Short-Wavelength Spin-Wave Transducer Using the Transmission of Spin-Waves Across Two Magnetic Films

There has been growing interest in using spin waves as an alternative information carrier or state variable. One proposed use of spin waves is to utilize the diffraction and interference of spin waves to perform highly parallelized computing of specific functions. This new class of device would requ...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on magnetics Vol. 59; no. 7; p. 1
Main Authors Aquino, Hadrian Renaldo O., Connelly, David, Orlov, Alexei, Chisum, Jonathan, Bernstein, Gary H., Porod, Wolfgang
Format Journal Article
LanguageEnglish
Published New York IEEE 01.07.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0018-9464
1941-0069
DOI10.1109/TMAG.2023.3276200

Cover

Loading…
Abstract There has been growing interest in using spin waves as an alternative information carrier or state variable. One proposed use of spin waves is to utilize the diffraction and interference of spin waves to perform highly parallelized computing of specific functions. This new class of device would require isotropic dispersion relations. The subject of this work is a transducer design to convert electrical signals into short-wavelength forward-volume spin-waves. Short-wavelength spin waves would enable spin-wave devices to scale down to smaller sizes and potentially allow the use of films that are CMOS compatible but suffer from higher damping. This work presents a new design of electrical-to-spin-wave transducers that can excite short-wavelength spin waves by first exciting large-wavelength (1.43 μm for example) spin-waves using relatively large coplanar waveguides. The spin-waves are then transformed into short-wavelength (132 nm) spin-waves by traveling into an adjacent film where their wavelengths decrease significantly. Simulations show that this design is able to excite spin waves with significantly larger amplitudes (> 10×) than an appropriately sized CPW on top of the magnetic film with the same input power.
AbstractList There has been growing interest in using spin waves as an alternative information carrier or state variable. One proposed use of spin waves is to utilize the diffraction and interference of spin waves to perform highly parallelized computing of specific functions. This new class of devices would require isotropic dispersion relations. The subject of this work is a transducer designed to convert electrical signals into short-wavelength forward-volume spin waves. Short-wavelength spin waves would enable spin-wave devices to scale down to smaller sizes and potentially allow the use of films that are CMOS compatible but suffer from higher damping. This work presents a new design of electrical-to-spin-wave transducers that can excite short-wavelength spin waves by first exciting large-wavelength ([Formula Omitted] for example) spin waves using relatively large coplanar waveguides (CPWs). The spin waves are then transformed into short-wavelength (132 nm) spin waves by traveling into an adjacent film where their wavelengths decrease significantly. Simulations show that this design is able to excite spin waves with significantly larger amplitudes ([Formula Omitted]) than an appropriately sized CPW on top of the magnetic film with the same input power.
There has been growing interest in using spin waves as an alternative information carrier or state variable. One proposed use of spin waves is to utilize the diffraction and interference of spin waves to perform highly parallelized computing of specific functions. This new class of device would require isotropic dispersion relations. The subject of this work is a transducer design to convert electrical signals into short-wavelength forward-volume spin-waves. Short-wavelength spin waves would enable spin-wave devices to scale down to smaller sizes and potentially allow the use of films that are CMOS compatible but suffer from higher damping. This work presents a new design of electrical-to-spin-wave transducers that can excite short-wavelength spin waves by first exciting large-wavelength (1.43 μm for example) spin-waves using relatively large coplanar waveguides. The spin-waves are then transformed into short-wavelength (132 nm) spin-waves by traveling into an adjacent film where their wavelengths decrease significantly. Simulations show that this design is able to excite spin waves with significantly larger amplitudes (> 10×) than an appropriately sized CPW on top of the magnetic film with the same input power.
