Fusion of Spatial, Temporal, and Spectral EEG Signatures Improves Multilevel Cognitive Load Prediction
Cognitive load prediction is one of the most important issues in the nascent field of neuroergonomics, and it has significant value in real-world applications. Most of the previous studies of cognitive load prediction only utilized electroencephalography (EEG)-based spectral signatures or interchann...
Saved in:
Published in | IEEE transactions on human-machine systems Vol. 53; no. 2; pp. 357 - 366 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.04.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Cognitive load prediction is one of the most important issues in the nascent field of neuroergonomics, and it has significant value in real-world applications. Most of the previous studies of cognitive load prediction only utilized electroencephalography (EEG)-based spectral signatures or interchannel connectivity, ignoring abundant temporal microstate features, which may represent the transient topologies of EEG signals. Furthermore, previous studies have mostly focused on the binary-level classification of cognitive load for single-type cognitive tasks. To date, there are few studies on the multilevel prediction of cognitive load during mixed cognitive tasks. Here, we first designed a new paradigm termed the "finding fault game," mixing multiple tasks of memory, counting, and visual search, and then developed a multidimensional analysis framework to improve cognitive load prediction using a fusion of spatial, temporal, and spectral EEG features. Specifically, EEG-based functional connectivity, microstates and power spectral densities (PSD) were calculated for three cognitive load levels. Twelve adult subjects participated in the study. The experimental results show that increased cognitive load was associated with elevated theta and degraded alpha power and significant changes in interchannel connectivity and microstates, and that fusing the three types of EEG features improved the performance of three-level cognitive load prediction, achieving the accuracies of greater than 80% in the cross-validation, real-time, and over-time prediction. The findings suggest that all three types of EEG features can serve as signatures of cognitive load and that their fusion can improve multilevel prediction. |
---|---|
AbstractList | Cognitive load prediction is one of the most important issues in the nascent field of neuroergonomics, and it has significant value in real-world applications. Most of the previous studies of cognitive load prediction only utilized electroencephalography (EEG)-based spectral signatures or interchannel connectivity, ignoring abundant temporal microstate features, which may represent the transient topologies of EEG signals. Furthermore, previous studies have mostly focused on the binary-level classification of cognitive load for single-type cognitive tasks. To date, there are few studies on the multilevel prediction of cognitive load during mixed cognitive tasks. Here, we first designed a new paradigm termed the "finding fault game," mixing multiple tasks of memory, counting, and visual search, and then developed a multidimensional analysis framework to improve cognitive