Multisource Remote Sensing Data Visualization Using Machine Learning
With the availability of several remotely sensed data sources, the problem of efficiently visualizing the information from multisource data for improved Earth observation becomes an intriguing and challenging subject. Multispectral (MS) and hyperspectral (HS) images encompass a wealth of spectral da...
Saved in:
Published in | IEEE transactions on geoscience and remote sensing Vol. 62; pp. 1 - 12 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | With the availability of several remotely sensed data sources, the problem of efficiently visualizing the information from multisource data for improved Earth observation becomes an intriguing and challenging subject. Multispectral (MS) and hyperspectral (HS) images encompass a wealth of spectral data that standard RGB monitors cannot replicate directly. Thus, it is important to elaborate methods for accurately representing this information on conventional displays. These images, with tens to hundreds of spectral bands, contain relevant data about specific wavelengths that RGB channels cannot capture. Traditional visualization methods often use only a limited amount of the available spectral information, resulting in a significant loss of information. However, recent advances in artificial intelligence models have provided superior visualization techniques. These artificial Intelligence (AI)-based methods allow for more realistic and visually appealing representations, which are important for the information interpretation and direct identification of areas of interest. The main goal of our study is to process aggregated datasets from various sources using a fully connected neural network (FCNN), while considering visualization as a secondary objective. Given that our data come from a variety of sources, a significant emphasis in our study was placed on the preprocessing stage. In order to achieve a consistent visualization across datasets from different sources, proper preprocessing by standardization or normalization procedures is essential. Our research comprises numerous experiments to demonstrate the effectiveness of the proposed technique for image visualization. |
---|---|
AbstractList | With the availability of several remotely sensed data sources, the problem of efficiently visualizing the information from multisource data for improved Earth observation becomes an intriguing and challenging subject. Multispectral (MS) and hyperspectral (HS) images encompass a wealth of spectral data that standard RGB monitors cannot replicate directly. Thus, it is important to elaborate methods for accurately representing this information on conventional displays. These images, with tens to hundreds of spectral bands, contain relevant data about specific wavelengths that RGB channels cannot capture. Traditional visualization methods often use only a limited amount of the available spectral information, resulting in a significant loss of information. However, recent advances in artificial intelligence models have provided superior visualization techniques. These artificial Intelligence (AI)-based methods allow for more realistic and visually appealing representations, which are important for the information interpretation and direct identification of areas of interest. The main goal of our study is to process aggregated datasets from various sources using a fully connected neural network (FCNN), while considering visualization as a secondary objective. Given that our data come from a variety of sources, a significant emphasis in our study was placed on the preprocessing stage. In order to achieve a consistent visualization across datasets from different sources, proper preprocessing by standardization or normalization procedures is essential. Our research comprises numerous experiments to demonstrate the effectiveness of the proposed technique for image visualization. |
