Multisource Remote Sensing Data Visualization Using Machine Learning

With the availability of several remotely sensed data sources, the problem of efficiently visualizing the information from multisource data for improved Earth observation becomes an intriguing and challenging subject. Multispectral (MS) and hyperspectral (HS) images encompass a wealth of spectral da...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on geoscience and remote sensing Vol. 62; pp. 1 - 12
Main Authors Plajer, Ioana Cristina, Baicoianu, Alexandra, Majercsik, Luciana, Ivanovici, Mihai
Format Journal Article
LanguageEnglish
Published New York IEEE 2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract With the availability of several remotely sensed data sources, the problem of efficiently visualizing the information from multisource data for improved Earth observation becomes an intriguing and challenging subject. Multispectral (MS) and hyperspectral (HS) images encompass a wealth of spectral data that standard RGB monitors cannot replicate directly. Thus, it is important to elaborate methods for accurately representing this information on conventional displays. These images, with tens to hundreds of spectral bands, contain relevant data about specific wavelengths that RGB channels cannot capture. Traditional visualization methods often use only a limited amount of the available spectral information, resulting in a significant loss of information. However, recent advances in artificial intelligence models have provided superior visualization techniques. These artificial Intelligence (AI)-based methods allow for more realistic and visually appealing representations, which are important for the information interpretation and direct identification of areas of interest. The main goal of our study is to process aggregated datasets from various sources using a fully connected neural network (FCNN), while considering visualization as a secondary objective. Given that our data come from a variety of sources, a significant emphasis in our study was placed on the preprocessing stage. In order to achieve a consistent visualization across datasets from different sources, proper preprocessing by standardization or normalization procedures is essential. Our research comprises numerous experiments to demonstrate the effectiveness of the proposed technique for image visualization.
AbstractList With the availability of several remotely sensed data sources, the problem of efficiently visualizing the information from multisource data for improved Earth observation becomes an intriguing and challenging subject. Multispectral (MS) and hyperspectral (HS) images encompass a wealth of spectral data that standard RGB monitors cannot replicate directly. Thus, it is important to elaborate methods for accurately representing this information on conventional displays. These images, with tens to hundreds of spectral bands, contain relevant data about specific wavelengths that RGB channels cannot capture. Traditional visualization methods often use only a limited amount of the available spectral information, resulting in a significant loss of information. However, recent advances in artificial intelligence models have provided superior visualization techniques. These artificial Intelligence (AI)-based methods allow for more realistic and visually appealing representations, which are important for the information interpretation and direct identification of areas of interest. The main goal of our study is to process aggregated datasets from various sources using a fully connected neural network (FCNN), while considering visualization as a secondary objective. Given that our data come from a variety of sources, a significant emphasis in our study was placed on the preprocessing stage. In order to achieve a consistent visualization across datasets from different sources, proper preprocessing by standardization or normalization procedures is essential. Our research comprises numerous experiments to demonstrate the effectiveness of the proposed technique for image visualization.
