed at 0.1 (atmospheric pressure) and 30 MPa under flow and static conditions on AH36 marine-grade carbon steel. The results highlighted the device's ability to closely replicate environmental conditions, thereby keeping bacterial communities metabolically active throughout the experiments and allowing for a more accurate assessment of the impact of MIC. Furthermore, the comparison between atmospheric and high hydrostatic pressures clearly showed that MIC represents a threat for metallic structures at the bottom of the ocean as much as at surface level.The formation of biofilms on metal surfaces contributes to the degradation of metallic materials through a process known as microbially influenced corrosion (MIC). While MIC accounts for a substantial portion of the global corrosion-related costs, its study is particularly challenging when related to infrastructure deployed in extreme environments inhabited by microorganisms, such as the deep sea. Here, this limitation was addressed with the development of a high-pressure bio-electrochemostat able to simulate the conditions of the deep sea more accurately than the traditional closed-batch setups. With this device, the corrosive capabilities of the piezophilic sulfate-reducing bacterium (SRB) Pseudodesulfovibrio profundus were analyzed at 0.1 (atmospheric pressure) and 30 MPa under flow and static conditions on AH36 marine-grade carbon steel. The results highlighted the device's ability to closely replicate environmental conditions, thereby keeping bacterial communities metabolically active throughout the experiments and allowing for a more accurate assessment of the impact of MIC. Furthermore, the comparison between atmospheric and high hydrostatic pressures clearly showed that MIC represents a threat for metallic structures at the bottom of the ocean as much as at surface level. |
Author | Shen, Xinhui Lauro, Federico M. Ivanovich, Nicolò Marsili, Enrico Marcos Rajala, Pauliina Messinese, Elena |
Author_xml | – sequence: 1 givenname: Nicolò surname: Ivanovich fullname: Ivanovich, Nicolò – sequence: 2 givenname: Enrico surname: Marsili fullname: Marsili, Enrico – sequence: 3 givenname: Xinhui surname: Shen fullname: Shen, Xinhui – sequence: 4 givenname: Elena surname: Messinese fullname: Messinese, Elena – sequence: 5 surname: Marcos fullname: Marcos – sequence: 6 givenname: Pauliina surname: Rajala fullname: Rajala, Pauliina – sequence: 7 givenname: Federico M. surname: Lauro fullname: Lauro, Federico M. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40092032$$D View this record in MEDLINE/PubMed |
BookMark | eNpNkcFu1DAQhi3Uipa2L8AB-cgli2PHTnxEVYFKlbhQqTdrYo93XSVxsBNoX4GnxttdKuYwY1n__L803ztyMsUJCXlfs40Qnf7kx2D7DWdcbmrZMKWaN-S8LqMSjD-c_Pc-I1c5P7JSDeOlvyVnDWOaM8HPyZ-bp3mIKUxbuuyQhnEGu9DoqR_ib-qeJyg5mcaJ2phSzOEX0j5EH4Yx03VymGgO4zrAgo46xLnKCHQXtrtqTpjzmrBsTi4sIU5lI--TikGFA9olRbvDMeYFcsiX5NTDkPHqOC_I_ZebH9ffqrvvX2-vP99VlutmqRRCx2WJ6tpGsa7VsrdccuuhbRn0oDXaVrUgpVUMNUCrei960WrlnQIvLsjtwddFeDRzCiOkZxMhmJePmLYG0hLsgIapcjEpnQdmG8G9Fo3jovcoGUqsRfH6ePCaU_y5Yl7MGLLFYYAJ45qNqNuOd1qrvfTDUbr2I7rX4H8sioAfBLbcOSf0r5KamT1z88Lc7JmbI3PxF15XosQ |
Cites_doi | 10.1017/CBO9781139163637.005 10.1016/j.cis.2020.102336 10.1128/AEM.62.5.1593-1596.1996 10.1099/ijs.0.028670-0 10.3389/fmars.2022.873445 10.3390/ma10111307 10.3390/coatings11060625 10.1039/C2CS35026B 10.1016/j.corsci.2019.02.005 10.1016/j.scitotenv.2021.147573 10.1016/j.jmst.2024.07.026 10.1128/aem.65.12.5314-5321.1999 10.1099/ijs.0.02551-0 10.3390/microorganisms9020429 10.1038/s41598-024-67463-2 10.1080/08927014.2017.1285914 10.3390/cmd4010005 10.1016/j.ibiod.2015.01.003 10.1111/j.1574-6941.1998.tb00495.x 10.1007/s40735-022-00677-x 10.1016/j.corsci.2019.06.026 10.1007/s40735-022-00648-2 10.1007/978-3-642-80017-7 10.1016/j.ibiod.2009.02.002 10.1080/08927014.2012.662675 