Fusion of Spatial, Temporal, and Spectral EEG Signatures Improves Multilevel Cognitive Load Prediction

Cognitive load prediction is one of the most important issues in the nascent field of neuroergonomics, and it has significant value in real-world applications. Most of the previous studies of cognitive load prediction only utilized electroencephalography (EEG)-based spectral signatures or interchann...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on human-machine systems Vol. 53; no. 2; pp. 357 - 366
Main Authors Liu, Yingxin, Yu, Yang, Ye, Zeqi, Li, Ming, Zhang, Yifan, Zhou, Zongtan, Hu, Dewen, Zeng, Ling-Li
Format Journal Article
LanguageEnglish
Published New York IEEE 01.04.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Cognitive load prediction is one of the most important issues in the nascent field of neuroergonomics, and it has significant value in real-world applications. Most of the previous studies of cognitive load prediction only utilized electroencephalography (EEG)-based spectral signatures or interchannel connectivity, ignoring abundant temporal microstate features, which may represent the transient topologies of EEG signals. Furthermore, previous studies have mostly focused on the binary-level classification of cognitive load for single-type cognitive tasks. To date, there are few studies on the multilevel prediction of cognitive load during mixed cognitive tasks. Here, we first designed a new paradigm termed the "finding fault game," mixing multiple tasks of memory, counting, and visual search, and then developed a multidimensional analysis framework to improve cognitive load prediction using a fusion of spatial, temporal, and spectral EEG features. Specifically, EEG-based functional connectivity, microstates and power spectral densities (PSD) were calculated for three cognitive load levels. Twelve adult subjects participated in the study. The experimental results show that increased cognitive load was associated with elevated theta and degraded alpha power and significant changes in interchannel connectivity and microstates, and that fusing the three types of EEG features improved the performance of three-level cognitive load prediction, achieving the accuracies of greater than 80% in the cross-validation, real-time, and over-time prediction. The findings suggest that all three types of EEG features can serve as signatures of cognitive load and that their fusion can improve multilevel prediction.
AbstractList Cognitive load prediction is one of the most important issues in the nascent field of neuroergonomics, and it has significant value in real-world applications. Most of the previous studies of cognitive load prediction only utilized electroencephalography (EEG)-based spectral signatures or interchannel connectivity, ignoring abundant temporal microstate features, which may represent the transient topologies of EEG signals. Furthermore, previous studies have mostly focused on the binary-level classification of cognitive load for single-type cognitive tasks. To date, there are few studies on the multilevel prediction of cognitive load during mixed cognitive tasks. Here, we first designed a new paradigm termed the "finding fault game," mixing multiple tasks of memory, counting, and visual search, and then developed a multidimensional analysis framework to improve cognitive load prediction using a fusion of spatial, temporal, and spectral EEG features. Specifically, EEG-based functional connectivity, microstates and power spectral densities (PSD) were calculated for three cognitive load levels. Twelve adult subjects participated in the study. The experimental results show that increased cognitive load was associated with elevated theta and degraded alpha power and significant changes in interchannel connectivity and microstates, and that fusing the three types of EEG features improved the performance of three-level cognitive load prediction, achieving the accuracies of greater than 80% in the cross-validation, real-time, and over-time prediction. The findings suggest that all three types of EEG features can serve as signatures of cognitive load and that their fusion can improve multilevel prediction.
