Cross-Cultural Emotion Recognition With EEG and Eye Movement Signals Based on Multiple Stacked Broad Learning System
With increasing social globalization, interaction between people from different cultures has become more frequent. However, there are significant differences in the expression and comprehension of emotions across cultures. Therefore, developing computational models that can accurately identify emoti...
Saved in:
Published in | IEEE transactions on computational social systems Vol. 11; no. 2; pp. 2014 - 2025 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
01.04.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | With increasing social globalization, interaction between people from different cultures has become more frequent. However, there are significant differences in the expression and comprehension of emotions across cultures. Therefore, developing computational models that can accurately identify emotions among different cultures has become a significant research problem. This study aims to investigate the similarities and differences in emotion cognition processes in different cultural groups by employing a fusion of electroencephalography (EEG) and eye movement (EM) signals. Specifically, an effective adaptive region selection method is proposed to investigate the most emotion-related activated brain regions in different groups. By selecting these commonly activated regions, we can eliminate redundant features and facilitate the development of portable acquisition devices. Subsequently, the multiple stacked broad learning system (MSBLS) is designed to explore the complementary information of EEG and EM features and the effective emotional information still contained in the residual value. The intracultural subject-dependent (ICSD), intracultural subject-independent, and cross-cultural subject-independent (CCSI) experiments have been conducted on the SEED-CHN, SEED-GER, and SEED-FRA datasets. Extensive experiments manifest that MSBLS achieves superior performance compared with current state-of-the-art methods. Moreover, we discover that some brain regions (the anterior frontal, temporal, and middle parieto-occipital lobes) and Gamma frequency bands show greater activation during emotion cognition in diverse cultural groups. |
---|---|
AbstractList | With increasing social globalization, interaction between people from different cultures has become more frequent. However, there are significant differences in the expression and comprehension of emotions across cultures. Therefore, developing computational models that can accurately identify emotions among different cultures has become a significant research problem. This study aims to investigate the similarities and differences in emotion cognition processes in different cultural groups by employing a fusion of electroencephalography (EEG) and eye movement (EM) signals. Specifically, an effective adaptive region selection method is proposed to investigate the most emotion-related activated brain regions in different groups. By selecting these commonly activated regions, we can eliminate redundant features and facilitate the development of portable