10.1080/14786445508641925 10.3389/fmars.2019.00048 10.1007/978-1-4614-1698-2_6 10.1016/0043-1354(91)90030-T 10.1016/j.electacta.2022.140803 10.1016/j.engfailanal.2021.105884 10.1155/2021/7803536 10.1016/j.tim.2010.06.006 10.1371/journal.pone.0055130 10.1111/1751-7915.14347 10.1533/9781782421252.1.33 10.5006/1190 10.1002/bit.260400506 10.1007/s11274-019-2647-4 10.1111/j.1462-2920.2012.02778.x 10.1016/j.bioelechem.2018.04.014 10.1016/B978-0-323-91762-9.00006-X 10.1007/s00253-005-1897-2 10.1146/annurev.mi.39.100185.001211 10.1007/s11665-013-0627-7 10.1016/j.electacta.2022.140617 10.1016/j.ibiod.2014.03.014 10.1098/rstl.1700.0082 10.1016/j.corsci.2020.108641 10.3390/microorganisms12050892 10.1007/s10295-006-0142-z 10.1016/j.jmst.2021.02.039 10.1038/233491a0 10.1016/j.electacta.2016.05.169 10.1128/AEM.01215-15 10.1016/j.corsci.2024.112593 10.1186/s40168-021-01196-6 10.1016/j.bioelechem.2021.107920 10.1016/j.msec.2011.10.033 10.1002/9781119019213.ch27 10.1016/j.electacta.2009.02.010 10.1007/s00792-006-0049-7 10.1128/AEM.00890-21 10.1016/j.corsci.2022.110210 10.1128/AEM.01891-18 10.1016/j.bioelechem.2020.107635 10.1073/pnas.83.24.9542 10.1099/00207713-47-2-515 10.1016/j.porgcoat.2024.108811 10.1007/BF01569983 10.1179/1743278212Y.0000000065 10.1016/j.resmic.2015.07.002 10.1038/s41396-021-00978-y 10.1016/j.jmst.2021.10.014 |
ContentType | Journal Article |
Copyright | Copyright © 2025 Ivanovich, Marsili, Shen, Messinese, Marcos, Rajala and Lauro. |
Copyright_xml | – notice: Copyright © 2025 Ivanovich, Marsili, Shen, Messinese, Marcos, Rajala and Lauro. |
DBID | AAYXX CITATION NPM 7X8 DOA |
DOI | 10.3389/fmicb.2025.1540664 |
DatabaseName | CrossRef PubMed MEDLINE - Academic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | PubMed CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1664-302X |
ExternalDocumentID | oai_doaj_org_article_0602055dfa0c432f934d23bfe50e5e13 40092032 10_3389_fmicb_2025_1540664 |
Genre | Journal Article |
GroupedDBID | 53G 5VS 9T4 AAFWJ AAKDD AAYXX ACGFO ACGFS ACXDI ADBBV ADRAZ AENEX AFPKN ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BCNDV CITATION DIK ECGQY GROUPED_DOAJ GX1 HYE KQ8 M~E O5R O5S OK1 PGMZT RNS RPM IPNFZ M48 NPM RIG 7X8 |
ID | FETCH-LOGICAL-c294t-6ea825dee874608795bc252cfa770aba99ec767a55c60e9aa76bf3b3796fd6af3 |
IEDL.DBID | DOA |
ISSN | 1664-302X |
IngestDate | Wed Aug 27 01:28:06 EDT 2025 Fri Jul 11 01:01:26 EDT 2025 Wed Mar 19 01:28:53 EDT 2025 Sun Jul 06 05:05:11 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | high-hydrostatic pressure microbially-influenced corrosion sulfate-reducing bacteria chemostat biofilm |
Language | English |
License | Copyright © 2025 Ivanovich, Marsili, Shen, Messinese, Marcos, Rajala and Lauro. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c294t-6ea825dee874608795bc252cfa770aba99ec767a55c60e9aa76bf3b3796fd6af3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://doaj.org/article/0602055dfa0c432f934d23bfe50e5e13 |
PMID | 40092032 |
PQID | 3178289963 |
PQPubID | 23479 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_0602055dfa0c432f934d23bfe50e5e13 proquest_miscellaneous_3178289963 pubmed_primary_40092032 crossref_primary_10_3389_fmicb_2025_1540664 |
PublicationCentury | 2000 |
PublicationDate | 2025-02-28 |
PublicationDateYYYYMMDD | 2025-02-28 |
PublicationDate_xml | – month: 02 year: 2025 text: 2025-02-28 day: 28 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland |
PublicationTitle | Frontiers in microbiology |
PublicationTitleAlternate | Front Microbiol |
PublicationYear | 2025 |
Publisher | Frontiers Media S.A |
Publisher_xml | – name: Frontiers Media S.A |