Author Liu, Yingxin
Yu, Yang
Li, Ming
Ye, Zeqi
Zhang, Yifan
Zeng, Ling-Li
Zhou, Zongtan
Hu, Dewen
Author_xml – sequence: 1
  givenname: Yingxin
  orcidid: 0000-0001-6191-3039
  surname: Liu
  fullname: Liu, Yingxin
  email: 2209449676@qq.com
  organization: College of Intelligence Science and Technology, National University of Defense Technology, Changsha, China
– sequence: 2
  givenname: Yang
  orcidid: 0000-0002-8967-0427
  surname: Yu
  fullname: Yu, Yang
  email: yuyangnudt@hotmail.com
  organization: College of Intelligence Science and Technology, National University of Defense Technology, Changsha, China
– sequence: 3
  givenname: Zeqi
  surname: Ye
  fullname: Ye, Zeqi
  email: 928250476@qq.com
  organization: College of Intelligence Science and Technology, National University of Defense Technology, Changsha, China
– sequence: 4
  givenname: Ming
  surname: Li
  fullname: Li, Ming
  email: liming78@nudt.edu.cn
  organization: College of Intelligence Science and Technology, National University of Defense Technology, Changsha, China
– sequence: 5
  givenname: Yifan
  orcidid: 0000-0002-4671-723X
  surname: Zhang
  fullname: Zhang, Yifan
  email: ffan_zhang@126.com
  organization: College of Intelligence Science and Technology, National University of Defense Technology, Changsha, China
– sequence: 6
  givenname: Zongtan
  surname: Zhou
  fullname: Zhou, Zongtan
  email: narcz@163.com
  organization: College of Intelligence Science and Technology, National University of Defense Technology, Changsha, China
– sequence: 7
  givenname: Dewen
  orcidid: 0000-0001-7357-0053
  surname: Hu
  fullname: Hu, Dewen
  email: dwhu@nudt.edu.cn
  organization: College of Intelligence Science and Technology, National University of Defense Technology, Changsha, China
– sequence: 8
  givenname: Ling-Li
  orcidid: 0000-0002-0515-256X
  surname: Zeng
  fullname: Zeng, Ling-Li
  email: zengphd@nudt.edu.cn
  organization: College of Intelligence Science and Technology, National University of Defense Technology, Changsha, China
BookMark eNp9UE1LAzEUDKJgrf0BgoeAV7fmo9lkj1L6BS0Krecl3X1bUrabmmQL_nuztIJ48F0yL29m8jJ36LqxDSD0QMmQUpK9bOar9ZARxoeccUEIv0I9RlOVME7E9Q9mGb1FA-_3JJZiQgjVQ9W09cY22FZ4fdTB6PoZb-BwtK5DuinjNRQhdngymeG12TU6tA48XhyOzp4iWLV1MDWcoMZju2tMMCfAS6tL_O6gNEWI_vfoptK1h8Hl7KOP6WQznifLt9li_LpMCpaNQpKCLAHkKNNUMkkFpwAFl5mqqrTaUhknma5opiShJGVbupVkRLXSRJcl4wXvo6ezb9ztswUf8r1tXROfzJlUUhIhpIgseWYVznrvoMoLE3S3Z_yoqXNK8i7XvMs173LNL7lGJf2jPDpz0O7rX83jWWMA4BefMKqY4t_clITQ
CODEN ITHSA6
CitedBy_id crossref_primary_10_1088_1741_2552_ad9cc0
crossref_primary_10_3390_brainsci14020149
crossref_primary_10_1016_j_eswa_2024_126028
crossref_primary_10_1080_00140139_2024_2380340
crossref_primary_10_31083_j_jin2301018
crossref_primary_10_1016_j_aei_2024_103065
crossref_primary_10_1109_TNSRE_2025_3530154
crossref_primary_10_1017_aer_2024_103
crossref_primary_10_3390_biomimetics9090562
crossref_primary_10_3390_electronics12051186
crossref_primary_10_1109_JSEN_2024_3444274
crossref_primary_10_1109_TII_2024_3366996
crossref_primary_10_1186_s40779_025_00598_z
crossref_primary_10_1109_ACCESS_2024_3360328
crossref_primary_10_1109_TNSRE_2023_3336897