Author Majercsik, Luciana
Baicoianu, Alexandra
Plajer, Ioana Cristina
Ivanovici, Mihai
Author_xml – sequence: 1
  givenname: Ioana Cristina
  orcidid: 0000-0002-2666-8215
  surname: Plajer
  fullname: Plajer, Ioana Cristina
  email: ioana.plajer@unitbv.ro
  organization: Department of Mathematics and Computer Science, Faculty of Mathematics and Computer Science, Transilvania University of Bra¸sov, Bra¸sov, Romania
– sequence: 2
  givenname: Alexandra
  surname: Baicoianu
  fullname: Baicoianu, Alexandra
  email: a.baicoianu@unitbv.ro
  organization: Department of Mathematics and Computer Science, Faculty of Mathematics and Computer Science, Transilvania University of Bra¸sov, Bra¸sov, Romania
– sequence: 3
  givenname: Luciana
  surname: Majercsik
  fullname: Majercsik, Luciana
  email: luciana.carabaneanu@unitbv.ro
  organization: Department of Mathematics and Computer Science, Faculty of Mathematics and Computer Science, Transilvania University of Bra¸sov, Bra¸sov, Romania
– sequence: 4
  givenname: Mihai
  orcidid: 0000-0002-0803-2918
  surname: Ivanovici
  fullname: Ivanovici, Mihai
  email: mihai.ivanovici@unitbv.ro
  organization: Department of Electronics and Computers, Faculty of Electrical Engineering and Computer Science, Transilvania University of Bra¸sov, Bra¸sov, Romania
BookMark eNp9UMtOwzAQtBBItIUPQOIQiXOK7fgRH1ELBakVUh9cLcfZgKs2KbZzgK8nfRwQB04rzc7szE4fnddNDQjdEDwkBKv75WS-GFJM2TDLJBWZOkM9wnmeYsHYOephokRKc0UvUT-ENcaEcSJ7aDxrN9GFpvUWkjlsmwjJAurg6vdkbKJJ3lxozcZ9m-iaOlkdFjNjP1wNyRSMrzvgCl1UZhPg-jQHaPX0uBw9p9PXycvoYZpaqlhMhbSysBUBktkKM4UFJ2UpCCkKVuJKguwgsJTyCltc5bmEwmDOOCtzw0rIBujueHfnm88WQtTrLnjdWWqquMhzkTPVsciRZX0TgodK77zbGv-lCdb7svS-LL0vS5_K6jTyj8a6eHg5euM2_ypvj0oHAL-cGO_SiOwHiS15cg
CODEN IGRSD2
CitedBy_id crossref_primary_10_1109_ACCESS_2024_3496723
crossref_primary_10_1038_s41598_025_94882_6
Cites_doi 10.21449/ijate.479404
10.1016/j.jag.2012.09.010
10.1109/TIP.2010.2059032
10.1109/TIP.2003.819861
10.1109/TGRS.2017.2710145
10.1109/IGARSS.2015.7325961
10.1364/AO.54.000D15
10.1109/ICIF.2007.4408068
10.1016/j.rse.2019.111402
10.1109/TGRS.2022.3163173
10.1109/TGRS.2023.3249748
10.1109/JPROC.2017.2675998
10.1109/tgrs.2020.3040221
10.1109/ICPR.2018.8546018
10.1080/2150704X.2020.1717014
10.1155/2022/5880959
10.1109/TGRS.2023.3246565
10.1109/IGARSS.2019.8900359
10.1007/978-981-16-8193-6
10.1109/TGRS.2005.856104
10.1109/TGRS.2023.3284653
10.1109/IGARSS39084.2020.9323397
10.1109/ISSCS58449.2023.10190908
10.3390/s21041182
10.1016/j.inffus.2017.05.001
10.3390/rs12152479
10.1109/TGRS.2019.2949427
10.1109/TIP.2010.2046811
10.1109/TIP.2020.3011283
10.1109/JSTARS.2013.2272654
10.1109/TGRS.2018.2815588
10.3390/rs9111110
10.1016/j.jag.2018.12.008
10.1109/TGRS.2011.2158319
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
DOI 10.1109/TGRS.2024.3372639
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL) - NZ
CrossRef
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Water Resources Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList Aerospace Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1558-0644
EndPage 12
ExternalDocumentID 10_1109_TGRS_2024_3372639
10458686
Genre orig-research
GrantInformation_xml – fundername: European Union’s Horizon Europe Research and Innovation Program
  grantid: 101079136
  funderid: 10.13039/100018706
– fundername: Romanian Excellence Center on Artificial Intelligence on Earth Observation Data for Agriculture (AI4AGRI) Project titled “Romanian Excellence Center on Artificial Intelligence on Earth Observation Data for Agriculture”
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AETIX
AFRAH
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
ESBDL
F5P
HZ~
H~9
IBMZZ
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
RXW
TAE
TN5
VH1
Y6R
AAYOK
AAYXX
CITATION
RIG
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