Author | Majercsik, Luciana Baicoianu, Alexandra Plajer, Ioana Cristina Ivanovici, Mihai |
Author_xml | – sequence: 1 givenname: Ioana Cristina orcidid: 0000-0002-2666-8215 surname: Plajer fullname: Plajer, Ioana Cristina email: ioana.plajer@unitbv.ro organization: Department of Mathematics and Computer Science, Faculty of Mathematics and Computer Science, Transilvania University of Bra¸sov, Bra¸sov, Romania – sequence: 2 givenname: Alexandra surname: Baicoianu fullname: Baicoianu, Alexandra email: a.baicoianu@unitbv.ro organization: Department of Mathematics and Computer Science, Faculty of Mathematics and Computer Science, Transilvania University of Bra¸sov, Bra¸sov, Romania – sequence: 3 givenname: Luciana surname: Majercsik fullname: Majercsik, Luciana email: luciana.carabaneanu@unitbv.ro organization: Department of Mathematics and Computer Science, Faculty of Mathematics and Computer Science, Transilvania University of Bra¸sov, Bra¸sov, Romania – sequence: 4 givenname: Mihai orcidid: 0000-0002-0803-2918 surname: Ivanovici fullname: Ivanovici, Mihai email: mihai.ivanovici@unitbv.ro organization: Department of Electronics and Computers, Faculty of Electrical Engineering and Computer Science, Transilvania University of Bra¸sov, Bra¸sov, Romania |
BookMark | eNp9UMtOwzAQtBBItIUPQOIQiXOK7fgRH1ELBakVUh9cLcfZgKs2KbZzgK8nfRwQB04rzc7szE4fnddNDQjdEDwkBKv75WS-GFJM2TDLJBWZOkM9wnmeYsHYOephokRKc0UvUT-ENcaEcSJ7aDxrN9GFpvUWkjlsmwjJAurg6vdkbKJJ3lxozcZ9m-iaOlkdFjNjP1wNyRSMrzvgCl1UZhPg-jQHaPX0uBw9p9PXycvoYZpaqlhMhbSysBUBktkKM4UFJ2UpCCkKVuJKguwgsJTyCltc5bmEwmDOOCtzw0rIBujueHfnm88WQtTrLnjdWWqquMhzkTPVsciRZX0TgodK77zbGv-lCdb7svS-LL0vS5_K6jTyj8a6eHg5euM2_ypvj0oHAL-cGO_SiOwHiS15cg |
CODEN | IGRSD2 |
CitedBy_id | crossref_primary_10_1109_ACCESS_2024_3496723 crossref_primary_10_1038_s41598_025_94882_6 |
Cites_doi | 10.21449/ijate.479404 10.1016/j.jag.2012.09.010 10.1109/TIP.2010.2059032 10.1109/TIP.2003.819861 10.1109/TGRS.2017.2710145 10.1109/IGARSS.2015.7325961 10.1364/AO.54.000D15 10.1109/ICIF.2007.4408068 10.1016/j.rse.2019.111402 10.1109/TGRS.2022.3163173 10.1109/TGRS.2023.3249748 10.1109/JPROC.2017.2675998 10.1109/tgrs.2020.3040221 10.1109/ICPR.2018.8546018 10.1080/2150704X.2020.1717014 10.1155/2022/5880959 10.1109/TGRS.2023.3246565 10.1109/IGARSS.2019.8900359 10.1007/978-981-16-8193-6 10.1109/TGRS.2005.856104 10.1109/TGRS.2023.3284653 10.1109/IGARSS39084.2020.9323397 10.1109/ISSCS58449.2023.10190908 10.3390/s21041182 10.1016/j.inffus.2017.05.001 10.3390/rs12152479 10.1109/TGRS.2019.2949427 10.1109/TIP.2010.2046811 10.1109/TIP.2020.3011283 10.1109/JSTARS.2013.2272654 10.1109/TGRS.2018.2815588 10.3390/rs9111110 10.1016/j.jag.2018.12.008 10.1109/TGRS.2011.2158319 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
DBID | 97E ESBDL RIA RIE AAYXX CITATION 7UA 8FD C1K F1W FR3 H8D H96 KR7 L.G L7M |
DOI | 10.1109/TGRS.2024.3372639 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) - NZ CrossRef Water Resources Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Water Resources Abstracts Environmental Sciences and Pollution Management |
DatabaseTitleList | Aerospace Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE/IET Electronic Library url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 1558-0644 |
EndPage | 12 |
ExternalDocumentID | 10_1109_TGRS_2024_3372639 10458686 |
Genre | orig-research |
GrantInformation_xml | – fundername: European Union’s Horizon Europe Research and Innovation Program grantid: 101079136 funderid: 10.13039/100018706 – fundername: Romanian Excellence Center on Artificial Intelligence on Earth Observation Data for Agriculture (AI4AGRI) Project titled “Romanian Excellence Center on Artificial Intelligence on Earth Observation Data for Agriculture” |
GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT AENEX AETIX AFRAH AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD ESBDL F5P HZ~ H~9 IBMZZ ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS RXW TAE TN5 VH1 Y6R AAYOK AAYXX CITATION RIG 7UA 8FD C1K F1W FR3 H8D H96 KR7 L.G L7M |
ID | FETCH-LOGICAL-c294t-67c7bcf1e13cf0490651dd611bb4d0f7e7906ec225f0c0f887eba05454d8a4de3 |
IEDL.DBID | RIE |
ISSN | 0196-2892 |
IngestDate | Mon Jun 30 10:00:43 EDT 2025 Tue Jul 01 02:15:20 EDT 2025 Thu Apr 24 23:01:21 EDT 2025 Wed Aug 27 02:08:56 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | https://creativecommons.org/licenses/by-nc-nd/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c294t-67c7bcf1e13cf0490651dd611bb4d0f7e7906ec225f0c0f887eba05454d8a4de3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-0803-2918 0000-0002-2666-8215 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/10458686 |
PQID | 2956886849 |
PQPubID | 85465 |
PageCount | 12 |
ParticipantIDs | proquest_journals_2956886849 ieee_primary_10458686 crossref_primary_10_1109_TGRS_2024_3372639 crossref_citationtrail_10_1109_TGRS_2024_3372639 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20240000 2024-00-00 20240101 |
PublicationDateYYYYMMDD | 2024-01-01 |
PublicationDate_xml | – year: 2024 text: 20240000 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on geoscience and remote sensing |
PublicationTitleAbbrev | TGRS |
PublicationYear | 2024 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref35 ref12 ref34 ref15 ref37 ref14 ref36 ref11 ref10 ref2 (ref31) 2023 ref1 ref17 ref16 Ozdemir (ref29) 2018 ref38 ref19 ref18 Jung (ref33) 2022 (ref27) 2020 Coliban (ref23) 2020; 12 ref24 ref26 ref25 Singh (ref32) 2023 ref20 Caliman (ref42) ref41 ref22 ref21 ref43 Garana (ref28) 2023 Ivanovici (ref40) Winkler (ref39) 2001 ref8 ref7 (ref30) 2023 ref9 ref4 ref3 ref6 ref5 |
References_xml | – ident: ref34 doi: 10.21449/ijate.479404 – ident: ref5 doi: 10.1016/j.jag.2012.09.010 – ident: ref43 doi: 10.1109/TIP.2010.2059032 – ident: ref38 doi: 10.1109/TIP.2003.819861 – start-page: 113 volume-title: Proc. Signal Process. Appl. Math. Electron. Commun. (SPAMEC), EURASIP, Session VI ident: ref42 article-title: Colour fractal dimension for psoriasis image analysis – ident: ref7 doi: 10.1109/TGRS.2017.2710145 – volume-title: Standard Scaler year: 2023 ident: ref30 – ident: ref19 doi: 10.1109/IGARSS.2015.7325961 – volume-title: Prisma Products Specification Document Issue 2.3 year: 2020 ident: ref27 – ident: ref26 doi: 10.1364/AO.54.000D15 – ident: ref17 doi: 10.1109/ICIF.2007.4408068 – volume-title: Feature Engineering Made Easy: Identify Unique Features From Your Dataset in Order To Build Powerful Machine Learning Systems year: 2018 ident: ref29 – ident: ref1 doi: 10.1016/j.rse.2019.111402 – ident: ref10 doi: 10.1109/TGRS.2022.3163173 – start-page: 6 volume-title: Proc. 4th CIE Expert Symp. Colour Vis. Appearance ident: ref40 article-title: Entropy versus fractal complexity for computer-generated color fractal images – ident: ref13 doi: 10.1109/TGRS.2023.3249748 – ident: ref8 doi: 10.1109/JPROC.2017.2675998 – year: 2001 ident: ref39 article-title: Vision models and quality metrics for image processing applications – ident: ref11 doi: 10.1109/tgrs.2020.3040221 – ident: ref20 doi: 10.1109/ICPR.2018.8546018 – ident: ref22 doi: 10.1080/2150704X.2020.1717014 – ident: ref9 doi: 10.1155/2022/5880959 – ident: ref12 doi: 10.1109/TGRS.2023.3246565 – ident: ref21 doi: 10.1109/IGARSS.2019.8900359 – volume-title: Hyperspectral Remote Sensing Scenes year: 2023 ident: ref28 – volume-title: Machine Learning: The Basics year: 2022 ident: ref33 doi: 10.1007/978-981-16-8193-6 – ident: ref18 doi: 10.1109/TGRS.2005.856104 – ident: ref14 doi: 