References | Bale (ref5) 1997; 47 Guan (ref26) 2021; 788 Li (ref44) 2025; 243 Wirsen (ref74) 1999; 65 Rajala (ref63) 2017; 33 Videla (ref70) 2009; 63 Pal (ref58) 2022; 8 Chen (ref10) 2022; 131 Pradel (ref60) 2013; 8 Chen (ref9) 2014; 70 Jannasch (ref35) 1996; 62 Zhang (ref83) 2016; 210 Mugge (ref54) 2019; 6 Ma (ref49) 2022; 424 Dou (ref18) 2019; 150 (ref3) 2107 Chen (ref12) 2021; 11 King (ref39) 1971; 233 Lahme (ref42) 2019; 85 Jiang (ref37) 2023; 4 Yang (ref80) 2022; 199 Lv (ref48) 2021; 92 Bellou (ref7) 2012; 28 Little (ref45) 2020; 170 Zheng (ref84) 2021; 9 Xu (ref78) 2014; 91 Chen (ref11) 2021; 2021 Parsekar (ref59) 2023 AlAbbas (ref1) 2013; 22 Martinez (ref50) 2024; 197 Beech (ref6) 2014 Khelaifia (ref38) 2011; 61 Audiffrin (ref4) 2003; 53 Krsmanovic (ref40) 2021; 288 (ref56) 2024 Taheri (ref68) 2005; 7 Wang (ref72) 2021; 142 Ashassi-Sorkhabi (ref2) 2012; 32 Incropera (ref33) 1996 Rao (ref65) 2012 Liu (ref47) 2022; 112 Wu (ref77) 2025; 215 Kunes (ref41) 2012 Gage (ref24) 1991 Hamilton (ref29) 1985; 39 Fatah (ref21) 2013; 48 Reis (ref66) 1992; 40 Hubert (ref32) 2005; 68 Dang (ref15) 2022; 8 Rajala (ref64) 2022; 10 Yayanos (ref81) 1986; 83 Dong (ref17) 2018; 123 (ref34) 2011 McCartney (ref51) 1991; 25 Zhang (ref82) 2009; 54 Enning (ref19) 2012; 14 Lanneluc (ref43) 2015; 99 Qian (ref62) 2020; 136 Little (ref46) 2015 Wu (ref76) 2019; 157 Rempel (ref67) 2006; 33 Videla (ref71) 2005 Wood (ref75) 2021; 87 Heitz (ref30) 1996 Chohan (ref13) 2024; 14 Moseley (ref53) 2022; 9 Foustoukos (ref23) 2015; 81 Guan (ref25) 2015; 166 Hamdan (ref28) 2021; 15 Houghton (ref31) 2007; 11 Dominguez-Benetton (ref16) 2012; 41 Brading (ref8) 1995; 15 Newton (ref57) 1701; 22 Yang (ref79) 2017; 10 Fang (ref20) 2010; 18 Javed (ref36) 2024; 12 Murthy (ref55) 2023 Procópio (ref61) 2019; 35 Venkatesan (ref69) 2003 Wang (ref73) 2023; 16 Coulson (ref14) 1990 Fick (ref22) 1855; 10 Moradi (ref52) 2022; 426 Guezennec (ref27) 1998; 26 |
References_xml | – start-page: 9 volume-title: Deep-Sea biology: A natural history of organisms at the Deep-Sea floor year: 1991 ident: ref24 doi: 10.1017/CBO9781139163637.005 – volume: 288 start-page: 102336 year: 2021 ident: ref40 article-title: Hydrodynamics and surface properties influence biofilm proliferation publication-title: Adv. Colloid Interf. Sci. doi: 10.1016/j.cis.2020.102336 – volume: 62 start-page: 1593 year: 1996 ident: ref35 article-title: A pressurized chemostat for the study of marine barophilic and oligotrophic bacteria publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.62.5.1593-1596.1996 – volume: 61 start-page: 2706 year: 2011 ident: ref38 article-title: Desulfovibrio piezophilus sp. nov., a piezophilic, sulfate-reducing bacterium isolated from wood falls in the Mediterranean Sea publication-title: Int. J. Syst. Evol. Microbiol. doi: 10.1099/ijs.0.028670-0 – volume: 9 start-page: 873445 year: 2022 ident: ref53 article-title: Historic wooden shipwrecks influence dispersal of deep-sea biofilms publication-title: Front. Mar. Sci. doi: 10.3389/fmars.2022.873445 – volume: 10 start-page: 1307 year: 2017 ident: ref79 article-title: A statistical study on the effect of hydrostatic pressure on metastable pitting corrosion of X70 pipeline steel publication-title: Materials (Basel) doi: 10.3390/ma10111307 – volume: 11 start-page: 625 year: 2021 ident: ref12 article-title: Effect of sulfate-reducing bacteria (SRB) on the corrosion of buried pipe steel in acidic soil solution publication-title: Coatings doi: 10.3390/coatings11060625 – volume: 41 start-page: 7228 year: 2012 ident: ref16 article-title: The accurate use of impedance analysis for the study of microbial electrochemical systems publication-title: Chem. Soc. Rev. doi: 10.1039/C2CS35026B – volume: 150 start-page: 258 year: 2019 ident: ref18 article-title: Electrochemical investigation of increased carbon steel corrosion via extracellular electron transfer by a sulfate reducing bacterium under carbon source starvation publication-title: Corros. Sci. doi: 