Exploring the impact of flow dynamics on corrosive biofilms under simulated deep-sea high-pressure conditions using bio-electrochemostasis

The formation of biofilms on metal surfaces contributes to the degradation of metallic materials through a process known as microbially influenced corrosion (MIC). While MIC accounts for a substantial portion of the global corrosion-related costs, its study is particularly challenging when related t...

Full description

Saved in:
Bibliographic Details
Published inFrontiers in microbiology Vol. 16; p. 1540664
Main Authors Ivanovich, Nicolò, Marsili, Enrico, Shen, Xinhui, Messinese, Elena, Marcos, Rajala, Pauliina, Lauro, Federico M.
Format Journal Article
LanguageEnglish
Published Switzerland Frontiers Media S.A 28.02.2025
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The formation of biofilms on metal surfaces contributes to the degradation of metallic materials through a process known as microbially influenced corrosion (MIC). While MIC accounts for a substantial portion of the global corrosion-related costs, its study is particularly challenging when related to infrastructure deployed in extreme environments inhabited by microorganisms, such as the deep sea. Here, this limitation was addressed with the development of a high-pressure bio-electrochemostat able to simulate the conditions of the deep sea more accurately than the traditional closed-batch setups. With this device, the corrosive capabilities of the piezophilic sulfate-reducing bacterium (SRB) Pseudodesulfovibrio profundus were analyzed at 0.1 (atmospheric pressure) and 30 MPa under flow and static conditions on AH36 marine-grade carbon steel. The results highlighted the device’s ability to closely replicate environmental conditions, thereby keeping bacterial communities metabolically active throughout the experiments and allowing for a more accurate assessment of the impact of MIC. Furthermore, the comparison between atmospheric and high hydrostatic pressures clearly showed that MIC represents a threat for metallic structures at the bottom of the ocean as much as at surface level.
AbstractList The formation of biofilms on metal surfaces contributes to the degradation of metallic materials through a process known as microbially influenced corrosion (MIC). While MIC accounts for a substantial portion of the global corrosion-related costs, its study is particularly challenging when related to infrastructure deployed in extreme environments inhabited by microorganisms, such as the deep sea. Here, this limitation was addressed with the development of a high-pressure bio-electrochemostat able to simulate the conditions of the deep sea more accurately than the traditional closed-batch setups. With this device, the corrosive capabilities of the piezophilic sulfate-reducing bacterium (SRB) were analyzed at 0.1 (atmospheric pressure) and 30 MPa under flow and static conditions on AH36 marine-grade carbon steel. The results highlighted the device's ability to closely replicate environmental conditions, thereby keeping bacterial communities metabolically active throughout the experiments and allowing for a more accurate assessment of the impact of MIC. Furthermore, the comparison between atmospheric and high hydrostatic pressures clearly showed that MIC represents a threat for metallic structures at the bottom of the ocean as much as at surface level.
The formation of biofilms on metal surfaces contributes to the degradation of metallic materials through a process known as microbially influenced corrosion (MIC). While MIC accounts for a substantial portion of the global corrosion-related costs, its study is particularly challenging when related to infrastructure deployed in extreme environments inhabited by microorganisms, such as the deep sea. Here, this limitation was addressed with the development of a high-pressure bio-electrochemostat able to simulate the conditions of the deep sea more accurately than the traditional closed-batch setups. With this device, the corrosive capabilities of the piezophilic sulfate-reducing bacterium (SRB) Pseudodesulfovibrio profundus were analyzed at 0.1 (atmospheric pressure) and 30 MPa under flow and static conditions on AH36 marine-grade carbon steel. The results highlighted the device’s ability to closely replicate environmental conditions, thereby keeping bacterial communities metabolically active throughout the experiments and allowing for a more accurate assessment of the impact of MIC. Furthermore, the comparison between atmospheric and high hydrostatic pressures clearly showed that MIC represents a threat for metallic structures at the bottom of the ocean as much as at surface level.
The formation of biofilms on metal surfaces contributes to the degradation of metallic materials through a process known as microbially influenced corrosion (MIC). While MIC accounts for a substantial portion of the global corrosion-related costs, its study is particularly challenging when related to infrastructure deployed in extreme environments inhabited by microorganisms, such as the deep sea. Here, this limitation was addressed with the development of a high-pressure bio-electrochemostat able to simulate the conditions of the deep sea more accurately than the traditional closed-batch setups. With this device, the corrosive capabilities of the piezophilic sulfate-reducing bacterium (SRB) Pseudodesulfovibrio profundus were analyzed at 0.1 (atmospheric pressure) and 30 MPa under flow and static conditions on AH36 marine-grade carbon steel. The results highlighted the device's ability to closely replicate environmental conditions, thereby keeping bacterial communities metabolically active throughout the experiments and allowing for a more accurate assessment of the impact of MIC. Furthermore, the comparison between atmospheric and high hydrostatic pressures clearly showed that MIC represents a threat for metallic structures at the bottom of the ocean as much as at surface level.The formation of biofilms on metal surfaces contributes to the degradation of metallic materials through a process known as microbially influenced corrosion (MIC). While MIC accounts for a substantial portion of the global corrosion-related costs, its study is particularly challenging when related to infrastructure deployed in extreme environments inhabited by microorganisms, such as the deep sea. Here, this limitation was addressed with the development of a high-pressure bio-electrochemostat able to simulate the conditions of the deep sea more accurately than the traditional closed-batch setups. With this device, the corrosive capabilities of the piezophilic sulfate-reducing bacterium (SRB) Pseudodesulfovibrio profundus were analyzed at 0.1 (atmospheric pressure) and 30 MPa under flow and static conditions on AH36 marine-grade carbon steel. The results highlighted the device's ability to closely replicate environmental conditions, thereby keeping bacterial communities metabolically active throughout the experiments and allowing for a more accurate assessment of the impact of MIC. Furthermore, the comparison between atmospheric and high hydrostatic pressures clearly showed that MIC represents a threat for metallic structures at the bottom of the ocean as much as at surface level.