acquisition devices. Subsequently, the multiple stacked broad learning system (MSBLS) is designed to explore the complementary information of EEG and EM features and the effective emotional information still contained in the residual value. The intracultural subject-dependent (ICSD), intracultural subject-independent, and cross-cultural subject-independent (CCSI) experiments have been conducted on the SEED-CHN, SEED-GER, and SEED-FRA datasets. Extensive experiments manifest that MSBLS achieves superior performance compared with current state-of-the-art methods. Moreover, we discover that some brain regions (the anterior frontal, temporal, and middle parieto-occipital lobes) and Gamma frequency bands show greater activation during emotion cognition in diverse cultural groups. |
Author | Chen, C. L. Philip Gong, Xinrong Zhang, Tong |
Author_xml | – sequence: 1 givenname: Xinrong orcidid: 0000-0001-5821-6283 surname: Gong fullname: Gong, Xinrong organization: School of Computer Science and Engineering and Engineering Research Center of Ministry of Education on Health Intelligent Perception and Paralleled Digital-Human, South China University of Technology, Guangzhou, China – sequence: 2 givenname: C. L. Philip orcidid: 0000-0001-5451-7230 surname: Chen fullname: Chen, C. L. Philip organization: School of Computer Science and Engineering and Engineering Research Center of Ministry of Education on Health Intelligent Perception and Paralleled Digital-Human, South China University of Technology, Guangzhou, China – sequence: 3 givenname: Tong orcidid: 0000-0002-7025-6365 surname: Zhang fullname: Zhang, Tong email: tony@scut.edu.cn organization: School of Computer Science and Engineering and Engineering Research Center of Ministry of Education on Health Intelligent Perception and Paralleled Digital-Human, South China University of Technology, Guangzhou, China |
BookMark | eNp9kEFr2zAUx0VJoVnaD1DoQbCzU0nPsazjary2kDCoA-3NqNJLqs6RMlkZ5NvPbnoYO-ykh_j__rz3-0ImPngk5JqzOedM3a6rppkLJmAOQpUg8jMyFSAhk7ksJuMsVKZE_nJBrvr-nTHGxWIhBZuSVMXQ91l16NIh6o7Wu5Bc8PQJTdh69zE_u_RG6_qeam9pfUS6Cr9xhz7Rxm297np6p3u0dIiuhh6375A2SZufw99dDNrSJerond_S5tgn3F2S882A4dXnOyPr7_W6esiWP-4fq2_LzAiVp6wosDCFLq2xCqDM0RTcslfDtAS5WQjGQBpWmiJnC1NYDtaWUnF8RYWoFMzI11PtPoZfB-xT-x4OcVy4BQYclBoahpQ8pcxoIuKmNS7p8fAUtetaztpRcjtKbkfJ7afkgeT_kPvodjoe_8vcnBiHiH_lBWcgAP4AaYqKAQ |
CODEN | ITCSGL |
CitedBy_id | crossref_primary_10_1088_1361_6501_ad8a80 crossref_primary_10_1109_TCSS_2024_3385493 crossref_primary_10_1007_s13042_023_01964_w crossref_primary_10_1109_TCSS_2024_3420445 crossref_primary_10_1109_TAI_2024_3403953 crossref_primary_10_1109_TCSS_2024_3384698 crossref_primary_10_1109_TCSS_2024_3374455 crossref_primary_10_1016_j_bspc_2024_106717 crossref_primary_10_1109_ACCESS_2024_3430934 crossref_primary_10_1109_TAFFC_2024_3392791 crossref_primary_10_1109_TCSS_2024_3409383 crossref_primary_10_1016_j_eswa_2024_124001 crossref_primary_10_1109_JAS_2024_124557 |
