Cross-Cultural Emotion Recognition With EEG and Eye Movement Signals Based on Multiple Stacked Broad Learning System

With increasing social globalization, interaction between people from different cultures has become more frequent. However, there are significant differences in the expression and comprehension of emotions across cultures. Therefore, developing computational models that can accurately identify emoti...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on computational social systems Vol. 11; no. 2; pp. 2014 - 2025
Main Authors Gong, Xinrong, Chen, C. L. Philip, Zhang, Tong
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 01.04.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract With increasing social globalization, interaction between people from different cultures has become more frequent. However, there are significant differences in the expression and comprehension of emotions across cultures. Therefore, developing computational models that can accurately identify emotions among different cultures has become a significant research problem. This study aims to investigate the similarities and differences in emotion cognition processes in different cultural groups by employing a fusion of electroencephalography (EEG) and eye movement (EM) signals. Specifically, an effective adaptive region selection method is proposed to investigate the most emotion-related activated brain regions in different groups. By selecting these commonly activated regions, we can eliminate redundant features and facilitate the development of portable acquisition devices. Subsequently, the multiple stacked broad learning system (MSBLS) is designed to explore the complementary information of EEG and EM features and the effective emotional information still contained in the residual value. The intracultural subject-dependent (ICSD), intracultural subject-independent, and cross-cultural subject-independent (CCSI) experiments have been conducted on the SEED-CHN, SEED-GER, and SEED-FRA datasets. Extensive experiments manifest that MSBLS achieves superior performance compared with current state-of-the-art methods. Moreover, we discover that some brain regions (the anterior frontal, temporal, and middle parieto-occipital lobes) and Gamma frequency bands show greater activation during emotion cognition in diverse cultural groups.
AbstractList With increasing social globalization, interaction between people from different cultures has become more frequent. However, there are significant differences in the expression and comprehension of emotions across cultures. Therefore, developing computational models that can accurately identify emotions among different cultures has become a significant research problem. This study aims to investigate the similarities and differences in emotion cognition processes in different cultural groups by employing a fusion of electroencephalography (EEG) and eye movement (EM) signals. Specifically, an effective adaptive region selection method is proposed to investigate the most emotion-related activated brain regions in different groups. By selecting these commonly activated regions, we can eliminate redundant features and facilitate the development of portable acquisition devices. Subsequently, the multiple stacked broad learning system (MSBLS) is designed to explore the complementary information of EEG and EM features and the effective emotional information still contained in the residual value. The intracultural subject-dependent (ICSD), intracultural subject-independent, and cross-cultural subject-independent (CCSI) experiments have been conducted on the SEED-CHN, SEED-GER, and SEED-FRA datasets. Extensive experiments manifest that MSBLS achieves superior performance compared with current state-of-the-art methods. Moreover, we discover that some brain regions (the anterior frontal, temporal, and middle parieto-occipital lobes) and Gamma frequency bands show greater activation during emotion cognition in diverse cultural groups.