Author Shen, Xinhui
Lauro, Federico M.
Ivanovich, Nicolò
Marsili, Enrico
Marcos
Rajala, Pauliina
Messinese, Elena
Author_xml – sequence: 1
  givenname: Nicolò
  surname: Ivanovich
  fullname: Ivanovich, Nicolò
– sequence: 2
  givenname: Enrico
  surname: Marsili
  fullname: Marsili, Enrico
– sequence: 3
  givenname: Xinhui
  surname: Shen
  fullname: Shen, Xinhui
– sequence: 4
  givenname: Elena
  surname: Messinese
  fullname: Messinese, Elena
– sequence: 5
  surname: Marcos
  fullname: Marcos
– sequence: 6
  givenname: Pauliina
  surname: Rajala
  fullname: Rajala, Pauliina
– sequence: 7
  givenname: Federico M.
  surname: Lauro
  fullname: Lauro, Federico M.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40092032$$D View this record in MEDLINE/PubMed
BookMark eNpNkcFu1DAQhi3Uipa2L8AB-cgli2PHTnxEVYFKlbhQqTdrYo93XSVxsBNoX4GnxttdKuYwY1n__L803ztyMsUJCXlfs40Qnf7kx2D7DWdcbmrZMKWaN-S8LqMSjD-c_Pc-I1c5P7JSDeOlvyVnDWOaM8HPyZ-bp3mIKUxbuuyQhnEGu9DoqR_ib-qeJyg5mcaJ2phSzOEX0j5EH4Yx03VymGgO4zrAgo46xLnKCHQXtrtqTpjzmrBsTi4sIU5lI--TikGFA9olRbvDMeYFcsiX5NTDkPHqOC_I_ZebH9ffqrvvX2-vP99VlutmqRRCx2WJ6tpGsa7VsrdccuuhbRn0oDXaVrUgpVUMNUCrei960WrlnQIvLsjtwddFeDRzCiOkZxMhmJePmLYG0hLsgIapcjEpnQdmG8G9Fo3jovcoGUqsRfH6ePCaU_y5Yl7MGLLFYYAJ45qNqNuOd1qrvfTDUbr2I7rX4H8sioAfBLbcOSf0r5KamT1z88Lc7JmbI3PxF15XosQ
Cites_doi 10.1017/CBO9781139163637.005
10.1016/j.cis.2020.102336
10.1128/AEM.62.5.1593-1596.1996
10.1099/ijs.0.028670-0
10.3389/fmars.2022.873445
10.3390/ma10111307
10.3390/coatings11060625
10.1039/C2CS35026B
10.1016/j.corsci.2019.02.005
10.1016/j.scitotenv.2021.147573
10.1016/j.jmst.2024.07.026
10.1128/aem.65.12.5314-5321.1999
10.1099/ijs.0.02551-0
10.3390/microorganisms9020429
10.1038/s41598-024-67463-2
10.1080/08927014.2017.1285914
10.3390/cmd4010005
10.1016/j.ibiod.2015.01.003
10.1111/j.1574-6941.1998.tb00495.x
10.1007/s40735-022-00677-x
10.1016/j.corsci.2019.06.026
10.1007/s40735-022-00648-2
10.1007/978-3-642-80017-7
10.1016/j.ibiod.2009.02.002
10.1080/08927014.2012.662675
10.1080/14786445508641925
10.3389/fmars.2019.00048
10.1007/978-1-4614-1698-2_6
10.1016/0043-1354(91)90030-T
10.1016/j.electacta.2022.140803
10.1016/j.engfailanal.2021.105884
10.1155/2021/7803536
10.1016/j.tim.2010.06.006
10.1371/journal.pone.0055130
10.1111/1751-7915.14347
10.1533/9781782421252.1.33
10.5006/1190
10.1002/bit.260400506
10.1007/s11274-019-2647-4
10.1111/j.1462-2920.2012.02778.x
10.1016/j.bioelechem.2018.04.014
10.1016/B978-0-323-91762-9.00006-X
10.1007/s00253-005-1897-2
10.1146/annurev.mi.39.100185.001211
10.1007/s11665-013-0627-7
10.1016/j.electacta.2022.140617
10.1016/j.ibiod.2014.03.014
10.1098/rstl.1700.0082
10.1016/j.corsci.2020.108641
10.3390/microorganisms12050892
10.1007/s10295-006-0142-z
10.1016/j.jmst.2021.02.039
10.1038/233491a0
10.1016/j.electacta.2016.05.169
10.1128/AEM.01215-15
10.1016/j.corsci.2024.112593
10.1186/s40168-021-01196-6
10.1016/j.bioelechem.2021.107920
10.1016/j.msec.2011.10.033
10.1002/9781119019213.ch27
10.1016/j.electacta.2009.02.010
10.1007/s00792-006-0049-7
10.1128/AEM.00890-21
10.1016/j.corsci.2022.110210
10.1128/AEM.01891-18
10.1016/j.bioelechem.2020.107635
10.1073/pnas.83.24.9542
10.1099/00207713-47-2-515
10.1016/j.porgcoat.2024.108811
10.1007/BF01569983
10.1179/1743278212Y.0000000065
10.1016/j.resmic.2015.07.002
10.1038/s41396-021-00978-y
10.1016/j.jmst.2021.10.014
ContentType Journal Article
Copyright Copyright © 2025 Ivanovich, Marsili, Shen, Messinese, Marcos, Rajala and Lauro.