crossref_primary_10_1016_j_tsc_2024_101643
crossref_primary_10_1016_j_trf_2025_02_025
crossref_primary_10_3389_fncom_2023_1263710
crossref_primary_10_1152_jn_00029_2024
crossref_primary_10_1016_j_knosys_2024_112287
crossref_primary_10_1007_s11571_024_10203_z
Cites_doi 10.1109/SMC.2018.00595
10.1016/s0166-4115(08)62386-9
10.1145/2858036.2858388
10.1109/ICIEV.2016.7759987
10.1109/taffc.2021.3059688
10.1016/j.neuroimage.2010.02.052
10.1145/2414536.2414609
10.1016/j.jneumeth.2003.10.009
10.1016/j.neuroimage.2017.11.062
10.1016/j.compchemeng.2020.106726
10.1007/s10548-015-0425-7
10.1167/13.3.17
10.1109/EMBC.2015.7320063
10.1073/pnas.1817207116
10.1109/ACCESS.2018.2842082
10.3389/fnhum.2022.901387
10.1006/nimg.2002.1070
10.1109/TNSRE.2018.2884641
10.1186/1471-2105-7-91
10.3389/fnhum.2016.00223
10.1109/SMC.2015.540
10.3389/fnhum.2016.00539
10.1016/j.neuroimage.2015.08.023
10.3389/fnhum.2017.00286
10.1109/TNSRE.2022.3156546
10.23947/2334-8496-2015-3-1-35-41
10.1109/JBHI.2021.3085131
10.1371/journal.pone.0114163
10.1088/1741-2552/abb9bc
10.1109/SMC.2018.00735
10.1109/TIM.2020.3019849
10.1080/14639220210123806
10.1097/SIH.0000000000000097
10.1016/j.procs.2016.04.068
10.1080/001401398186847
10.3389/fninf.2017.00008
10.1016/j.neuroimage.2011.07.091
10.1109/THMS.2020.3038339
10.3389/fnins.2017.00325
10.3390/s22197623
10.1109/NORSIG.2006.275210
10.1109/TAMD.2015.2441960
10.1049/cit2.12019
10.1177/1541931214581048
10.3389/fnhum.2019.00270
10.1016/j.neuroimage.2020.117393
10.3389/fnins.2014.00322
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
7TB
8FD
FR3
JQ2
L7M
L~C
L~D
DOI 10.1109/THMS.2023.3235003
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998-Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2168-2305
EndPage 366
ExternalDocumentID 10_1109_THMS_2023_3235003
10021828
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 62006239; 61722313
  funderid: 10.13039/501100001809
– fundername: Defense Industrial Technology Development Program
  grantid: JCKY2020550B003
– fundername: National Natural Science Foundation of China; Joint Funds of the National Natural Science Foundation of China
  grantid: U19A2083
  funderid: 10.13039/501100001809
– fundername: National Key R&D Program of China
  grantid: 2022ZD0208903
GroupedDBID 0R~
4.4
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
AENEX
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
HZ~
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
RIG
7SC
7SP
7TB
8FD
FR3
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c294t-6e7dee749a17271531eec3798ff6fb177499af198701062b1b7041a8a0add23c3
IEDL.DBID RIE
ISSN 2168-2291
IngestDate Mon Jun 30 04:04:49 EDT 2025
Thu Apr 24 22:56:25 EDT 2025
Tue Jul 01 03:00:59 EDT 2025
Wed Aug 27 02:14:20 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c294t-6e7dee749a17271531eec3798ff6fb177499af198701062b1b7041a8a0add23c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-6191-3039
0000-0002-8967-0427
0000-0002-0515-256X
0000-0001-7357-0053
0000-0002-4671-723X
PQID 2787705575
PQPubID 85416
PageCount 10
ParticipantIDs proquest_journals_2787705575
crossref_primary_10_1109_THMS_2023_3235003