10.1016/j.corsci.2019.02.005 – volume: 788 start-page: 147573 year: 2021 ident: ref26 article-title: Synergistic effect of carbon starvation and exogenous redox mediators on corrosion of X70 pipeline steel induced by Desulfovibrio singaporenus publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2021.147573 – volume: 215 start-page: 192 year: 2025 ident: ref77 article-title: State of the art and current trends on the metal corrosion and protection strategies in deep sea publication-title: J. Materials Sci. Technol. doi: 10.1016/j.jmst.2024.07.026 – volume: 65 start-page: 5314 year: 1999 ident: ref74 article-title: A study of deep-sea natural microbial populations and barophilic pure cultures using a high-pressure chemostat publication-title: Appl. Environ. Microbiol. doi: 10.1128/aem.65.12.5314-5321.1999 – volume: 53 start-page: 1585 year: 2003 ident: ref4 article-title: Desulfonauticus submarinus gen. Nov., sp. nov., a novel sulfate-reducing bacterium isolated from a deep-sea hydrothermal vent publication-title: Int. J. Syst. Evol. Microbiol. doi: 10.1099/ijs.0.02551-0 – volume: 9 start-page: 429 year: 2021 ident: ref84 article-title: Pseudodesulfovibrio cashew sp. nov., a novel deep-sea sulfate-reducing bacterium, linking heavy metal resistance and sulfur cycle publication-title: Microorganisms doi: 10.3390/microorganisms9020429 – volume: 14 start-page: 16543 year: 2024 ident: ref13 article-title: Effect of seawater salinity, pH, and temperature on external corrosion behavior and microhardness of offshore oil and gas pipeline: RSM modelling and optimization publication-title: Sci. Rep. doi: 10.1038/s41598-024-67463-2 – volume-title: Dimensionless physical quantities in science and engineering year: 2012 ident: ref41 – volume: 33 start-page: 195 year: 2017 ident: ref63 article-title: Microbial fouling and corrosion of carbon steel in deep anoxic alkaline groundwater publication-title: Biofouling doi: 10.1080/08927014.2017.1285914 – volume: 4 start-page: 54 year: 2023 ident: ref37 article-title: Investigation via electron microscopy and electrochemical impedance spectroscopy of the effect of aqueous zinc ions on passivity and the surface films of alloy 600 in PWR PW at 320°C publication-title: Corrosion Materials Degradation doi: 10.3390/cmd4010005 – volume: 99 start-page: 55 year: 2015 ident: ref43 article-title: On the bacterial communities associated with the corrosion product layer during the early stages of marine corrosion of carbon steel publication-title: Int. Biodeterior. Biodegradation doi: 10.1016/j.ibiod.2015.01.003 – volume: 7 start-page: 5 year: 2005 ident: ref68 article-title: Comparison of corrosion rates of some steels in batch and semi-continuous cultures of sulfate-reducing bacteria publication-title: Asian J. Microbiol. Biotechnol. Environ. Sci. – volume: 26 start-page: 89 year: 1998 ident: ref27 article-title: Bacterial colonization of artificial substrate in the vicinity of deep-sea hydrothermal vents publication-title: FEMS Microbiol. Ecol. doi: 10.1111/j.1574-6941.1998.tb00495.x – volume-title: Fundamentals of heat and mass transfer year: 1996 ident: ref33 – volume: 8 start-page: 76 year: 2022 ident: ref58 article-title: Microbial influenced corrosion: understanding bioadhesion and biofilm formation publication-title: J. Bio Tribo Corrosion doi: 10.1007/s40735-022-00677-x – year: 2005 ident: ref71 article-title: An updated overview of SRB induced corrosion and protection of carbon steel publication-title: Corrosion – volume: 157 start-page: 518 year: 2019 ident: ref76 article-title: Stress corrosion of pipeline steel under disbonded coating in a SRB-containing environment publication-title: Corros. Sci. doi: 10.1016/j.corsci.2019.06.026 – volume: 8 start-page: 50 year: 2022 ident: ref15 article-title: Analytical characterisation of