load prediction using a fusion of spatial, temporal, and spectral EEG features. Specifically, EEG-based functional connectivity, microstates and power spectral densities (PSD) were calculated for three cognitive load levels. Twelve adult subjects participated in the study. The experimental results show that increased cognitive load was associated with elevated theta and degraded alpha power and significant changes in interchannel connectivity and microstates, and that fusing the three types of EEG features improved the performance of three-level cognitive load prediction, achieving the accuracies of greater than 80% in the cross-validation, real-time, and over-time prediction. The findings suggest that all three types of EEG features can serve as signatures of cognitive load and that their fusion can improve multilevel prediction. |
Author | Liu, Yingxin Yu, Yang Li, Ming Ye, Zeqi Zhang, Yifan Zeng, Ling-Li Zhou, Zongtan Hu, Dewen |
Author_xml | – sequence: 1 givenname: Yingxin orcidid: 0000-0001-6191-3039 surname: Liu fullname: Liu, Yingxin email: 2209449676@qq.com organization: College of Intelligence Science and Technology, National University of Defense Technology, Changsha, China – sequence: 2 givenname: Yang orcidid: 0000-0002-8967-0427 surname: Yu fullname: Yu, Yang email: yuyangnudt@hotmail.com organization: College of Intelligence Science and Technology, National University of Defense Technology, Changsha, China – sequence: 3 givenname: Zeqi surname: Ye fullname: Ye, Zeqi email: 928250476@qq.com organization: College of Intelligence Science and Technology, National University of Defense Technology, Changsha, China – sequence: 4 givenname: Ming surname: Li fullname: Li, Ming email: liming78@nudt.edu.cn organization: College of Intelligence Science and Technology, National University of Defense Technology, Changsha, China – sequence: 5 givenname: Yifan orcidid: 0000-0002-4671-723X surname: Zhang fullname: Zhang, Yifan email: ffan_zhang@126.com organization: College of Intelligence Science and Technology, National University of Defense Technology, Changsha, China – sequence: 6 givenname: Zongtan surname: Zhou fullname: Zhou, Zongtan email: narcz@163.com organization: College of Intelligence Science and Technology, National University of Defense Technology, Changsha, China – sequence: 7 givenname: Dewen orcidid: 0000-0001-7357-0053 surname: Hu fullname: Hu, Dewen email: dwhu@nudt.edu.cn organization: College of Intelligence Science and Technology, National University of Defense Technology, Changsha, China – sequence: 8 givenname: Ling-Li orcidid: 0000-0002-0515-256X surname: Zeng fullname: Zeng, Ling-Li email: zengphd@nudt.edu.cn organization: College of Intelligence Science and Technology, National University of Defense Technology, Changsha, China |
BookMark | eNp9UE1LAzEUDKJgrf0BgoeAV7fmo9lkj1L6BS0Krecl3X1bUrabmmQL_nuztIJ48F0yL29m8jJ36LqxDSD0QMmQUpK9bOar9ZARxoeccUEIv0I9RlOVME7E9Q9mGb1FA-_3JJZiQgjVQ9W09cY22FZ4fdTB6PoZb-BwtK5DuinjNRQhdngymeG12TU6tA48XhyOzp4iWLV1MDWcoMZju2tMMCfAS6tL_O6gNEWI_vfoptK1h8Hl7KOP6WQznifLt9li_LpMCpaNQpKCLAHkKNNUMkkFpwAFl5mqqrTaUhknma5opiShJGVbupVkRLXSRJcl4wXvo6ezb9ztswUf8r1tXROfzJlUUhIhpIgseWYVznrvoMoLE3S3Z_yoqXNK8i7XvMs173LNL7lGJf2jPDpz0O7rX83jWWMA4BefMKqY4t_clITQ |