Copyright_xml – notice: Copyright © 2025 Ivanovich, Marsili, Shen, Messinese, Marcos, Rajala and Lauro.
DBID AAYXX
CITATION
NPM
7X8
DOA
DOI 10.3389/fmicb.2025.1540664
DatabaseName CrossRef
PubMed
MEDLINE - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList PubMed

CrossRef
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1664-302X
ExternalDocumentID oai_doaj_org_article_0602055dfa0c432f934d23bfe50e5e13
40092032
10_3389_fmicb_2025_1540664
Genre Journal Article
GroupedDBID 53G
5VS
9T4
AAFWJ
AAKDD
AAYXX
ACGFO
ACGFS
ACXDI
ADBBV
ADRAZ
AENEX
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BCNDV
CITATION
DIK
ECGQY
GROUPED_DOAJ
GX1
HYE
KQ8
M~E
O5R
O5S
OK1
PGMZT
RNS
RPM
IPNFZ
M48
NPM
RIG
7X8
ID FETCH-LOGICAL-c294t-6ea825dee874608795bc252cfa770aba99ec767a55c60e9aa76bf3b3796fd6af3
IEDL.DBID DOA
ISSN 1664-302X
IngestDate Wed Aug 27 01:28:06 EDT 2025
Fri Jul 11 01:01:26 EDT 2025
Wed Mar 19 01:28:53 EDT 2025
Sun Jul 06 05:05:11 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords high-hydrostatic pressure
microbially-influenced corrosion
sulfate-reducing bacteria
chemostat
biofilm
Language English
License Copyright © 2025 Ivanovich, Marsili, Shen, Messinese, Marcos, Rajala and Lauro.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c294t-6ea825dee874608795bc252cfa770aba99ec767a55c60e9aa76bf3b3796fd6af3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://doaj.org/article/0602055dfa0c432f934d23bfe50e5e13
PMID 40092032
PQID 3178289963
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_0602055dfa0c432f934d23bfe50e5e13
proquest_miscellaneous_3178289963
pubmed_primary_40092032
crossref_primary_10_3389_fmicb_2025_1540664
PublicationCentury 2000
PublicationDate 2025-02-28
PublicationDateYYYYMMDD 2025-02-28
PublicationDate_xml – month: 02
  year: 2025
  text: 2025-02-28
  day: 28
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
PublicationTitle Frontiers in microbiology
PublicationTitleAlternate Front Microbiol
PublicationYear 2025
Publisher Frontiers Media S.A
Publisher_xml – name: Frontiers Media S.A
References Bale (ref5) 1997; 47
Guan (ref26) 2021; 788
Li (ref44) 2025; 243
Wirsen (ref74) 1999; 65
Rajala (ref63) 2017; 33
Videla (ref70) 2009; 63
Pal (ref58) 2022; 8
Chen (ref10) 2022; 131
Pradel (ref60) 2013; 8
Chen (ref9) 2014; 70
Jannasch (ref35) 1996; 62
Zhang (ref83) 2016; 210
Mugge (ref54) 2019; 6
Ma (ref49) 2022; 424
Dou (ref18) 2019; 150
(ref3) 2107
Chen (ref12) 2021; 11
King (ref39) 1971; 233
Lahme (ref42) 2019; 85
Jiang (ref37) 2023; 4
Yang (ref80) 2022; 199
Lv (ref48) 2021; 92
Bellou (ref7) 2012; 28
Little (ref45) 2020; 170
Zheng (ref84) 2021; 9
Xu (ref78) 2014; 91
Chen (ref11) 2021; 2021
Parsekar (ref59) 2023
AlAbbas (ref1) 2013; 22
Martinez (ref50) 2024; 197
Beech (ref6) 2014
Khelaifia (ref38) 2011; 61
Audiffrin (ref4) 2003; 53
Krsmanovic (ref40) 2021; 288
(ref56) 2024
Taheri (ref68) 2005; 7
Wang (ref72) 2021; 142
Ashassi-Sorkhabi (ref2) 2012; 32
Incropera (ref33) 1996
Rao (ref65) 2012
Liu (ref47) 2022; 112
Wu (ref77) 2025; 215
Kunes (ref41) 2012
Gage (ref24) 1991
Hamilton (ref29) 1985; 39
Fatah (ref21) 2013; 48
Reis (ref66) 1992; 40
Hubert (ref32) 2005; 68
Dang (ref15) 2022; 8
Rajala (ref64) 2022; 10
Yayanos (ref81) 1986; 83
Dong (ref17) 2018; 123
(ref34) 2011
McCartney (ref51) 1991; 25
Zhang (ref82) 2009; 54
Enning (ref19) 2012; 14
Lanneluc (ref43) 2015; 99
Qian (ref62) 2020; 136
Little (ref46) 2015
Wu (ref76) 2019; 157
Rempel (ref67) 2006; 33
Videla (ref71) 2005
Wood (ref75) 2021; 87
Heitz (ref30) 1996
Chohan (ref13) 2024; 14
Moseley (ref53) 2022; 9
Foustoukos (ref23) 2015; 81
Guan (ref25) 2015; 166
Hamdan (ref28) 2021; 15