Author Chen, C. L. Philip
Gong, Xinrong
Zhang, Tong
Author_xml – sequence: 1
  givenname: Xinrong
  orcidid: 0000-0001-5821-6283
  surname: Gong
  fullname: Gong, Xinrong
  organization: School of Computer Science and Engineering and Engineering Research Center of Ministry of Education on Health Intelligent Perception and Paralleled Digital-Human, South China University of Technology, Guangzhou, China
– sequence: 2
  givenname: C. L. Philip
  orcidid: 0000-0001-5451-7230
  surname: Chen
  fullname: Chen, C. L. Philip
  organization: School of Computer Science and Engineering and Engineering Research Center of Ministry of Education on Health Intelligent Perception and Paralleled Digital-Human, South China University of Technology, Guangzhou, China
– sequence: 3
  givenname: Tong
  orcidid: 0000-0002-7025-6365
  surname: Zhang
  fullname: Zhang, Tong
  email: tony@scut.edu.cn
  organization: School of Computer Science and Engineering and Engineering Research Center of Ministry of Education on Health Intelligent Perception and Paralleled Digital-Human, South China University of Technology, Guangzhou, China
BookMark eNp9kEFr2zAUx0VJoVnaD1DoQbCzU0nPsazjary2kDCoA-3NqNJLqs6RMlkZ5NvPbnoYO-ykh_j__rz3-0ImPngk5JqzOedM3a6rppkLJmAOQpUg8jMyFSAhk7ksJuMsVKZE_nJBrvr-nTHGxWIhBZuSVMXQ91l16NIh6o7Wu5Bc8PQJTdh69zE_u_RG6_qeam9pfUS6Cr9xhz7Rxm297np6p3u0dIiuhh6375A2SZufw99dDNrSJerond_S5tgn3F2S882A4dXnOyPr7_W6esiWP-4fq2_LzAiVp6wosDCFLq2xCqDM0RTcslfDtAS5WQjGQBpWmiJnC1NYDtaWUnF8RYWoFMzI11PtPoZfB-xT-x4OcVy4BQYclBoahpQ8pcxoIuKmNS7p8fAUtetaztpRcjtKbkfJ7afkgeT_kPvodjoe_8vcnBiHiH_lBWcgAP4AaYqKAQ
CODEN ITCSGL
CitedBy_id crossref_primary_10_1088_1361_6501_ad8a80
crossref_primary_10_1109_TCSS_2024_3385493
crossref_primary_10_1007_s13042_023_01964_w
crossref_primary_10_1109_TCSS_2024_3420445
crossref_primary_10_1109_TAI_2024_3403953
crossref_primary_10_1109_TCSS_2024_3384698
crossref_primary_10_1109_TCSS_2024_3374455
crossref_primary_10_1016_j_bspc_2024_106717
crossref_primary_10_1109_ACCESS_2024_3430934
crossref_primary_10_1109_TAFFC_2024_3392791
crossref_primary_10_1109_TCSS_2024_3409383
crossref_primary_10_1016_j_eswa_2024_124001
crossref_primary_10_1109_JAS_2024_124557
Cites_doi 10.1037/h0030377
10.1037/0033-2909.128.2.203
10.1109/TNNLS.2017.2716952
10.1109/TBME.2011.2131142
10.1109/JBHI.2022.3210158
10.1088/1741-2552/ac49a7
10.1109/ICASSP40776.2020.9053004
10.1109/TSMC.2020.3043147
10.1109/tcyb.2022.3195739
10.1109/TCYB.2018.2797176
10.1038/s41597-022-01211-x
10.1109/TAFFC.2018.2817622
10.1109/TAFFC.2017.2712143
10.1177/1754073919897295
10.3389/fnhum.2020.00089
10.1037/a0030035
10.1109/TNSRE.2019.2894423
10.3200/GNTP.170.1.5-30
10.1109/TCDS.2021.3071170
10.1088/1741-2552/aace8c
10.1109/taffc.2023.3288885
10.1109/TAFFC.2021.3064940
10.1037//0003-066X.48.4.384
10.1109/TAMD.2015.2431497
10.1109/BIBM.2017.8217946
10.1109/ICCV.2015.463
10.3758/s13428-016-0813-2
10.1109/TNNLS.2020.2988928
10.1109/JBHI.2020.3045718
10.1016/j.brainresprot.2004.10.001
10.1037/a0018430
10.1109/TAFFC.2019.2934412
10.1109/TKDE.2021.3137792
10.1007/978-81-322-1934-7_4
10.1177/1754073911410737
10.1109/tnnls.2022.3225855
10.1109/TCSS.2022.3157522
10.1109/TCYB.2021.3061094
10.1109/TAFFC.2020.2981440
10.1016/j.tins.2007.02.001
10.1177/0146167205277097
10.5555/2946645.2946704