CODEN | ITHSA6 |
CitedBy_id | crossref_primary_10_1088_1741_2552_ad9cc0 crossref_primary_10_3390_brainsci14020149 crossref_primary_10_1016_j_eswa_2024_126028 crossref_primary_10_1080_00140139_2024_2380340 crossref_primary_10_31083_j_jin2301018 crossref_primary_10_1016_j_aei_2024_103065 crossref_primary_10_1109_TNSRE_2025_3530154 crossref_primary_10_1017_aer_2024_103 crossref_primary_10_3390_biomimetics9090562 crossref_primary_10_3390_electronics12051186 crossref_primary_10_1109_JSEN_2024_3444274 crossref_primary_10_1109_TII_2024_3366996 crossref_primary_10_1186_s40779_025_00598_z crossref_primary_10_1109_ACCESS_2024_3360328 crossref_primary_10_1109_TNSRE_2023_3336897 crossref_primary_10_1016_j_tsc_2024_101643 crossref_primary_10_1016_j_trf_2025_02_025 crossref_primary_10_3389_fncom_2023_1263710 crossref_primary_10_1152_jn_00029_2024 crossref_primary_10_1016_j_knosys_2024_112287 crossref_primary_10_1007_s11571_024_10203_z |
Cites_doi | 10.1109/SMC.2018.00595 10.1016/s0166-4115(08)62386-9 10.1145/2858036.2858388 10.1109/ICIEV.2016.7759987 10.1109/taffc.2021.3059688 10.1016/j.neuroimage.2010.02.052 10.1145/2414536.2414609 10.1016/j.jneumeth.2003.10.009 10.1016/j.neuroimage.2017.11.062 10.1016/j.compchemeng.2020.106726 10.1007/s10548-015-0425-7 10.1167/13.3.17 10.1109/EMBC.2015.7320063 10.1073/pnas.1817207116 10.1109/ACCESS.2018.2842082 10.3389/fnhum.2022.901387 10.1006/nimg.2002.1070 10.1109/TNSRE.2018.2884641 10.1186/1471-2105-7-91 10.3389/fnhum.2016.00223 10.1109/SMC.2015.540 10.3389/fnhum.2016.00539 10.1016/j.neuroimage.2015.08.023 10.3389/fnhum.2017.00286 10.1109/TNSRE.2022.3156546 10.23947/2334-8496-2015-3-1-35-41 10.1109/JBHI.2021.3085131 10.1371/journal.pone.0114163 10.1088/1741-2552/abb9bc 10.1109/SMC.2018.00735 10.1109/TIM.2020.3019849 10.1080/14639220210123806 10.1097/SIH.0000000000000097 10.1016/j.procs.2016.04.068 10.1080/001401398186847 10.3389/fninf.2017.00008 10.1016/j.neuroimage.2011.07.091 10.1109/THMS.2020.3038339 10.3389/fnins.2017.00325 10.3390/s22197623 10.1109/NORSIG.2006.275210 10.1109/TAMD.2015.2441960 10.1049/cit2.12019 10.1177/1541931214581048 10.3389/fnhum.2019.00270 10.1016/j.neuroimage.2020.117393 10.3389/fnins.2014.00322 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 7TB 8FD FR3 JQ2 L7M L~C L~D |
DOI | 10.1109/THMS.2023.3235003 |
DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998-Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Technology Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE/IET Electronic Library url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2168-2305 |
EndPage | 366 |
ExternalDocumentID | 10_1109_THMS_2023_3235003 10021828 |
Genre | orig-research |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 62006239; 61722313 funderid: 10.13039/501100001809 – fundername: Defense Industrial Technology Development Program grantid: JCKY2020550B003 – fundername: National Natural Science Foundation of China; Joint Funds of the National Natural Science Foundation of China grantid: U19A2083 funderid: 10.13039/501100001809 – fundername: National Key R&D Program of China grantid: 2022ZD0208903 |