Houghton (ref31) 2007; 11
Dominguez-Benetton (ref16) 2012; 41
Brading (ref8) 1995; 15
Newton (ref57) 1701; 22
Yang (ref79) 2017; 10
Fang (ref20) 2010; 18
Javed (ref36) 2024; 12
Murthy (ref55) 2023
Procópio (ref61) 2019; 35
Venkatesan (ref69) 2003
Wang (ref73) 2023; 16
Coulson (ref14) 1990
Fick (ref22) 1855; 10
Moradi (ref52) 2022; 426
Guezennec (ref27) 1998; 26
References_xml – start-page: 9
  volume-title: Deep-Sea biology: A natural history of organisms at the Deep-Sea floor
  year: 1991
  ident: ref24
  doi: 10.1017/CBO9781139163637.005
– volume: 288
  start-page: 102336
  year: 2021
  ident: ref40
  article-title: Hydrodynamics and surface properties influence biofilm proliferation
  publication-title: Adv. Colloid Interf. Sci.
  doi: 10.1016/j.cis.2020.102336
– volume: 62
  start-page: 1593
  year: 1996
  ident: ref35
  article-title: A pressurized chemostat for the study of marine barophilic and oligotrophic bacteria
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.62.5.1593-1596.1996
– volume: 61
  start-page: 2706
  year: 2011
  ident: ref38
  article-title: Desulfovibrio piezophilus sp. nov., a piezophilic, sulfate-reducing bacterium isolated from wood falls in the Mediterranean Sea
  publication-title: Int. J. Syst. Evol. Microbiol.
  doi: 10.1099/ijs.0.028670-0
– volume: 9
  start-page: 873445
  year: 2022
  ident: ref53
  article-title: Historic wooden shipwrecks influence dispersal of deep-sea biofilms
  publication-title: Front. Mar. Sci.
  doi: 10.3389/fmars.2022.873445
– volume: 10
  start-page: 1307
  year: 2017
  ident: ref79
  article-title: A statistical study on the effect of hydrostatic pressure on metastable pitting corrosion of X70 pipeline steel
  publication-title: Materials (Basel)
  doi: 10.3390/ma10111307
– volume: 11
  start-page: 625
  year: 2021
  ident: ref12
  article-title: Effect of sulfate-reducing bacteria (SRB) on the corrosion of buried pipe steel in acidic soil solution
  publication-title: Coatings
  doi: 10.3390/coatings11060625
– volume: 41
  start-page: 7228
  year: 2012
  ident: ref16
  article-title: The accurate use of impedance analysis for the study of microbial electrochemical systems
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C2CS35026B
– volume: 150
  start-page: 258
  year: 2019
  ident: ref18
  article-title: Electrochemical investigation of increased carbon steel corrosion via extracellular electron transfer by a sulfate reducing bacterium under carbon source starvation
  publication-title: Corros. Sci.
  doi: 10.1016/j.corsci.2019.02.005
– volume: 788
  start-page: 147573
  year: 2021
  ident: ref26
  article-title: Synergistic effect of carbon starvation and exogenous redox mediators on corrosion of X70 pipeline steel induced by Desulfovibrio singaporenus
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2021.147573
– volume: 215
  start-page: 192
  year: 2025
  ident: ref77
  article-title: State of the art and current trends on the metal corrosion and protection strategies in deep sea
  publication-title: J. Materials Sci. Technol.
  doi: 10.1016/j.jmst.2024.07.026
– volume: 65
  start-page: 5314
  year: 1999
  ident: ref74
  article-title: A study of deep-sea natural microbial populations and barophilic pure cultures using a high-pressure chemostat
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/aem.65.12.5314-5321.1999
– volume: 53
  start-page: 1585
  year: 2003
  ident: ref4
  article-title: Desulfonauticus submarinus gen. Nov., sp. nov., a novel sulfate-reducing bacterium isolated from a deep-sea hydrothermal vent
  publication-title: Int. J. Syst. Evol. Microbiol.