10.1109/TNSRE.2022.3221962
10.1109/TNN.2010.2091281
10.1177/1754073913512003
10.1109/JSEN.2022.3144317
10.1109/taffc.2023.3259010
10.1016/j.tics.2017.03.002
10.1088/1741-2552/ac5c8d
10.1007/978-3-319-58347-1_8
10.1109/JBHI.2023.3265805
10.1109/TAFFC.2019.2937768
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TCSS.2023.3298324
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Computer and Information Systems Abstracts
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Social Sciences (General)
EISSN 2373-7476
EndPage 2025
ExternalDocumentID 10_1109_TCSS_2023_3298324
10210323
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 62222603; 62076102; 92267203
  funderid: 10.13039/501100001809
– fundername: National Key Research and Development Program of China
  grantid: 2019YFA0706200
– fundername: Program for Guangdong Introducing Innovative and Entrepreneurial Teams
  grantid: 2019ZT08X214
– fundername: Guangdong Natural Science Funds for Distinguished Young Scholar
  grantid: 2020B1515020041
GroupedDBID 0R~
4.4
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
IFIPE
IPLJI
JAVBF
M43
OCL
PQQKQ
RIA
RIE
AAYXX
CITATION
RIG
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c294t-66e6c6a8dcd93384ec61d0bc0a737f520037c08c6405c6d13dd8791ebe9ee993
IEDL.DBID RIE
ISSN 2329-924X
IngestDate Mon Jun 30 13:49:18 EDT 2025
Thu Apr 24 23:03:33 EDT 2025
Tue Jul 01 05:01:34 EDT 2025
Wed Aug 27 02:03:47 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c294t-66e6c6a8dcd93384ec61d0bc0a737f520037c08c6405c6d13dd8791ebe9ee993
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-5821-6283
0000-0002-7025-6365
0000-0001-5451-7230
PQID 3031399003
PQPubID 2040411
PageCount 12
ParticipantIDs ieee_primary_10210323
crossref_primary_10_1109_TCSS_2023_3298324
proquest_journals_3031399003
crossref_citationtrail_10_1109_TCSS_2023_3298324
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-04-01
PublicationDateYYYYMMDD 2024-04-01
PublicationDate_xml – month: 04
  year: 2024
  text: 2024-04-01
  day: 01
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE transactions on computational social systems
PublicationTitleAbbrev TCSS
PublicationYear 2024
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref53
ref52
ref11
ref55
ref10
ref54
ref17
ref16
ref19
ref18
ref51
ref50
Lu (ref36)
ref46
ref45
ref48
ref47
ref42
ref41
ref43
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
ref35
ref34
ref37
ref31
ref30
ref33
ref32
ref2
ref1
ref39
Lemhadri (ref44) 2021; 22
ref38
ref24
ref23
ref26
ref25
ref20
ref22
ref21
Long (ref49); 37
ref28
ref27
ref29
References_xml – ident: ref17
  doi: 10.1037/h0030377
– ident: ref53
  doi: 10.1037/0033-2909.128.2.203
– ident: ref13
  doi: 10.1109/TNNLS.2017.2716952
– ident: ref32
  doi: 10.1109/TBME.2011.2131142
– start-page: 1170
  volume-title: Proc. 24th Int. Joint Conf. Artif. Intell.
  ident: ref36
  article-title: Combining eye movements and EEG to enhance emotion recognition
– ident: ref52
  doi: 10.1109/JBHI.2022.3210158
– ident: ref38
  doi: 10.1088/1741-2552/ac49a7
– ident: ref39
  doi: 10.1109/ICASSP40776.2020.9053004
– ident: ref16
  doi: 10.1109/TSMC.2020.3043147
– ident: ref42
  doi: 10.1109/tcyb.2022.3195739
– volume: 37
  start-page: 97
  volume-title: Proc. 32nd Int. Conf. Mach. Learn.