material corrosion by biofilms publication-title: J. Bio Tribo Corrosion doi: 10.1007/s40735-022-00648-2 – volume-title: Microbially influenced corrosion of materials: Scientific and engineering aspects year: 1996 ident: ref30 doi: 10.1007/978-3-642-80017-7 – volume: 63 start-page: 896 year: 2009 ident: ref70 article-title: Understanding microbial inhibition of corrosion. A comprehensive overview publication-title: Int. Biodeterior. Biodegradation doi: 10.1016/j.ibiod.2009.02.002 – volume: 28 start-page: 199 year: 2012 ident: ref7 article-title: The effect of substratum type, orientation and depth on the development of bacterial deep-sea biofilm communities grown on artificial substrata deployed in the eastern Mediterranean publication-title: Biofouling doi: 10.1080/08927014.2012.662675 – volume: 10 start-page: 30 year: 1855 ident: ref22 article-title: V. On liquid diffusion. The London, Edinburgh, and Dublin philosophical magazine publication-title: J. Sci. doi: 10.1080/14786445508641925 – volume: 6 start-page: 48 year: 2019 ident: ref54 article-title: Deep-Sea biofilms, historic shipwreck preservation and the Deepwater horizon spill publication-title: Front. Mar. Sci. doi: 10.3389/fmars.2019.00048 – start-page: 95 volume-title: Operational and environmental consequences of large industrial cooling water systems year: 2012 ident: ref65 article-title: Microbial fouling and corrosion: fundamentals and mechanisms doi: 10.1007/978-1-4614-1698-2_6 – volume: 25 start-page: 203 year: 1991 ident: ref51 article-title: Sulfide inhibition of anaerobic degradation of lactate and acetate publication-title: Water Res. doi: 10.1016/0043-1354(91)90030-T – volume-title: Chemical engineering: Fluid flow, heat transfer and mass transfer year: 1990 ident: ref14 – volume: 426 start-page: 140803 year: 2022 ident: ref52 article-title: Understanding biofilm impact on electrochemical impedance spectroscopy analyses in microbial corrosion and microbial corrosion inhibition phenomena publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2022.140803 – volume: 131 start-page: 105884 year: 2022 ident: ref10 article-title: Microbiologically influenced stress corrosion cracking responsible for catastrophic failure of cable bolts publication-title: Eng. Fail. Anal. doi: 10.1016/j.engfailanal.2021.105884 – volume: 2021 start-page: 1 year: 2021 ident: ref11 article-title: Research progress on corrosion of equipment and materials in deep-sea environment publication-title: Adv. Civil Eng. doi: 10.1155/2021/7803536 – volume: 18 start-page: 413 year: 2010 ident: ref20 article-title: Deep-sea piezosphere and piezophiles: geomicrobiology and biogeochemistry publication-title: Trends Microbiol. doi: 10.1016/j.tim.2010.06.006 – volume: 8 start-page: e55130 year: 2013 ident: ref60 article-title: The first genomic and proteomic characterization of a deep-sea sulfate reducer: insights into the piezophilic lifestyle of Desulfovibrio piezophilus publication-title: PLoS One doi: 10.1371/journal.pone.0055130 – start-page: 65 volume-title: Extremophiles year: 2023 ident: ref59 article-title: Deep-sea extremophiles and their diversity in the Indian Ocean – volume: 16 start-page: 2026 year: 2023 ident: ref73 article-title: Burning question: are there sustainable strategies to prevent microbial metal corrosion? publication-title: Microb. Biotechnol. doi: 10.1111/1751-7915.14347 – start-page: 33 volume-title: Understanding biocorrosion year: 2014 ident: ref6 article-title: Biofilms and biocorrosion doi: 10.1533/9781782421252.1.33 – volume: 70 start-page: 767 year: 2014 ident: ref9 article-title: Characterizing pitting corrosion caused by a long-term starving sulfate-reducing bacterium surviving on carbon steel and effects of surface roughness publication-title: Corrosion doi: 10.5006/1190 – volume: 40 