  doi: 10.1099/ijs.0.02551-0
– volume: 9
  start-page: 429
  year: 2021
  ident: ref84
  article-title: Pseudodesulfovibrio cashew sp. nov., a novel deep-sea sulfate-reducing bacterium, linking heavy metal resistance and sulfur cycle
  publication-title: Microorganisms
  doi: 10.3390/microorganisms9020429
– volume: 14
  start-page: 16543
  year: 2024
  ident: ref13
  article-title: Effect of seawater salinity, pH, and temperature on external corrosion behavior and microhardness of offshore oil and gas pipeline: RSM modelling and optimization
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-024-67463-2
– volume-title: Dimensionless physical quantities in science and engineering
  year: 2012
  ident: ref41
– volume: 33
  start-page: 195
  year: 2017
  ident: ref63
  article-title: Microbial fouling and corrosion of carbon steel in deep anoxic alkaline groundwater
  publication-title: Biofouling
  doi: 10.1080/08927014.2017.1285914
– volume: 4
  start-page: 54
  year: 2023
  ident: ref37
  article-title: Investigation via electron microscopy and electrochemical impedance spectroscopy of the effect of aqueous zinc ions on passivity and the surface films of alloy 600 in PWR PW at 320°C
  publication-title: Corrosion Materials Degradation
  doi: 10.3390/cmd4010005
– volume: 99
  start-page: 55
  year: 2015
  ident: ref43
  article-title: On the bacterial communities associated with the corrosion product layer during the early stages of marine corrosion of carbon steel
  publication-title: Int. Biodeterior. Biodegradation
  doi: 10.1016/j.ibiod.2015.01.003
– volume: 7
  start-page: 5
  year: 2005
  ident: ref68
  article-title: Comparison of corrosion rates of some steels in batch and semi-continuous cultures of sulfate-reducing bacteria
  publication-title: Asian J. Microbiol. Biotechnol. Environ. Sci.
– volume: 26
  start-page: 89
  year: 1998
  ident: ref27
  article-title: Bacterial colonization of artificial substrate in the vicinity of deep-sea hydrothermal vents
  publication-title: FEMS Microbiol. Ecol.
  doi: 10.1111/j.1574-6941.1998.tb00495.x
– volume-title: Fundamentals of heat and mass transfer
  year: 1996
  ident: ref33
– volume: 8
  start-page: 76
  year: 2022
  ident: ref58
  article-title: Microbial influenced corrosion: understanding bioadhesion and biofilm formation
  publication-title: J. Bio Tribo Corrosion
  doi: 10.1007/s40735-022-00677-x
– year: 2005
  ident: ref71
  article-title: An updated overview of SRB induced corrosion and protection of carbon steel
  publication-title: Corrosion
– volume: 157
  start-page: 518
  year: 2019
  ident: ref76
  article-title: Stress corrosion of pipeline steel under disbonded coating in a SRB-containing environment
  publication-title: Corros. Sci.
  doi: 10.1016/j.corsci.2019.06.026
– volume: 8
  start-page: 50
  year: 2022
  ident: ref15
  article-title: Analytical characterisation of material corrosion by biofilms
  publication-title: J. Bio Tribo Corrosion
  doi: 10.1007/s40735-022-00648-2
– volume-title: Microbially influenced corrosion of materials: Scientific and engineering aspects
  year: 1996
  ident: ref30
  doi: 10.1007/978-3-642-80017-7
– volume: 63
  start-page: 896
  year: 2009
  ident: ref70
  article-title: Understanding microbial inhibition of corrosion. A comprehensive overview
  publication-title: Int. Biodeterior. Biodegradation
  doi: 10.1016/j.ibiod.2009.02.002
– volume: 28
  start-page: 199
  year: 2012
  ident: ref7
  article-title: The effect of substratum type, orientation and depth on the development of bacterial deep-sea biofilm communities grown on artificial substrata deployed in the eastern Mediterranean
  publication-title: Biofouling
  doi: 10.1080/08927014.2012.662675
– volume: 10
  start-page: 30
  year: 1855
  ident: ref22
  article-title: V. On liquid diffusion. The London, Edinburgh, and Dublin philosophical magazine
  publication-title: J. Sci.
  doi: 10.1080/14786445508641925
– volume: 6
  start-page: 48
  year: 2019
  ident: ref54
  article-title: Deep-Sea biofilms, historic shipwreck preservation and the Deepwater horizon spill
  publication-title: Front. Mar. Sci.
  doi: 10.3389/fmars.2019.00048
– start-page: 95
  volume-title: Operational and environmental consequences of large industrial cooling water systems
  year: 2012
  ident: ref65
  article-title: Microbial fouling and corrosion: fundamentals and mechanisms
  doi: 10.1007/978-1-4614-1698-2_6
– volume: 25
  start-page: 203
  year: 1991
  ident: ref51
  article-title: Sulfide inhibition of anaerobic degradation of lactate and acetate
  publication-title: Water Res.