  ident: ref49
  article-title: Learning transferable features with deep adaptation networks
– ident: ref37
  doi: 10.1109/TCYB.2018.2797176
– ident: ref30
  doi: 10.1038/s41597-022-01211-x
– ident: ref7
  doi: 10.1109/TAFFC.2018.2817622
– ident: ref11
  doi: 10.1109/TAFFC.2017.2712143
– ident: ref4
  doi: 10.1177/1754073919897295
– ident: ref54
  doi: 10.3389/fnhum.2020.00089
– ident: ref21
  doi: 10.1037/a0030035
– ident: ref10
  doi: 10.1109/TNSRE.2019.2894423
– ident: ref18
  doi: 10.3200/GNTP.170.1.5-30
– ident: ref40
  doi: 10.1109/TCDS.2021.3071170
– ident: ref22
  doi: 10.1088/1741-2552/aace8c
– ident: ref35
  doi: 10.1109/taffc.2023.3288885
– ident: ref34
  doi: 10.1109/TAFFC.2021.3064940
– ident: ref3
  doi: 10.1037//0003-066X.48.4.384
– ident: ref23
  doi: 10.1109/TAMD.2015.2431497
– ident: ref29
  doi: 10.1109/BIBM.2017.8217946
– ident: ref48
  doi: 10.1109/ICCV.2015.463
– ident: ref9
  doi: 10.3758/s13428-016-0813-2
– ident: ref51
  doi: 10.1109/TNNLS.2020.2988928
– ident: ref31
  doi: 10.1109/JBHI.2020.3045718
– ident: ref12
  doi: 10.1016/j.brainresprot.2004.10.001
– ident: ref2
  doi: 10.1037/a0018430
– ident: ref28
  doi: 10.1109/TAFFC.2019.2934412
– ident: ref15
  doi: 10.1109/TKDE.2021.3137792
– ident: ref19
  doi: 10.1007/978-81-322-1934-7_4
– ident: ref1
  doi: 10.1177/1754073911410737
– ident: ref24
  doi: 10.1109/tnnls.2022.3225855
– ident: ref6
  doi: 10.1109/TCSS.2022.3157522
– volume: 22
  start-page: 5633
  issue: 1
  year: 2021
  ident: ref44
  article-title: LassoNet: A neural network with feature sparsity
  publication-title: J. Mach. Learn. Res.
– ident: ref14
  doi: 10.1109/TCYB.2021.3061094
– ident: ref33
  doi: 10.1109/TAFFC.2020.2981440
– ident: ref55
  doi: 10.1016/j.tins.2007.02.001
– ident: ref20
  doi: 10.1177/0146167205277097
– ident: ref50
  doi: 10.5555/2946645.2946704
– ident: ref27
  doi: 10.1109/TNSRE.2022.3221962
– ident: ref46
  doi: 10.1109/TNN.2010.2091281
– ident: ref5
  doi: 10.1177/1754073913512003
– ident: ref25
  doi: 10.1109/JSEN.2022.3144317
– ident: ref41
  doi: 10.1109/taffc.2023.3259010
– ident: ref43
  doi: 10.1016/j.tics.2017.03.002
– ident: ref45
  doi: 10.1088/1741-2552/ac5c8d
– ident: ref47
  doi: 10.1007/978-3-319-58347-1_8
– ident: ref26
  doi: 10.1109/JBHI.2023.3265805
– ident: ref8
  doi: 10.1109/TAFFC.2019.2937768
SSID ssj0001255720
Score 2.4539595
Snippet With increasing social globalization, interaction between people from different cultures has become more frequent. However, there are significant differences...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2014
SubjectTerms Affective computing
Brain
Brain modeling