Cites_doi | 10.1037/h0030377 10.1037/0033-2909.128.2.203 10.1109/TNNLS.2017.2716952 10.1109/TBME.2011.2131142 10.1109/JBHI.2022.3210158 10.1088/1741-2552/ac49a7 10.1109/ICASSP40776.2020.9053004 10.1109/TSMC.2020.3043147 10.1109/tcyb.2022.3195739 10.1109/TCYB.2018.2797176 10.1038/s41597-022-01211-x 10.1109/TAFFC.2018.2817622 10.1109/TAFFC.2017.2712143 10.1177/1754073919897295 10.3389/fnhum.2020.00089 10.1037/a0030035 10.1109/TNSRE.2019.2894423 10.3200/GNTP.170.1.5-30 10.1109/TCDS.2021.3071170 10.1088/1741-2552/aace8c 10.1109/taffc.2023.3288885 10.1109/TAFFC.2021.3064940 10.1037//0003-066X.48.4.384 10.1109/TAMD.2015.2431497 10.1109/BIBM.2017.8217946 10.1109/ICCV.2015.463 10.3758/s13428-016-0813-2 10.1109/TNNLS.2020.2988928 10.1109/JBHI.2020.3045718 10.1016/j.brainresprot.2004.10.001 10.1037/a0018430 10.1109/TAFFC.2019.2934412 10.1109/TKDE.2021.3137792 10.1007/978-81-322-1934-7_4 10.1177/1754073911410737 10.1109/tnnls.2022.3225855 10.1109/TCSS.2022.3157522 10.1109/TCYB.2021.3061094 10.1109/TAFFC.2020.2981440 10.1016/j.tins.2007.02.001 10.1177/0146167205277097 10.5555/2946645.2946704 10.1109/TNSRE.2022.3221962 10.1109/TNN.2010.2091281 10.1177/1754073913512003 10.1109/JSEN.2022.3144317 10.1109/taffc.2023.3259010 10.1016/j.tics.2017.03.002 10.1088/1741-2552/ac5c8d 10.1007/978-3-319-58347-1_8 10.1109/JBHI.2023.3265805 10.1109/TAFFC.2019.2937768 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
DBID | 97E RIA RIE AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
DOI | 10.1109/TCSS.2023.3298324 |
DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Computer and Information Systems Abstracts |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Social Sciences (General) |
EISSN | 2373-7476 |
EndPage | 2025 |
ExternalDocumentID | 10_1109_TCSS_2023_3298324 10210323 |
Genre | orig-research |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 62222603; 62076102; 92267203 funderid: 10.13039/501100001809 – fundername: National Key Research and Development Program of China grantid: 2019YFA0706200 – fundername: Program for Guangdong Introducing Innovative and Entrepreneurial Teams grantid: 2019ZT08X214 – fundername: Guangdong Natural Science Funds for Distinguished Young Scholar grantid: 2020B1515020041 |
GroupedDBID | 0R~ 4.4 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD IFIPE IPLJI JAVBF M43 OCL PQQKQ RIA RIE AAYXX CITATION RIG 7SC 8FD JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c294t-66e6c6a8dcd93384ec61d0bc0a737f520037c08c6405c6d13dd8791ebe9ee993 |
IEDL.DBID | RIE |
ISSN | 2329-924X |
IngestDate | Mon Jun 30 13:49:18 EDT 2025 Thu Apr 24 23:03:33 EDT 2025 Tue Jul 01 05:01:34 EDT 2025 Wed Aug 27 02:03:47 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c294t-66e6c6a8dcd93384ec61d0bc0a737f520037c08c6405c6d13dd8791ebe9ee993 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-5821-6283 0000-0002-7025-6365 0000-0001-5451-7230 |
PQID | 3031399003 |
PQPubID | 2040411 |
PageCount | 12 |
ParticipantIDs | ieee_primary_10210323 crossref_primary_10_1109_TCSS_2023_3298324 proquest_journals_3031399003 crossref_citationtrail_10_1109_TCSS_2023_3298324 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-04-01 |
PublicationDateYYYYMMDD | 2024-04-01 |
PublicationDate_xml | – month: 04 year: 2024 text: 2024-04-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Piscataway |
PublicationPlace_xml | – name: Piscataway |
PublicationTitle | IEEE transactions on computational social systems |