  doi: 10.1016/0043-1354(91)90030-T
– volume-title: Chemical engineering: Fluid flow, heat transfer and mass transfer
  year: 1990
  ident: ref14
– volume: 426
  start-page: 140803
  year: 2022
  ident: ref52
  article-title: Understanding biofilm impact on electrochemical impedance spectroscopy analyses in microbial corrosion and microbial corrosion inhibition phenomena
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2022.140803
– volume: 131
  start-page: 105884
  year: 2022
  ident: ref10
  article-title: Microbiologically influenced stress corrosion cracking responsible for catastrophic failure of cable bolts
  publication-title: Eng. Fail. Anal.
  doi: 10.1016/j.engfailanal.2021.105884
– volume: 2021
  start-page: 1
  year: 2021
  ident: ref11
  article-title: Research progress on corrosion of equipment and materials in deep-sea environment
  publication-title: Adv. Civil Eng.
  doi: 10.1155/2021/7803536
– volume: 18
  start-page: 413
  year: 2010
  ident: ref20
  article-title: Deep-sea piezosphere and piezophiles: geomicrobiology and biogeochemistry
  publication-title: Trends Microbiol.
  doi: 10.1016/j.tim.2010.06.006
– volume: 8
  start-page: e55130
  year: 2013
  ident: ref60
  article-title: The first genomic and proteomic characterization of a deep-sea sulfate reducer: insights into the piezophilic lifestyle of Desulfovibrio piezophilus
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0055130
– start-page: 65
  volume-title: Extremophiles
  year: 2023
  ident: ref59
  article-title: Deep-sea extremophiles and their diversity in the Indian Ocean
– volume: 16
  start-page: 2026
  year: 2023
  ident: ref73
  article-title: Burning question: are there sustainable strategies to prevent microbial metal corrosion?
  publication-title: Microb. Biotechnol.
  doi: 10.1111/1751-7915.14347
– start-page: 33
  volume-title: Understanding biocorrosion
  year: 2014
  ident: ref6
  article-title: Biofilms and biocorrosion
  doi: 10.1533/9781782421252.1.33
– volume: 70
  start-page: 767
  year: 2014
  ident: ref9
  article-title: Characterizing pitting corrosion caused by a long-term starving sulfate-reducing bacterium surviving on carbon steel and effects of surface roughness
  publication-title: Corrosion
  doi: 10.5006/1190
– volume: 40
  start-page: 593
  year: 1992
  ident: ref66
  article-title: Effect of hydrogen sulfide on growth of sulfate reducing bacteria
  publication-title: Biotechnol. Bioeng.
  doi: 10.1002/bit.260400506
– volume: 35
  start-page: 73
  year: 2019
  ident: ref61
  article-title: The role of biofilms in the corrosion of steel in marine environments
  publication-title: World J. Microbiol. Biotechnol.
  doi: 10.1007/s11274-019-2647-4
– volume: 14
  start-page: 1772
  year: 2012
  ident: ref19
  article-title: Marine sulfate-reducing bacteria cause serious corrosion of iron under electroconductive biogenic mineral crust
  publication-title: Environ. Microbiol.
  doi: 10.1111/j.1462-2920.2012.02778.x
– year: 2024
  ident: ref56
– volume: 123
  start-page: 34
  year: 2018
  ident: ref17
  article-title: Severe microbiologically influenced corrosion of S32654 super austenitic stainless steel by acid producing bacterium Acidithiobacillus caldus SM-1
  publication-title: Bioelectrochemistry
  doi: 10.1016/j.bioelechem.2018.04.014
– start-page: 141
  volume-title: Advances in nanotechnology for marine antifouling
  year: 2023
  ident: ref55
  article-title: Biodiversity of deep ocean on development of biofilms: biofouling communities and corrosion performance of materials
  doi: 10.1016/B978-0-323-91762-9.00006-X
– volume: 68
  start-page: 272
  year: 2005
  ident: ref32
  article-title: Corrosion risk associated with microbial souring control using nitrate or nitrite
  publication-title: Appl. Microbiol. Biotechnol.
  doi: 10.1007/s00253-005-1897-2
– volume: 39
  start-page: 195
  year: 1985
  ident: ref29
  article-title: Sulphate-reducing bacteria and anaerobic corrosion
  publication-title: Ann. Rev. Microbiol.
  doi: 10.1146/annurev.mi.39.100185.001211
– volume: 22
  start-page: 3517
  year: 2013
  ident: ref1
  article-title: Microbial corrosion in linepipe steel under the influence of a sulfate-reducing consortium isolated from an oil field
  publication-title: J. Mater. Eng. Perform.
  doi: 10.1007/s11665-013-0627-7
– volume: 424
  start-page: 140617
  year: 2022
  ident: ref49
  article-title: Effect of hydrostatic pressure on the thermodynamic and kinetic behavior of metal electrode reactions
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2022.140617
– volume: 91
  start-page: 74
  year: 2014
  ident: ref78
  article-title: Carbon source starvation triggered more aggressive corrosion against carbon steel by the Desulfovibrio vulgaris biofilm
  publication-title: Int. Biodeterior. Biodegradation
  doi: 10.1016/j.ibiod.2014.03.014
– volume: 22
  start-page: 824
  year: 1701
  ident: ref57
  article-title: Scala graduum caloris
  publication-title: Philos. Transac. Royal Soc.