start-page: 593 year: 1992 ident: ref66 article-title: Effect of hydrogen sulfide on growth of sulfate reducing bacteria publication-title: Biotechnol. Bioeng. doi: 10.1002/bit.260400506 – volume: 35 start-page: 73 year: 2019 ident: ref61 article-title: The role of biofilms in the corrosion of steel in marine environments publication-title: World J. Microbiol. Biotechnol. doi: 10.1007/s11274-019-2647-4 – volume: 14 start-page: 1772 year: 2012 ident: ref19 article-title: Marine sulfate-reducing bacteria cause serious corrosion of iron under electroconductive biogenic mineral crust publication-title: Environ. Microbiol. doi: 10.1111/j.1462-2920.2012.02778.x – year: 2024 ident: ref56 – volume: 123 start-page: 34 year: 2018 ident: ref17 article-title: Severe microbiologically influenced corrosion of S32654 super austenitic stainless steel by acid producing bacterium Acidithiobacillus caldus SM-1 publication-title: Bioelectrochemistry doi: 10.1016/j.bioelechem.2018.04.014 – start-page: 141 volume-title: Advances in nanotechnology for marine antifouling year: 2023 ident: ref55 article-title: Biodiversity of deep ocean on development of biofilms: biofouling communities and corrosion performance of materials doi: 10.1016/B978-0-323-91762-9.00006-X – volume: 68 start-page: 272 year: 2005 ident: ref32 article-title: Corrosion risk associated with microbial souring control using nitrate or nitrite publication-title: Appl. Microbiol. Biotechnol. doi: 10.1007/s00253-005-1897-2 – volume: 39 start-page: 195 year: 1985 ident: ref29 article-title: Sulphate-reducing bacteria and anaerobic corrosion publication-title: Ann. Rev. Microbiol. doi: 10.1146/annurev.mi.39.100185.001211 – volume: 22 start-page: 3517 year: 2013 ident: ref1 article-title: Microbial corrosion in linepipe steel under the influence of a sulfate-reducing consortium isolated from an oil field publication-title: J. Mater. Eng. Perform. doi: 10.1007/s11665-013-0627-7 – volume: 424 start-page: 140617 year: 2022 ident: ref49 article-title: Effect of hydrostatic pressure on the thermodynamic and kinetic behavior of metal electrode reactions publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2022.140617 – volume: 91 start-page: 74 year: 2014 ident: ref78 article-title: Carbon source starvation triggered more aggressive corrosion against carbon steel by the Desulfovibrio vulgaris biofilm publication-title: Int. Biodeterior. Biodegradation doi: 10.1016/j.ibiod.2014.03.014 – volume: 22 start-page: 824 year: 1701 ident: ref57 article-title: Scala graduum caloris publication-title: Philos. Transac. Royal Soc. doi: 10.1098/rstl.1700.0082 – volume: 170 start-page: 108641 year: 2020 ident: ref45 article-title: Microbially influenced corrosion—any progress? publication-title: Corros. Sci. doi: 10.1016/j.corsci.2020.108641 – volume: 12 start-page: 892 year: 2024 ident: ref36 article-title: The role of metallurgical features in the Microbially influenced corrosion of carbon steel: a critical review publication-title: Microorganisms doi: 10.3390/microorganisms12050892 – volume: 33 start-page: 878 year: 2006 ident: ref67 article-title: Dynamics of corrosion rates associated with nitrite or nitrate mediated control of souring under biological conditions simulating an oil reservoir publication-title: J. Ind. Microbiol. Biotechnol. doi: 10.1007/s10295-006-0142-z – volume: 92 start-page: 109 year: 2021 ident: ref48 article-title: Effect of sulfate-reducing bacteria on hydrogen permeation and stress corrosion cracking behavior of 980 high-strength steel in seawater publication-title: J. Materials Sci. Technol. doi: 10.1016/j.jmst.2021.02.039 – volume: 233 start-page: 491 year: 1971 ident: ref39 article-title: Corrosion by sulphate-reducing bacteria publication-title: Nature doi: 10.1038/233491a0 – volume-title: Astm