10.1109/TGRS.2023.3284653 – volume-title: MinMax Scaler year: 2023 ident: ref31 – ident: ref35 doi: 10.1109/IGARSS39084.2020.9323397 – ident: ref24 doi: 10.1109/ISSCS58449.2023.10190908 – ident: ref4 doi: 10.3390/s21041182 – ident: ref6 doi: 10.1016/j.inffus.2017.05.001 – volume: 12 start-page: 2479 issue: 15 year: 2020 ident: ref23 article-title: Linear and non-linear models for remotely-sensed hyperspectral image visualization publication-title: Remote Sens. doi: 10.3390/rs12152479 – ident: ref37 doi: 10.1109/TGRS.2019.2949427 – ident: ref25 doi: 10.1109/TIP.2010.2046811 – ident: ref41 doi: 10.1109/TIP.2020.3011283 – ident: ref16 doi: 10.1109/JSTARS.2013.2272654 – ident: ref36 doi: 10.1109/TGRS.2018.2815588 – ident: ref2 doi: 10.3390/rs9111110 – ident: ref3 doi: 10.1016/j.jag.2018.12.008 – volume-title: ELU As an Activation Function in Neural Networks year: 2023 ident: ref32 – ident: ref15 doi: 10.1109/TGRS.2011.2158319 |
SSID | ssj0014517 |
Score | 2.4509664 |
Snippet | With the availability of several remotely sensed data sources, the problem of efficiently visualizing the information from multisource data for improved Earth... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1 |
SubjectTerms | Artificial intelligence Availability Data visualization Datasets Hyperspectral imaging Image color analysis Image sensors Machine learning Multisource multispectral (MS) and hyperspectral (HS) images neural network Neural networks normalization Preprocessing Remote sensing Scientific visualization Sensor phenomena and characterization Spatial resolution Spectral bands Standardization Visualization Wavelengths |
Title | Multisource Remote Sensing Data Visualization Using Machine Learning |
URI | https://ieeexplore.ieee.org/document/10458686 https://www.proquest.com/docview/2956886849 |
Volume | 62 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8QwEB5UEPTgW1xdJQdPQtekm6bNUXwi6MEX3kqTTEWUVdzuxV_vJM0ui6J4K21Swkwymdc3A7BfpNYIY3iiuavJQNEq0TliUhSaFOBCCl17P-TVtbq4l5eP2WMEqwcsDCKG5DPs-ccQy3dvduRdZXTCZVaoQs3CLFluLVhrEjKQmYjYaJWQFZHGEKbg-vDu_OaWTMFU9vr9PFW-MfjUJRS6qvwQxeF-OVuG6_HK2rSSl96oMT37-a1o47-XvgJLUdNkR-3WWIUZHKzB4lT9wTWYD_mfdrgOJwGI23ry2Q0S_5Dd-tz2wRM7qZqKPTwPPfyyBW2ykGjArkIiJrJYo_VpA-7PTu-OL5LYYCGxqZZNonKbG1sLFH1b-xCgyoRzShDzpON1jjm9QktHvuaW1ySP0FSk42XSFZV02N-EucHbALeApZWuc6dItmZGWmFI76xImlTOpNry3HWAjyle2lh93DfBeC2DFcJ16ZlUeiaVkUkdOJhMeW9Lb_w1eMMTfWpgS-8OdMd8LePpHJapx0jSV6m3f5m2Awv-762vpQtzzccId0n7aMxe2HVfuhjUbw |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB5RKlR6aIFSdVsePnCqlK3tdZz4iKCwPHYPsFTcotieIES1oG720l_fseNFq1ateosSW7Fm7PG8vhmAg1I6K6zlmeG-IQPF6MwUiFlZGlKASyVME_yQo7Ee3qjz2_w2gdUjFgYRY_IZ9sNjjOX7RzcPrjI64SovdalfwEu6-HPZwbWegwYqFwkdrTOyI2QKYgpuvkxOr67JGJSqPxgUUofW4EvXUOyr8ocwjjfMyVsYL9bWJZY89Oet7bufv5Vt_O_Fb8CbpGuyw25zbMIKTrfg9VIFwi1YixmgbvYOjiMUt_PlsyskDiK7Dtnt0zt2XLc1-3Y_CwDMDrbJYqoBG8VUTGSpSuvdNtycfJ0cDbPUYiFz0qg204UrrGsEioFrQhBQ58J7LYh9yvOmwIJeoaND33DHG5JIaGvS8nLly1p5HLyH1enjFD8Ak7VpCq9JuuZWOWFJ86xJntTeSuN44XvAFxSvXKo_HtpgfK-iHcJNFZhUBSZViUk9-Pw85akrvvGvwduB6EsDO3r3YGfB1yqdz1klA0qSvirz8S_T9uHVcDK6rC7PxhefYD38qfO87MBq-2OOu6SLtHYv7sBf_UjXuQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multisource+Remote+Sensing+Data+Visualization+Using+Machine+Learning&rft.jtitle=IEEE+transactions+on+geoscience+and+remote+sensing&rft.au=Plajer%2C+Ioana+Cristina&rft.au=B%C4%83icoianu%2C+Alexandra&rft.au=Majercsik%2C+Luciana&rft.au=Ivanovici%2C+Mihai&rft.date=2024&rft.issn=0196-2892&rft.eissn=1558-0644&rft.volume=62&rft.spage=1&rft.epage=12&rft_id=info:doi/10.1109%2FTGRS.2024.3372639&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TGRS_2024_3372639 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0196-2892&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0196-2892&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0196-2892&client=summon |