  doi: 10.1098/rstl.1700.0082
– volume: 170
  start-page: 108641
  year: 2020
  ident: ref45
  article-title: Microbially influenced corrosion—any progress?
  publication-title: Corros. Sci.
  doi: 10.1016/j.corsci.2020.108641
– volume: 12
  start-page: 892
  year: 2024
  ident: ref36
  article-title: The role of metallurgical features in the Microbially influenced corrosion of carbon steel: a critical review
  publication-title: Microorganisms
  doi: 10.3390/microorganisms12050892
– volume: 33
  start-page: 878
  year: 2006
  ident: ref67
  article-title: Dynamics of corrosion rates associated with nitrite or nitrate mediated control of souring under biological conditions simulating an oil reservoir
  publication-title: J. Ind. Microbiol. Biotechnol.
  doi: 10.1007/s10295-006-0142-z
– volume: 92
  start-page: 109
  year: 2021
  ident: ref48
  article-title: Effect of sulfate-reducing bacteria on hydrogen permeation and stress corrosion cracking behavior of 980 high-strength steel in seawater
  publication-title: J. Materials Sci. Technol.
  doi: 10.1016/j.jmst.2021.02.039
– volume: 233
  start-page: 491
  year: 1971
  ident: ref39
  article-title: Corrosion by sulphate-reducing bacteria
  publication-title: Nature
  doi: 10.1038/233491a0
– volume-title: Astm standard g1-03, practice for preparing, cleaning, and evaluating corrosion test specimens
  year: 2107
  ident: ref3
– year: 2011
  ident: ref34
– volume: 210
  start-page: 401
  year: 2016
  ident: ref83
  article-title: Degradation in pitting resistance of 316L stainless steel under hydrostatic pressure
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2016.05.169
– volume: 81
  start-page: 6850
  year: 2015
  ident: ref23
  article-title: A continuous culture system for assessing microbial activities in the piezosphere
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.01215-15
– volume: 243
  start-page: 112593
  year: 2025
  ident: ref44
  article-title: Accelerated stress corrosion cracking of X80 pipeline steel under the combined effects of sulfate-reducing bacteria and hydrostatic pressure
  publication-title: Corros. Sci.
  doi: 10.1016/j.corsci.2024.112593
– volume: 10
  start-page: 4
  year: 2022
  ident: ref64
  article-title: Sulfate-dependant microbially induced corrosion of mild steel in the deep sea: a 10-year microbiome study
  publication-title: Microbiome
  doi: 10.1186/s40168-021-01196-6
– volume: 142
  start-page: 107920
  year: 2021
  ident: ref72
  article-title: Aggressive corrosion of carbon steel by Desulfovibrio ferrophilus IS5 biofilm was further accelerated by riboflavin
  publication-title: Bioelectrochemistry
  doi: 10.1016/j.bioelechem.2021.107920
– volume: 32
  start-page: 303
  year: 2012
  ident: ref2
  article-title: The effect of Pseudoxanthomonas sp. as manganese oxidizing bacterium on the corrosion behavior of carbon steel
  publication-title: Mater. Sci. Eng.
  doi: 10.1016/j.msec.2011.10.033
– start-page: 387
  year: 2015
  ident: ref46
  article-title: Microbiologically influenced corrosion
  publication-title: Oil Gas Pipelines
  doi: 10.1002/9781119019213.ch27
– volume: 54
  start-page: 3915
  year: 2009
  ident: ref82
  article-title: A stochastic analysis of the effect of hydrostatic pressure on the pit corrosion of Fe–20Cr alloy
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2009.02.010
– volume: 11
  start-page: 371
  year: 2007
  ident: ref31
  article-title: Continuous enrichment culturing of thermophiles under sulfate and nitrate-reducing conditions and at deep-sea hydrostatic pressures
  publication-title: Extremophiles
  doi: 10.1007/s00792-006-0049-7
– volume: 87
  start-page: e0089021
  year: 2021
  ident: ref75
  article-title: High taxonomic diversity in ship bilges presents challenges for monitoring microbial corrosion and opportunity to utilize community functional profiling
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.00890-21
– volume: 199
  start-page: 110210
  year: 2022
  ident: ref80
  article-title: Synergistic effects of deposits and sulfate reducing bacteria on the corrosion of carbon steel
  publication-title: Corros. Sci.
  doi: 10.1016/j.corsci.2022.110210
– volume: 85
  start-page: e01891
  year: 2019
  ident: ref42
  article-title: Metabolites of an oil field sulfide-oxidizing, nitrate-reducing Sulfurimonas sp. cause severe corrosion
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.01891-18
– volume: 136
  start-page: 107635
  year: 2020
  ident: ref62
  article-title: Investigation of microbiologically influenced corrosion of 304 stainless steel by aerobic thermoacidophilic archaeon Metallosphaera cuprina
  publication-title: Bioelectrochemistry
  doi: 10.1016/j.bioelechem.2020.107635
– volume: 83
  start-page: 9542
  year: 1986
  ident: ref81
  article-title: Evolutional and ecological implications of the properties of deep-sea barophilic bacteria
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.83.24.9542
– volume: 47
  start-page: 515
  year: 1997
  ident: ref5
  article-title: Desulfovibrio profundus sp. nov., a novel barophilic sulfate-reducing bacterium from deep sediment layers in the Japan Sea
  publication-title: Int. J. Syst. Evol. Microbiol.