ID FETCH-LOGICAL-c294t-67c7bcf1e13cf0490651dd611bb4d0f7e7906ec225f0c0f887eba05454d8a4de3
IEDL.DBID RIE
ISSN 0196-2892
IngestDate Mon Jun 30 10:00:43 EDT 2025
Tue Jul 01 02:15:20 EDT 2025
Thu Apr 24 23:01:21 EDT 2025
Wed Aug 27 02:08:56 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by-nc-nd/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c294t-67c7bcf1e13cf0490651dd611bb4d0f7e7906ec225f0c0f887eba05454d8a4de3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-0803-2918
0000-0002-2666-8215
OpenAccessLink https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/10458686
PQID 2956886849
PQPubID 85465
PageCount 12
ParticipantIDs proquest_journals_2956886849
ieee_primary_10458686
crossref_primary_10_1109_TGRS_2024_3372639
crossref_citationtrail_10_1109_TGRS_2024_3372639
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20240000
2024-00-00
20240101
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – year: 2024
  text: 20240000
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on geoscience and remote sensing
PublicationTitleAbbrev TGRS
PublicationYear 2024
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
ref12
ref34
ref15
ref37
ref14
ref36
ref11
ref10
ref2
(ref31) 2023
ref1
ref17
ref16
Ozdemir (ref29) 2018
ref38
ref19
ref18
Jung (ref33) 2022
(ref27) 2020
Coliban (ref23) 2020; 12
ref24
ref26
ref25
Singh (ref32) 2023
ref20
Caliman (ref42)
ref41
ref22
ref21
ref43
Garana (ref28) 2023
Ivanovici (ref40)
Winkler (ref39) 2001
ref8
ref7
(ref30) 2023
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref34
  doi: 10.21449/ijate.479404
– ident: ref5
  doi: 10.1016/j.jag.2012.09.010
– ident: ref43
  doi: 10.1109/TIP.2010.2059032
– ident: ref38
  doi: 10.1109/TIP.2003.819861
– start-page: 113
  volume-title: Proc. Signal Process. Appl. Math. Electron. Commun. (SPAMEC), EURASIP, Session VI
  ident: ref42
  article-title: Colour fractal dimension for psoriasis image analysis
– ident: ref7
  doi: 10.1109/TGRS.2017.2710145
– volume-title: Standard Scaler
  year: 2023
  ident: ref30
– ident: ref19
  doi: 10.1109/IGARSS.2015.7325961
– volume-title: Prisma Products Specification Document Issue 2.3
  year: 2020
  ident: ref27
– ident: ref26
  doi: 10.1364/AO.54.000D15
– ident: ref17
  doi: 10.1109/ICIF.2007.4408068
– volume-title: Feature Engineering Made Easy: Identify Unique Features From Your Dataset in Order To Build Powerful Machine Learning Systems
  year: 2018
  ident: ref29
– ident: ref1
  doi: 10.1016/j.rse.2019.111402
– ident: ref10
  doi: 10.1109/TGRS.2022.3163173
– start-page: 6
  volume-title: Proc. 4th CIE Expert Symp. Colour Vis. Appearance
  ident: ref40
  article-title: Entropy versus fractal complexity for computer-generated color fractal images
– ident: ref13
  doi: 10.1109/TGRS.2023.3249748
– ident: ref8
  doi: 10.1109/JPROC.2017.2675998
– year: 2001
  ident: ref39
  article-title: Vision models and quality metrics for image processing applications
– ident: ref11
  doi: 10.1109/tgrs.2020.3040221
– ident: ref20
  doi: 10.1109/ICPR.2018.8546018
– ident: ref22
  doi: 10.1080/2150704X.2020.1717014
– ident: ref9
  doi: 10.1155/2022/5880959
– ident: ref12
  doi: 10.1109/TGRS.2023.3246565
– ident: ref21
  doi: 10.1109/IGARSS.2019.8900359
– volume-title: Hyperspectral Remote Sensing Scenes
  year: 2023
  ident: ref28
– volume-title: Machine Learning: The Basics
  year: 2022
  ident: ref33
  doi: 10.1007/978-981-16-8193-6
– ident: ref18
  doi: 10.1109/TGRS.2005.856104
– ident: ref14
  doi: 10.1109/TGRS.2023.3284653
– volume-title: MinMax Scaler
  year: 2023
  ident: ref31
– ident: ref35
  doi: 10.1109/IGARSS39084.2020.9323397
– ident: ref24
  doi: 10.1109/ISSCS58449.2023.10190908
– ident: ref4
  doi: 10.3390/s21041182
– ident: ref6
  doi: 10.1016/j.inffus.2017.05.001
– volume: 12
  start-page: 2479
  issue: 15
  year: 2020
  ident: ref23
  article-title: Linear and non-linear models for remotely-sensed hyperspectral image visualization
  publication-title: Remote Sens.