PublicationTitleAbbrev | TCSS |
PublicationYear | 2024 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref12 ref15 ref14 ref53 ref52 ref11 ref55 ref10 ref54 ref17 ref16 ref19 ref18 ref51 ref50 Lu (ref36) ref46 ref45 ref48 ref47 ref42 ref41 ref43 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 ref35 ref34 ref37 ref31 ref30 ref33 ref32 ref2 ref1 ref39 Lemhadri (ref44) 2021; 22 ref38 ref24 ref23 ref26 ref25 ref20 ref22 ref21 Long (ref49); 37 ref28 ref27 ref29 |
References_xml | – ident: ref17 doi: 10.1037/h0030377 – ident: ref53 doi: 10.1037/0033-2909.128.2.203 – ident: ref13 doi: 10.1109/TNNLS.2017.2716952 – ident: ref32 doi: 10.1109/TBME.2011.2131142 – start-page: 1170 volume-title: Proc. 24th Int. Joint Conf. Artif. Intell. ident: ref36 article-title: Combining eye movements and EEG to enhance emotion recognition – ident: ref52 doi: 10.1109/JBHI.2022.3210158 – ident: ref38 doi: 10.1088/1741-2552/ac49a7 – ident: ref39 doi: 10.1109/ICASSP40776.2020.9053004 – ident: ref16 doi: 10.1109/TSMC.2020.3043147 – ident: ref42 doi: 10.1109/tcyb.2022.3195739 – volume: 37 start-page: 97 volume-title: Proc. 32nd Int. Conf. Mach. Learn. ident: ref49 article-title: Learning transferable features with deep adaptation networks – ident: ref37 doi: 10.1109/TCYB.2018.2797176 – ident: ref30 doi: 10.1038/s41597-022-01211-x – ident: ref7 doi: 10.1109/TAFFC.2018.2817622 – ident: ref11 doi: 10.1109/TAFFC.2017.2712143 – ident: ref4 doi: 10.1177/1754073919897295 – ident: ref54 doi: 10.3389/fnhum.2020.00089 – ident: ref21 doi: 10.1037/a0030035 – ident: ref10 doi: 10.1109/TNSRE.2019.2894423 – ident: ref18 doi: 10.3200/GNTP.170.1.5-30 – ident: ref40 doi: 10.1109/TCDS.2021.3071170 – ident: ref22 doi: 10.1088/1741-2552/aace8c – ident: ref35 doi: 10.1109/taffc.2023.3288885 – ident: ref34 doi: 10.1109/TAFFC.2021.3064940 – ident: ref3 doi: 10.1037//0003-066X.48.4.384 – ident: ref23 doi: 10.1109/TAMD.2015.2431497 – ident: ref29 doi: 10.1109/BIBM.2017.8217946 – ident: ref48 doi: 10.1109/ICCV.2015.463 – ident: ref9 doi: 10.3758/s13428-016-0813-2 – ident: ref51 doi: 10.1109/TNNLS.2020.2988928 – ident: ref31 doi: 10.1109/JBHI.2020.3045718 – ident: ref12 doi: 10.1016/j.brainresprot.2004.10.001 – ident: ref2 doi: 10.1037/a0018430 – ident: ref28 doi: 10.1109/TAFFC.2019.2934412 – ident: ref15 doi: 10.1109/TKDE.2021.3137792 – ident: ref19 doi: 10.1007/978-81-322-1934-7_4 – ident: ref1 doi: 10.1177/1754073911410737 – ident: ref24 doi: 10.1109/tnnls.2022.3225855 – ident: ref6 doi: 10.1109/TCSS.2022.3157522 – volume: 22 start-page: 5633 issue: 1 year: 2021 ident: ref44 article-title: LassoNet: A neural network with feature sparsity publication-title: J. Mach. Learn. Res. – ident: ref14 doi: 10.1109/TCYB.2021.3061094 – ident: ref33 doi: 10.1109/TAFFC.2020.2981440 – ident: ref55 doi: 10.1016/j.tins.2007.02.001 – ident: ref20 doi: 10.1177/0146167205277097 – ident: ref50 doi: 10.5555/2946645.2946704 – ident: ref27 doi: 10.1109/TNSRE.2022.3221962 – ident: ref46 doi: 10.1109/TNN.2010.2091281 – ident: ref5 doi: 10.1177/1754073913512003 – ident: ref25 doi: 10.1109/JSEN.2022.3144317 – ident: ref41 doi: 10.1109/taffc.2023.3259010 – ident: ref43 doi: 10.1016/j.tics.2017.03.002 – ident: ref45 doi: 10.1088/1741-2552/ac5c8d – ident: ref47 doi: 10.1007/978-3-319-58347-1_8 – ident: ref26 doi: 10.1109/JBHI.2023.3265805 – ident: ref8 doi: 10.1109/TAFFC.2019.2937768 |