  doi: 10.1099/00207713-47-2-515
– volume: 197
  start-page: 108811
  year: 2024
  ident: ref50
  article-title: Low-frequency EIS interpretation with the potential to predict the durability of protective coatings
  publication-title: Prog. Org. Coat.
  doi: 10.1016/j.porgcoat.2024.108811
– volume-title: Biofilm formation on structural materials in deep sea environments
  year: 2003
  ident: ref69
– volume: 15
  start-page: 297
  year: 1995
  ident: ref8
  article-title: Biofilm formation in laminar flow using Pseudomonas fluorescens EX101
  publication-title: J. Ind. Microbiol. Biotechnol.
  doi: 10.1007/BF01569983
– volume: 48
  start-page: 211
  year: 2013
  ident: ref21
  article-title: Effects of sulphide ion on corrosion behaviour of X52 steel in simulated solution containing metabolic products species: a study pertaining to microbiologically influenced corrosion (MIC)
  publication-title: Corros. Eng. Sci. Technol.
  doi: 10.1179/1743278212Y.0000000065
– volume: 166
  start-page: 688
  year: 2015
  ident: ref25
  article-title: Diversity of methanogens and sulfate-reducing bacteria in the interfaces of five deep-sea anoxic brines of the Red Sea
  publication-title: Res. Microbiol.
  doi: 10.1016/j.resmic.2015.07.002
– volume: 15
  start-page: 2883
  year: 2021
  ident: ref28
  article-title: Deep-sea shipwrecks represent island-like ecosystems for marine microbiomes
  publication-title: ISME J.
  doi: 10.1038/s41396-021-00978-y
– volume: 112
  start-page: 230
  year: 2022
  ident: ref47
  article-title: The role of hydrostatic pressure on the metal corrosion in simulated deep-sea environments — a review
  publication-title: J. Materials Sci. Technol.
  doi: 10.1016/j.jmst.2021.10.014
SSID ssj0000402000
Score 2.4038868
Snippet The formation of biofilms on metal surfaces contributes to the degradation of metallic materials through a process known as microbially influenced corrosion...
SourceID doaj
proquest
pubmed
crossref
SourceType Open Website
Aggregation Database
Index Database
StartPage 1540664
SubjectTerms biofilm
chemostat
high-hydrostatic pressure
microbially-influenced corrosion
sulfate-reducing bacteria
Title Exploring the impact of flow dynamics on corrosive biofilms under simulated deep-sea high-pressure conditions using bio-electrochemostasis
URI https://www.ncbi.nlm.nih.gov/pubmed/40092032
https://www.proquest.com/docview/3178289963
https://doaj.org/article/0602055dfa0c432f934d23bfe50e5e13
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Pi9QwFA6yIHgRd_01uisRvEkwkzRpc9wV10XQkwtzC0n6IgNOu0xnEP8F_2rfS7rDehAvXnoobZLme22-l773PsbeQAIt8bURSwedoD0G4fCU6KLpWmiiSpoShT9_sVfXzaeVWd2R-qKYsFoeuE7cO2mR0BjT5yBTo1V2uumVjhmMBANFr1bhmnfHmSrfYHKLpKxZMuiFOYRpnSL6g8rQZgoutM0fK1Ep2P93lllWm8tH7OFME_l5Hd4xuwfDCbtfhSN_Pma_DqFzHAkcr6mOfMw8fx9_8L6qzE98HDg6l9g7ftJ4XJM692bilDa25dN6Q8pd0PMe4EagxXMqXSxKYOx-C3gn_c0mq-QUHP-NGhCzag4ivRmRV07r6Qm7vvzw9f2VmFUVRFKu2QkLAb1CbLprGytJazwmZVTKoW1liME5SK1tgzHJSnAhtDZmHXXrbO5tyPopOxrGAZ4zvkwyd3YJXbBIBLJBquUanbrkqIphDwv29naG_U0tnuHR6SA8fMHDEx5-xmPBLgiEw5VU-LqcQHPwszn4f5nDgr2-hdDji0J_P8IA437ySJSKd2nxmmcV20NXDZWeklq9-B9DeMke0GPVvPdTdrTb7uEMmcsuvipGisePq-VvV-nuyQ
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Exploring+the+impact+of+flow+dynamics+on+corrosive+biofilms+under+simulated+deep-sea+high-pressure+conditions+using+bio-electrochemostasis&rft.jtitle=Frontiers+in+microbiology&rft.au=Ivanovich%2C+Nicol%C3%B2&rft.au=Marsili%2C+Enrico&rft.au=Shen%2C+Xinhui&rft.au=Messinese%2C+Elena&rft.date=2025-02-28&rft.issn=1664-302X&rft.eissn=1664-302X&rft.volume=16&rft.spage=1540664&rft_id=info:doi/10.3389%2Ffmicb.2025.1540664&rft_id=info%3Apmid%2F40092032&rft.externalDocID=40092032
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1664-302X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1664-302X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1664-302X&client=summon