  doi: 10.3390/rs12152479
– ident: ref37
  doi: 10.1109/TGRS.2019.2949427
– ident: ref25
  doi: 10.1109/TIP.2010.2046811
– ident: ref41
  doi: 10.1109/TIP.2020.3011283
– ident: ref16
  doi: 10.1109/JSTARS.2013.2272654
– ident: ref36
  doi: 10.1109/TGRS.2018.2815588
– ident: ref2
  doi: 10.3390/rs9111110
– ident: ref3
  doi: 10.1016/j.jag.2018.12.008
– volume-title: ELU As an Activation Function in Neural Networks
  year: 2023
  ident: ref32
– ident: ref15
  doi: 10.1109/TGRS.2011.2158319
SSID ssj0014517
Score 2.4509664
Snippet With the availability of several remotely sensed data sources, the problem of efficiently visualizing the information from multisource data for improved Earth...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Artificial intelligence
Availability
Data visualization
Datasets
Hyperspectral imaging
Image color analysis
Image sensors
Machine learning
Multisource
multispectral (MS) and hyperspectral (HS) images
neural network
Neural networks
normalization
Preprocessing
Remote sensing
Scientific visualization
Sensor phenomena and characterization
Spatial resolution
Spectral bands
Standardization
Visualization
Wavelengths
Title Multisource Remote Sensing Data Visualization Using Machine Learning
URI https://ieeexplore.ieee.org/document/10458686
https://www.proquest.com/docview/2956886849
Volume 62
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8QwEB5UEPTgW1xdJQdPQtekm6bNUXwi6MEX3kqTTEWUVdzuxV_vJM0ui6J4K21Swkwymdc3A7BfpNYIY3iiuavJQNEq0TliUhSaFOBCCl17P-TVtbq4l5eP2WMEqwcsDCKG5DPs-ccQy3dvduRdZXTCZVaoQs3CLFluLVhrEjKQmYjYaJWQFZHGEKbg-vDu_OaWTMFU9vr9PFW-MfjUJRS6qvwQxeF-OVuG6_HK2rSSl96oMT37-a1o47-XvgJLUdNkR-3WWIUZHKzB4lT9wTWYD_mfdrgOJwGI23ry2Q0S_5Dd-tz2wRM7qZqKPTwPPfyyBW2ykGjArkIiJrJYo_VpA-7PTu-OL5LYYCGxqZZNonKbG1sLFH1b-xCgyoRzShDzpON1jjm9QktHvuaW1ySP0FSk42XSFZV02N-EucHbALeApZWuc6dItmZGWmFI76xImlTOpNry3HWAjyle2lh93DfBeC2DFcJ16ZlUeiaVkUkdOJhMeW9Lb_w1eMMTfWpgS-8OdMd8LePpHJapx0jSV6m3f5m2Awv-762vpQtzzccId0n7aMxe2HVfuhjUbw
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB5RKlR6aIFSdVsePnCqlK3tdZz4iKCwPHYPsFTcotieIES1oG720l_fseNFq1ateosSW7Fm7PG8vhmAg1I6K6zlmeG-IQPF6MwUiFlZGlKASyVME_yQo7Ee3qjz2_w2gdUjFgYRY_IZ9sNjjOX7RzcPrjI64SovdalfwEu6-HPZwbWegwYqFwkdrTOyI2QKYgpuvkxOr67JGJSqPxgUUofW4EvXUOyr8ocwjjfMyVsYL9bWJZY89Oet7bufv5Vt_O_Fb8CbpGuyw25zbMIKTrfg9VIFwi1YixmgbvYOjiMUt_PlsyskDiK7Dtnt0zt2XLc1-3Y_CwDMDrbJYqoBG8VUTGSpSuvdNtycfJ0cDbPUYiFz0qg204UrrGsEioFrQhBQ58J7LYh9yvOmwIJeoaND33DHG5JIaGvS8nLly1p5HLyH1enjFD8Ak7VpCq9JuuZWOWFJ86xJntTeSuN44XvAFxSvXKo_HtpgfK-iHcJNFZhUBSZViUk9-Pw85akrvvGvwduB6EsDO3r3YGfB1yqdz1klA0qSvirz8S_T9uHVcDK6rC7PxhefYD38qfO87MBq-2OOu6SLtHYv7sBf_UjXuQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multisource+Remote+Sensing+Data+Visualization+Using+Machine+Learning&rft.jtitle=IEEE+transactions+on+geoscience+and+remote+sensing&rft.au=Plajer%2C+Ioana+Cristina&rft.au=B%C4%83icoianu%2C+Alexandra&rft.au=Majercsik%2C+Luciana&rft.au=Ivanovici%2C+Mihai&rft.date=2024&rft.issn=0196-2892&rft.eissn=1558-0644&rft.volume=62&rft.spage=1&rft.epage=12&rft_id=info:doi/10.1109%2FTGRS.2024.3372639&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TGRS_2024_3372639
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0196-2892&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0196-2892&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0196-2892&client=summon