GroupedDBID | 0R~ 4.4 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACIWK AENEX AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD HZ~ IFIPE IPLJI JAVBF M43 O9- OCL PQQKQ RIA RIE RNS AAYXX CITATION RIG 7SC 7SP 7TB 8FD FR3 JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c294t-6e7dee749a17271531eec3798ff6fb177499af198701062b1b7041a8a0add23c3 |
IEDL.DBID | RIE |
ISSN | 2168-2291 |
IngestDate | Mon Jun 30 04:04:49 EDT 2025 Thu Apr 24 22:56:25 EDT 2025 Tue Jul 01 03:00:59 EDT 2025 Wed Aug 27 02:14:20 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c294t-6e7dee749a17271531eec3798ff6fb177499af198701062b1b7041a8a0add23c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-6191-3039 0000-0002-8967-0427 0000-0002-0515-256X 0000-0001-7357-0053 0000-0002-4671-723X |
PQID | 2787705575 |
PQPubID | 85416 |
PageCount | 10 |
ParticipantIDs | proquest_journals_2787705575 crossref_primary_10_1109_THMS_2023_3235003 ieee_primary_10021828 crossref_citationtrail_10_1109_THMS_2023_3235003 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-April 2023-4-00 20230401 |
PublicationDateYYYYMMDD | 2023-04-01 |
PublicationDate_xml | – month: 04 year: 2023 text: 2023-April |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on human-machine systems |
PublicationTitleAbbrev | THMS |
PublicationYear | 2023 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref35 ref12 ref34 ref15 ref37 ref14 ref36 ref31 ref30 ref11 ref33 ref10 ref32 ref2 ref1 ref17 ref39 ref16 ref38 ref19 ref18 ref24 ref46 ref23 ref45 ref26 ref25 ref47 ref20 ref42 ref41 ref22 ref44 ref21 ref43 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 |
References_xml | – ident: ref27 doi: 10.1109/SMC.2018.00595 – ident: ref29 doi: 10.1016/s0166-4115(08)62386-9 – ident: ref15 doi: 10.1145/2858036.2858388 – ident: ref1 doi: 10.1109/ICIEV.2016.7759987 – ident: ref17 doi: 10.1109/taffc.2021.3059688 – ident: ref38 doi: 10.1016/j.neuroimage.2010.02.052 – ident: ref28 doi: 10.1145/2414536.2414609 – ident: ref30 doi: 10.1016/j.jneumeth.2003.10.009 – ident: ref39 doi: 10.1016/j.neuroimage.2017.11.062 – ident: ref6 doi: 10.1016/j.compchemeng.2020.106726 – ident: ref23 doi: 10.1007/s10548-015-0425-7 – ident: ref26 doi: 10.1167/13.3.17 – ident: ref13 doi: 10.1109/EMBC.2015.7320063 – ident: ref18 doi: 10.1073/pnas.1817207116 – ident: ref31 doi: 10.1109/ACCESS.2018.2842082 – ident: ref45 doi: 10.3389/fnhum.2022.901387 – ident: ref36 doi: 10.1006/nimg.2002.1070 – ident: ref20 doi: 10.1109/TNSRE.2018.2884641 – ident: ref35 doi: 10.1186/1471-2105-7-91 – ident: ref19 doi: 10.3389/fnhum.2016.00223 – ident: ref12 doi: 10.1109/SMC.2015.540 – ident: ref14 doi: 10.3389/fnhum.2016.00539 – ident: ref40 doi: 10.1016/j.neuroimage.2015.08.023 – ident: ref16 doi: 10.3389/fnhum.2017.00286 – ident: ref11 doi: 10.1109/TNSRE.2022.3156546 – ident: ref24 doi: 10.23947/2334-8496-2015-3-1-35-41 – ident: ref9 doi: 10.1109/JBHI.2021.3085131 – ident: ref34 doi: 10.1371/journal.pone.0114163 – ident: ref21 doi: 10.1088/1741-2552/abb9bc – ident: ref7 doi: 10.1109/SMC.2018.00735 – ident: ref10 doi: 10.1109/TIM.2020.3019849 – ident: ref2 doi: 10.1080/14639220210123806 – ident: ref3 doi: 10.1097/SIH.0000000000000097 – ident: ref8 doi: 10.1016/j.procs.2016.04.068 – ident: ref42 doi: 10.1080/001401398186847 – ident: ref33 doi: 10.3389/fninf.2017.00008 – ident: ref41 doi: 10.1016/j.neuroimage.2011.07.091 – ident: ref22 doi: 10.1109/THMS.2020.3038339 – ident: ref25 doi: 10.3389/fnins.2017.00325 – ident: ref47 doi: 10.3390/s22197623 – ident: ref32 doi: 10.1109/NORSIG.2006.275210 – ident: ref44 doi: 10.1109/TAMD.2015.2441960 – ident: ref46 doi: 10.1049/cit2.12019 – ident: ref5 doi: 10.1177/1541931214581048 – ident: ref43 doi: 10.3389/fnhum.2019.00270 – ident: ref37 doi: 10.1016/j.neuroimage.2020.117393 – ident: ref4 doi: 10.3389/fnins.2014.00322 |