ieee_primary_10021828
crossref_citationtrail_10_1109_THMS_2023_3235003
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-April
2023-4-00
20230401
PublicationDateYYYYMMDD 2023-04-01
PublicationDate_xml – month: 04
  year: 2023
  text: 2023-April
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on human-machine systems
PublicationTitleAbbrev THMS
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
ref12
ref34
ref15
ref37
ref14
ref36
ref31
ref30
ref11
ref33
ref10
ref32
ref2
ref1
ref17
ref39
ref16
ref38
ref19
ref18
ref24
ref46
ref23
ref45
ref26
ref25
ref47
ref20
ref42
ref41
ref22
ref44
ref21
ref43
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
References_xml – ident: ref27
  doi: 10.1109/SMC.2018.00595
– ident: ref29
  doi: 10.1016/s0166-4115(08)62386-9
– ident: ref15
  doi: 10.1145/2858036.2858388
– ident: ref1
  doi: 10.1109/ICIEV.2016.7759987
– ident: ref17
  doi: 10.1109/taffc.2021.3059688
– ident: ref38
  doi: 10.1016/j.neuroimage.2010.02.052
– ident: ref28
  doi: 10.1145/2414536.2414609
– ident: ref30
  doi: 10.1016/j.jneumeth.2003.10.009
– ident: ref39
  doi: 10.1016/j.neuroimage.2017.11.062
– ident: ref6
  doi: 10.1016/j.compchemeng.2020.106726
– ident: ref23
  doi: 10.1007/s10548-015-0425-7
– ident: ref26
  doi: 10.1167/13.3.17
– ident: ref13
  doi: 10.1109/EMBC.2015.7320063
– ident: ref18
  doi: 10.1073/pnas.1817207116
– ident: ref31
  doi: 10.1109/ACCESS.2018.2842082
– ident: ref45
  doi: 10.3389/fnhum.2022.901387
– ident: ref36
  doi: 10.1006/nimg.2002.1070
– ident: ref20
  doi: 10.1109/TNSRE.2018.2884641
– ident: ref35
  doi: 10.1186/1471-2105-7-91
– ident: ref19
  doi: 10.3389/fnhum.2016.00223
– ident: ref12
  doi: 10.1109/SMC.2015.540
– ident: ref14
  doi: 10.3389/fnhum.2016.00539
– ident: ref40
  doi: 10.1016/j.neuroimage.2015.08.023
– ident: ref16
  doi: 10.3389/fnhum.2017.00286
– ident: ref11
  doi: 10.1109/TNSRE.2022.3156546
– ident: ref24
  doi: 10.23947/2334-8496-2015-3-1-35-41
– ident: ref9
  doi: 10.1109/JBHI.2021.3085131
– ident: ref34
  doi: 10.1371/journal.pone.0114163
– ident: ref21
  doi: 10.1088/1741-2552/abb9bc
– ident: ref7
  doi: 10.1109/SMC.2018.00735
– ident: ref10
  doi: 10.1109/TIM.2020.3019849
– ident: ref2
  doi: 10.1080/14639220210123806
– ident: ref3
  doi: 10.1097/SIH.0000000000000097
– ident: ref8
  doi: 10.1016/j.procs.2016.04.068
– ident: ref42
  doi: 10.1080/001401398186847
– ident: ref33
  doi: 10.3389/fninf.2017.00008
– ident: ref41
  doi: 10.1016/j.neuroimage.2011.07.091
– ident: ref22
  doi: 10.1109/THMS.2020.3038339
– ident: ref25
  doi: 10.3389/fnins.2017.00325
– ident: ref47
  doi: 10.3390/s22197623
– ident: ref32
  doi: 10.1109/NORSIG.2006.275210
– ident: ref44
  doi: 10.1109/TAMD.2015.2441960
– ident: ref46
  doi: 10.1049/cit2.12019
– ident: ref5
  doi: 10.1177/1541931214581048
– ident: ref43
  doi: 10.3389/fnhum.2019.00270
– ident: ref37
  doi: 10.1016/j.neuroimage.2020.117393
– ident: ref4
  doi: 10.3389/fnins.2014.00322
SSID ssj0000825558
Score 2.5825825
Snippet Cognitive load prediction is one of the most important issues in the nascent field of neuroergonomics, and it has significant value in real-world applications....