broad learning system (BLS)
Cognition
Computational modeling
cross-cultural emotion recognition
Cultural aspects
electroencephalogram (EEG)
Electroencephalography
Emotion recognition
Emotions
eye movement (EM)
Eye movements
Feature extraction
Frequencies
Globalization
Learning
multimodal fusion
Occipital lobes
Portable equipment
Title Cross-Cultural Emotion Recognition With EEG and Eye Movement Signals Based on Multiple Stacked Broad Learning System
URI https://ieeexplore.ieee.org/document/10210323
https://www.proquest.com/docview/3031399003
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LTwIxEG6EkxefGFE0c_CgJrt0H3TpUckiMYGDYOS26bZdJBowshz01zvdLQY1Gm89tM0kM-3MtDPfR8gZZcKXggaY5MjMCUUL78E0Sh0dZoxnGCD41PQ79wesdx_ejltj26xe9MJorYviM-2aYfGXr-ZyaZ7KmoaGmgZ-UCEVzNzKZq21B5WW2dn-XHqUN0ed4dA19OBu4HO03PCL7ynIVH7cwIVb6W6TwUqgsprkyV3mqSvfv2E1_lviHbJlA0y4Ki1il2zo2R6pl124YE_yAs4t3PTFPsk7RlinYyE4IC6JfeBuVVqE44dp_ghxfANipiB-09CfFzjjOQynE4PADNfoDRXg1L6tUAQMY_GGUICJvlBgcVwnUEKk18ioG486PcdyMTjS52HuMKaZZKKtpOKY1YZaMk_RVFIRBVFmsJuCSNK2ZBgASqa8QKl2xD00Ea41xkAHpDqbz_QhgUgJytLM95WfhrLlibZh6BSCZ16IyVlWJ3SlpERanHJDl_GcFPkK5YnRa2L0mli91snl55KXEqTjr8k1o6e1iaWK6qSxMoXEnuNFEhhoS25ee49-WXZMNnF3W8zTINX8dalPME7J09PCPj8AK7PkfQ
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3BbtQwEB1V5QAXKFDE0hbmABIgJXWcxIkPHOiSsqXdHthF9BY5tlMqqt2qmxVqv4Vf4d8YJ05VQHCrxM0HW5Gd5_GMPfMewHMmFNeKxRTk6DpIVEp2sMqqwCa1kDU5CJy5eufxoRh9Sj4cpUcr8P2qFsZa2yaf2dA127d8M9dLd1W27WSoWcx7rep9e_GNIrTFm7139DtfcL5bTIejwIsIBJrLpAmEsEILlRttKHbPE6tFZFilmcrirHakQ3GmWa4FeS5amCg2Js9kRHOT1kpHtUQG_hb5GSnvqsOu3eCkbir-qTRicns6nExCp0cexlzSVkl-Oexa9ZY_TH57ju3egx_9CnTpK1_DZVOF-vI3csj_dYnW4K53oPFth_j7sGJnD2DQVRmjt1QLfOnptF89hGbo1iYYeooRLDrhIvzYp05R-_NJ8wWL4j2qmcHiwuJ43vKoNzg5OXYM07hDp71B6jr2GZhIbjpZQIM753Nl0PPUHmNHAb8O05tYg0ewOpvP7GPAzCgmqppzw6tEp5HKnQKpUrKOEgo-6wGwHhOl9jzsTg7ktGzjMSZLB6PSwaj0MBrA66shZx0Jyb86rztYXOvYIWIAmz3ySm-nFmXsqDulu81-8pdhz-D2aDo-KA_2Dvc34A59yScubcJqc760W-STNdXTdmsglDeMs58e4kFO
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cross-Cultural+Emotion+Recognition+With+EEG+and+Eye+Movement+Signals+Based+on+Multiple+Stacked+Broad+Learning+System&rft.jtitle=IEEE+transactions+on+computational+social+systems&rft.au=Gong%2C+Xinrong&rft.au=Chen%2C+C+L+Philip&rft.au=Zhang%2C+Tong&rft.date=2024-04-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.eissn=2373-7476&rft.volume=11&rft.issue=2&rft.spage=2014&rft_id=info:doi/10.1109%2FTCSS.2023.3298324&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2329-924X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2329-924X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2329-924X&client=summon