SSID | ssj0000825558 |
Score | 2.5825825 |
Snippet | Cognitive load prediction is one of the most important issues in the nascent field of neuroergonomics, and it has significant value in real-world applications.... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 357 |
SubjectTerms | Classification Cognitive load Cognitive tasks Electroencephalography electroencephalography (EEG) Feature extraction functional connectivity Games Indexes Man-machine systems Memory tasks microstate Multilevel power spectral density (PSD) Spectral signatures Task analysis Telematics Topology |
Title | Fusion of Spatial, Temporal, and Spectral EEG Signatures Improves Multilevel Cognitive Load Prediction |
URI | https://ieeexplore.ieee.org/document/10021828 https://www.proquest.com/docview/2787705575 |
Volume | 53 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFA5uJz34c-J0Sg6exHZN2q7rUcbmEB3CNtitpGki4lhlay_-9b6XtDIUxVNzaErge33Je3nv-wi5lqFCXnCIVAOmnUDyviOyMHCySIAvhDNHmBq2z0lvPA8eFuGialY3vTBKKVN8plwcmrv8LJclpsq6zBKO9xukAZGbbdb6SqhgrBMaPU7OeoA-j1l1i8m8uDsbP01dlAp3fe6HXq2RVe1DRljlhzc2W8zogEzqxdnKkje3LFJXfnzjbfz36g_JfnXYpHfWOo7Ijlodk70tCsITokcl5storimqE4M13tKZpauCkVhlFBXqMR1Ch8N7On19sVSgG2rTETAwPbxLLD6ig7oYiT7mIqPPa7wGQuhbZD4azgZjp9JecCSPg8LpqShTKgpigScccItMKelHcV_rnkbKKoiUhMaMBQaVPGVpBGiLvvDAYXJf-qekucpX6oxQCVgJKbxYKx14mReDMfCMcyYiH56sTbwaiURWxOSoj7FMTIDixQmClyB4SQVem9x8TXm3rBx_vdxCMLZetDi0SafGO6l-3E3CwYEhwVAUnv8y7YLs4tdt9U6HNIt1qS7hYFKkV8YgPwEcntyi |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED7xGICBN6I8PTAhksZO0jQjQi0F2gqJInWLHMdGiKpF0C78eu7spEIgEFM8xIql73L2ne--D-BMxZp4wTFSjbjxIiWaniziyCsSib4Qzxxxbtk--43OY3Q7jIdls7rthdFa2-Iz7dPQ3uUXEzWjVFmdO8Lx5iIs48Yfc9euNU-pULQTW0VOwRuIv0h5eY_Jg7Q-6PQefBIL90MRxkGlklXuRFZa5Yc_tptMewP61fJcbcmLP5vmvvr4xtz47_Vvwnp53GSXzj62YEGPt2HtCwnhDpj2jDJmbGIY6ROjPV6wgSOswpEcF4w06ikhwlqta_bw_OTIQN-ZS0jgwHbxjqj8iF1V5UisO5EFu3-jiyACfxce263BVccr1Rc8JdJo6jV0UmidRKmkMw46Rq61CpO0aUzDEGkVxkrSUM6CwkqR8zxBvGVTBugyRajCPVgaT8Z6H5jCOFsqGaRGmygoghTNQRRCcJmE-OQ1CCokMlVSk5NCxiizIUqQZgReRuBlJXg1OJ9PeXW8HH-9vEtgfHnR4VCDowrvrPx13zOBLowohpL44Jdpp7DSGfS6Wfemf3cIq_QlV8tzBEvTt5k-xmPKND-xxvkJyTzf6w |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fusion+of+Spatial%2C+Temporal%2C+and+Spectral+EEG+Signatures+Improves+Multilevel+Cognitive+Load+Prediction&rft.jtitle=IEEE+transactions+on+human-machine+systems&rft.au=Liu%2C+Yingxin&rft.au=Yu%2C+Yang&rft.au=Ye%2C+Zeqi&rft.au=Li%2C+Ming&rft.date=2023-04-01&rft.pub=IEEE&rft.issn=2168-2291&rft.volume=53&rft.issue=2&rft.spage=357&rft.epage=366&rft_id=info:doi/10.1109%2FTHMS.2023.3235003&rft.externalDocID=10021828 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2291&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2291&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2291&client=summon |