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 357
SubjectTerms Classification
Cognitive load
Cognitive tasks
Electroencephalography
electroencephalography (EEG)
Feature extraction
functional connectivity
Games
Indexes
Man-machine systems
Memory tasks
microstate
Multilevel
power spectral density (PSD)
Spectral signatures
Task analysis
Telematics
Topology
Title Fusion of Spatial, Temporal, and Spectral EEG Signatures Improves Multilevel Cognitive Load Prediction
URI https://ieeexplore.ieee.org/document/10021828
https://www.proquest.com/docview/2787705575
Volume 53
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFA5uJz34c-J0Sg6exHZN2q7rUcbmEB3CNtitpGki4lhlay_-9b6XtDIUxVNzaErge33Je3nv-wi5lqFCXnCIVAOmnUDyviOyMHCySIAvhDNHmBq2z0lvPA8eFuGialY3vTBKKVN8plwcmrv8LJclpsq6zBKO9xukAZGbbdb6SqhgrBMaPU7OeoA-j1l1i8m8uDsbP01dlAp3fe6HXq2RVe1DRljlhzc2W8zogEzqxdnKkje3LFJXfnzjbfz36g_JfnXYpHfWOo7Ijlodk70tCsITokcl5storimqE4M13tKZpauCkVhlFBXqMR1Ch8N7On19sVSgG2rTETAwPbxLLD6ig7oYiT7mIqPPa7wGQuhbZD4azgZjp9JecCSPg8LpqShTKgpigScccItMKelHcV_rnkbKKoiUhMaMBQaVPGVpBGiLvvDAYXJf-qekucpX6oxQCVgJKbxYKx14mReDMfCMcyYiH56sTbwaiURWxOSoj7FMTIDixQmClyB4SQVem9x8TXm3rBx_vdxCMLZetDi0SafGO6l-3E3CwYEhwVAUnv8y7YLs4tdt9U6HNIt1qS7hYFKkV8YgPwEcntyi
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED7xGICBN6I8PTAhksZO0jQjQi0F2gqJInWLHMdGiKpF0C78eu7spEIgEFM8xIql73L2ne--D-BMxZp4wTFSjbjxIiWaniziyCsSib4Qzxxxbtk--43OY3Q7jIdls7rthdFa2-Iz7dPQ3uUXEzWjVFmdO8Lx5iIs48Yfc9euNU-pULQTW0VOwRuIv0h5eY_Jg7Q-6PQefBIL90MRxkGlklXuRFZa5Yc_tptMewP61fJcbcmLP5vmvvr4xtz47_Vvwnp53GSXzj62YEGPt2HtCwnhDpj2jDJmbGIY6ROjPV6wgSOswpEcF4w06ikhwlqta_bw_OTIQN-ZS0jgwHbxjqj8iF1V5UisO5EFu3-jiyACfxce263BVccr1Rc8JdJo6jV0UmidRKmkMw46Rq61CpO0aUzDEGkVxkrSUM6CwkqR8zxBvGVTBugyRajCPVgaT8Z6H5jCOFsqGaRGmygoghTNQRRCcJmE-OQ1CCokMlVSk5NCxiizIUqQZgReRuBlJXg1OJ9PeXW8HH-9vEtgfHnR4VCDowrvrPx13zOBLowohpL44Jdpp7DSGfS6Wfemf3cIq_QlV8tzBEvTt5k-xmPKND-xxvkJyTzf6w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fusion+of+Spatial%2C+Temporal%2C+and+Spectral+EEG+Signatures+Improves+Multilevel+Cognitive+Load+Prediction&rft.jtitle=IEEE+transactions+on+human-machine+systems&rft.au=Liu%2C+Yingxin&rft.au=Yu%2C+Yang&rft.au=Ye%2C+Zeqi&rft.au=Li%2C+Ming&rft.date=2023-04-01&rft.pub=IEEE&rft.issn=2168-2291&rft.volume=53&rft.issue=2&rft.spage=357&rft.epage=366&rft_id=info:doi/10.1109%2FTHMS.2023.3235003&rft.externalDocID=10021828
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2291&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2291&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2291&client=summon