standard g1-03, practice for preparing, cleaning, and evaluating corrosion test specimens year: 2107 ident: ref3 – year: 2011 ident: ref34 – volume: 210 start-page: 401 year: 2016 ident: ref83 article-title: Degradation in pitting resistance of 316L stainless steel under hydrostatic pressure publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2016.05.169 – volume: 81 start-page: 6850 year: 2015 ident: ref23 article-title: A continuous culture system for assessing microbial activities in the piezosphere publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.01215-15 – volume: 243 start-page: 112593 year: 2025 ident: ref44 article-title: Accelerated stress corrosion cracking of X80 pipeline steel under the combined effects of sulfate-reducing bacteria and hydrostatic pressure publication-title: Corros. Sci. doi: 10.1016/j.corsci.2024.112593 – volume: 10 start-page: 4 year: 2022 ident: ref64 article-title: Sulfate-dependant microbially induced corrosion of mild steel in the deep sea: a 10-year microbiome study publication-title: Microbiome doi: 10.1186/s40168-021-01196-6 – volume: 142 start-page: 107920 year: 2021 ident: ref72 article-title: Aggressive corrosion of carbon steel by Desulfovibrio ferrophilus IS5 biofilm was further accelerated by riboflavin publication-title: Bioelectrochemistry doi: 10.1016/j.bioelechem.2021.107920 – volume: 32 start-page: 303 year: 2012 ident: ref2 article-title: The effect of Pseudoxanthomonas sp. as manganese oxidizing bacterium on the corrosion behavior of carbon steel publication-title: Mater. Sci. Eng. doi: 10.1016/j.msec.2011.10.033 – start-page: 387 year: 2015 ident: ref46 article-title: Microbiologically influenced corrosion publication-title: Oil Gas Pipelines doi: 10.1002/9781119019213.ch27 – volume: 54 start-page: 3915 year: 2009 ident: ref82 article-title: A stochastic analysis of the effect of hydrostatic pressure on the pit corrosion of Fe–20Cr alloy publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2009.02.010 – volume: 11 start-page: 371 year: 2007 ident: ref31 article-title: Continuous enrichment culturing of thermophiles under sulfate and nitrate-reducing conditions and at deep-sea hydrostatic pressures publication-title: Extremophiles doi: 10.1007/s00792-006-0049-7 – volume: 87 start-page: e0089021 year: 2021 ident: ref75 article-title: High taxonomic diversity in ship bilges presents challenges for monitoring microbial corrosion and opportunity to utilize community functional profiling publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.00890-21 – volume: 199 start-page: 110210 year: 2022 ident: ref80 article-title: Synergistic effects of deposits and sulfate reducing bacteria on the corrosion of carbon steel publication-title: Corros. Sci. doi: 10.1016/j.corsci.2022.110210 – volume: 85 start-page: e01891 year: 2019 ident: ref42 article-title: Metabolites of an oil field sulfide-oxidizing, nitrate-reducing Sulfurimonas sp. cause severe corrosion publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.01891-18 – volume: 136 start-page: 107635 year: 2020 ident: ref62 article-title: Investigation of microbiologically influenced corrosion of 304 stainless steel by aerobic thermoacidophilic archaeon Metallosphaera cuprina publication-title: Bioelectrochemistry doi: 10.1016/j.bioelechem.2020.107635 – volume: 83 start-page: 9542 year: 1986 ident: ref81 article-title: Evolutional and ecological implications of the properties of deep-sea barophilic bacteria publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.83.24.9542 – volume: 47 start-page: 515 year: 1997 ident: ref5 article-title: Desulfovibrio profundus sp. nov., a novel barophilic sulfate-reducing bacterium from deep sediment layers in the Japan Sea publication-title: Int. J. Syst. Evol. Microbiol. doi: 10.1099/00207713-47-2-515 – volume: 197 start-page: 108811 year: 2024 ident: ref50 article-title: Low-frequency EIS interpretation with the potential to predict the durability of protective coatings publication-title: Prog. Org. Coat. doi: 10.1016/j.porgcoat.2024.108811 – volume-title: Biofilm formation on structural materials in deep sea environments year: 2003 ident: ref69 – volume: 15 start-page: 297 year: 1995 ident: ref8 article-title: Biofilm formation in laminar flow using Pseudomonas fluorescens EX101 publication-title: J. Ind. Microbiol. Biotechnol. doi: 10.1007/BF01569983 – volume: 48 start-page: 211 year: 2013 ident: ref21 article-title: Effects of sulphide ion on corrosion behaviour of X52 steel in simulated solution containing metabolic products species: a study pertaining to microbiologically influenced corrosion (MIC) publication-title: Corros. Eng. Sci. Technol. doi: 10.1179/1743278212Y.0000000065 – volume: 166 start-page: 688 year: 2015 ident: ref25 article-title: Diversity of methanogens and sulfate-reducing bacteria in the interfaces of five deep-sea anoxic brines of the Red Sea publication-title: Res. Microbiol. doi: 10.1016/j.resmic.2015.07.002 – volume: 15 start-page: 2883 year: 2021 ident: ref28 article-title: Deep-sea shipwrecks represent island-like ecosystems for marine microbiomes publication-title: ISME J. doi: 10.1038/s41396-021-00978-y – volume: 112 start-page: 230 year: 2022 ident: ref47 article-title: The role of hydrostatic pressure on the metal corrosion in simulated deep-sea environments — a review publication-title: J. Materials Sci. Technol. doi: 10.1016/j.jmst.2021.10.014 |
SSID | ssj0000402000 |
Score | 2.4038868 |
Snippet | The formation of biofilms on metal surfaces contributes to the degradation of metallic materials through a process known as microbially influenced corrosion... |
SourceID | doaj proquest pubmed crossref |
SourceType | Open Website Aggregation Database Index Database |
StartPage | 1540664 |
SubjectTerms | biofilm chemostat high-hydrostatic pressure microbially-influenced corrosion sulfate-reducing bacteria |
Title | Exploring the impact of flow dynamics on corrosive biofilms under simulated deep-sea high-pressure conditions using bio-electrochemostasis |
URI | https://www.ncbi.nlm.nih.gov/pubmed/40092032 https://www.proquest.com/docview/3178289963 https://doaj.org/article/0602055dfa0c432f934d23bfe50e5e13 |
Volume | 16 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Pi9QwFA6yIHgRd_01uisRvEkwkzRpc9wV10XQkwtzC0n6IgNOu0xnEP8F_2rfS7rDehAvXnoobZLme22-l773PsbeQAIt8bURSwedoD0G4fCU6KLpWmiiSpoShT9_sVfXzaeVWd2R-qKYsFoeuE7cO2mR0BjT5yBTo1V2uumVjhmMBANFr1bhmnfHmSrfYHKLpKxZMuiFOYRpnSL6g8rQZgoutM0fK1Ep2P93lllWm8tH7OFME_l5Hd4xuwfDCbtfhSN_Pma_DqFzHAkcr6mOfMw8fx9_8L6qzE98HDg6l9g7ftJ4XJM692bilDa25dN6Q8pd0PMe4EagxXMqXSxKYOx-C3gn_c0mq-QUHP-NGhCzag4ivRmRV07r6Qm7vvzw9f2VmFUVRFKu2QkLAb1CbLprGytJazwmZVTKoW1liME5SK1tgzHJSnAhtDZmHXXrbO5tyPopOxrGAZ4zvkwyd3YJXbBIBLJBquUanbrkqIphDwv29naG_U0tnuHR6SA8fMHDEx5-xmPBLgiEw5VU-LqcQHPwszn4f5nDgr2-hdDji0J_P8IA437ySJSKd2nxmmcV20NXDZWeklq9-B9DeMke0GPVvPdTdrTb7uEMmcsuvipGisePq-VvV-nuyQ |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Exploring+the+impact+of+flow+dynamics+on+corrosive+biofilms+under+simulated+deep-sea+high-pressure+conditions+using+bio-electrochemostasis&rft.jtitle=Frontiers+in+microbiology&rft.au=Ivanovich%2C+Nicol%C3%B2&rft.au=Marsili%2C+Enrico&rft.au=Shen%2C+Xinhui&rft.au=Messinese%2C+Elena&rft.date=2025-02-28&rft.issn=1664-302X&rft.eissn=1664-302X&rft.volume=16&rft.spage=1540664&rft_id=info:doi/10.3389%2Ffmicb.2025.1540664&rft_id=info%3Apmid%2F40092032&rft.externalDocID=40092032 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1664-302X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1664-302X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1664-302X&client=summon |