SSID | ssj0001255720 |
Score | 2.4539595 |
Snippet | With increasing social globalization, interaction between people from different cultures has become more frequent. However, there are significant differences... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 2014 |
SubjectTerms | Affective computing Brain Brain modeling broad learning system (BLS) Cognition Computational modeling cross-cultural emotion recognition Cultural aspects electroencephalogram (EEG) Electroencephalography Emotion recognition Emotions eye movement (EM) Eye movements Feature extraction Frequencies Globalization Learning multimodal fusion Occipital lobes Portable equipment |
Title | Cross-Cultural Emotion Recognition With EEG and Eye Movement Signals Based on Multiple Stacked Broad Learning System |
URI | https://ieeexplore.ieee.org/document/10210323 https://www.proquest.com/docview/3031399003 |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LTwIxEG6EkxefGFE0c_CgJrt0H3TpUckiMYGDYOS26bZdJBowshz01zvdLQY1Gm89tM0kM-3MtDPfR8gZZcKXggaY5MjMCUUL78E0Sh0dZoxnGCD41PQ79wesdx_ejltj26xe9MJorYviM-2aYfGXr-ZyaZ7KmoaGmgZ-UCEVzNzKZq21B5WW2dn-XHqUN0ed4dA19OBu4HO03PCL7ynIVH7cwIVb6W6TwUqgsprkyV3mqSvfv2E1_lviHbJlA0y4Ki1il2zo2R6pl124YE_yAs4t3PTFPsk7RlinYyE4IC6JfeBuVVqE44dp_ghxfANipiB-09CfFzjjOQynE4PADNfoDRXg1L6tUAQMY_GGUICJvlBgcVwnUEKk18ioG486PcdyMTjS52HuMKaZZKKtpOKY1YZaMk_RVFIRBVFmsJuCSNK2ZBgASqa8QKl2xD00Ea41xkAHpDqbz_QhgUgJytLM95WfhrLlibZh6BSCZ16IyVlWJ3SlpERanHJDl_GcFPkK5YnRa2L0mli91snl55KXEqTjr8k1o6e1iaWK6qSxMoXEnuNFEhhoS25ee49-WXZMNnF3W8zTINX8dalPME7J09PCPj8AK7PkfQ |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3BbtQwEB1V5QAXKFDE0hbmABIgJXWcxIkPHOiSsqXdHthF9BY5tlMqqt2qmxVqv4Vf4d8YJ05VQHCrxM0HW5Gd5_GMPfMewHMmFNeKxRTk6DpIVEp2sMqqwCa1kDU5CJy5eufxoRh9Sj4cpUcr8P2qFsZa2yaf2dA127d8M9dLd1W27WSoWcx7rep9e_GNIrTFm7139DtfcL5bTIejwIsIBJrLpAmEsEILlRttKHbPE6tFZFilmcrirHakQ3GmWa4FeS5amCg2Js9kRHOT1kpHtUQG_hb5GSnvqsOu3eCkbir-qTRicns6nExCp0cexlzSVkl-Oexa9ZY_TH57ju3egx_9CnTpK1_DZVOF-vI3csj_dYnW4K53oPFth_j7sGJnD2DQVRmjt1QLfOnptF89hGbo1iYYeooRLDrhIvzYp05R-_NJ8wWL4j2qmcHiwuJ43vKoNzg5OXYM07hDp71B6jr2GZhIbjpZQIM753Nl0PPUHmNHAb8O05tYg0ewOpvP7GPAzCgmqppzw6tEp5HKnQKpUrKOEgo-6wGwHhOl9jzsTg7ktGzjMSZLB6PSwaj0MBrA66shZx0Jyb86rztYXOvYIWIAmz3ySm-nFmXsqDulu81-8pdhz-D2aDo-KA_2Dvc34A59yScubcJqc760W-STNdXTdmsglDeMs58e4kFO |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cross-Cultural+Emotion+Recognition+With+EEG+and+Eye+Movement+Signals+Based+on+Multiple+Stacked+Broad+Learning+System&rft.jtitle=IEEE+transactions+on+computational+social+systems&rft.au=Gong%2C+Xinrong&rft.au=Chen%2C+C+L+Philip&rft.au=Zhang%2C+Tong&rft.date=2024-04-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.eissn=2373-7476&rft.volume=11&rft.issue=2&rft.spage=2014&rft_id=info:doi/10.1109%2FTCSS.2023.3298324&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2329-924X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2329-924X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2329-924X&client=summon |