Author Bernstein, Gary H.
Porod, Wolfgang
Chisum, Jonathan
Aquino, Hadrian Renaldo O.
Connelly, David
Orlov, Alexei
Author_xml – sequence: 1
  givenname: Hadrian Renaldo O.
  orcidid: 0000-0001-8648-2650
  surname: Aquino
  fullname: Aquino, Hadrian Renaldo O.
  organization: Department of Electrical Engineering, University of Notre Dame, Notre Dame, IN, USA
– sequence: 2
  givenname: David
  orcidid: 0000-0002-9559-7342
  surname: Connelly
  fullname: Connelly, David
  organization: Department of Electrical Engineering, University of Notre Dame, Notre Dame, IN, USA
– sequence: 3
  givenname: Alexei
  surname: Orlov
  fullname: Orlov, Alexei
  organization: Department of Electrical Engineering, University of Notre Dame, Notre Dame, IN, USA
– sequence: 4
  givenname: Jonathan
  orcidid: 0000-0003-0304-9742
  surname: Chisum
  fullname: Chisum, Jonathan
  organization: Department of Electrical Engineering, University of Notre Dame, Notre Dame, IN, USA
– sequence: 5
  givenname: Gary H.
  surname: Bernstein
  fullname: Bernstein, Gary H.
  organization: Department of Electrical Engineering, University of Notre Dame, Notre Dame, IN, USA
– sequence: 6
  givenname: Wolfgang
  orcidid: 0000-0002-9854-6540
  surname: Porod
  fullname: Porod, Wolfgang
  organization: Department of Electrical Engineering, University of Notre Dame, Notre Dame, IN, USA
BookMark eNp9kEtLAzEUhYNUsK3-AMFFwPXUvGYyWZZiq1Bx0SkuQ2YmaVOmmZqkiv_e6QMUF64u5_Kd-zgD0HOt0wDcYjTCGImH4mU8GxFE6IgSnhGELkAfC4YThDLRA32EcJ4IlrErMAhh00mWYtQH9WLd-pi8qQ_daLeKa7jYWXfUsPDKhXpfaQ-XwboVjOtzc2tDsK2DrfnBAxxXvg0BFp8tfFErp6Ot4NQ223ANLo1qgr451yFYTh-LyVMyf509T8bzpCKCxSStNc9RxY1mpOIl50KwklcmyzDCouRYcMoRNWUpDK4NMpzWaSZylupMlcrQIbg_zd359n2vQ5Sbdu9dt1KSnCKGGcO8o_iJOp7rtZGVjSp2_0SvbCMxkodI5SFSeYhUniPtnPiPc-ftVvmvfz13J4_VWv_iMWGEcPoNS9SD-w
CODEN IEMGAQ
CitedBy_id crossref_primary_10_1021_acs_nanolett_3c01592
Cites_doi 10.1088/0022-3727/48/1/015001
10.1038/s41598-021-97627-3
10.1063/5.0019328
10.1109/TMAG.2013.2249576
10.1109/TMAG.2021.3084097
10.1063/1.4995991
10.1063/1.3231875
10.1038/ncomms3702
10.1088/0022-3727/43/26/264001
10.1016/j.jmmm.2017.06.057
10.1088/0953-8984/23/5/053202
10.1109/TMAG.2016.2517000
10.1038/s41467-020-15265-1
10.1063/1.4899186
10.1103/PhysRevB.103.184403
10.1016/j.physleta.2017.02.042
10.1088/0022-3719/19/35/014
10.1103/PhysRevResearch.2.043203
10.1140/epjb/e2018-80623-x
10.7567/APEX.11.053002
10.1021/acs.nanolett.0c02645
10.1038/s41598-022-07625-2
10.1063/1.3631756
10.1038/s41467-018-03199-8
10.1038/nnano.2016.16
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
7U5
8BQ
8FD
JG9
L7M
DOI 10.1109/TMAG.2023.3276200
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
Electronics & Communications Abstracts
DatabaseTitleList Materials Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1941-0069
EndPage 1
ExternalDocumentID 10_1109_TMAG_2023_3276200
10124227
Genre orig-research
GrantInformation_xml – fundername: National Science Foundation
  grantid: 1731824
  funderid: 10.13039/100000001
GroupedDBID -~X
0R~
29I
4.4
5GY
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
F5P
HZ~
IFIPE
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TN5
TWZ
5VS
AAYXX
AETIX
AGSQL
AI.
AIBXA
ALLEH
CITATION
EJD
H~9
IAAWW
IBMZZ
ICLAB
IFJZH
RIG
VH1
VJK
XXG
7SP
7U5
8BQ
8FD
JG9
L7M
ID FETCH-LOGICAL-c294t-5de780c7fe42c7b77994b7cf661019b71973703fbb9f1df0f73d569845e6abaf3
IEDL.DBID RIE
ISSN 0018-9464
IngestDate Mon Jun 30 08:19:37 EDT 2025
Tue Jul 01 01:53:39 EDT 2025
Thu Apr 24 23:03:49 EDT 2025
Wed Aug 27 02:56:21 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 7
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c294t-5de780c7fe42c7b77994b7cf661019b71973703fbb9f1df0f73d569845e6abaf3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-0304-9742
0000-0001-8648-2650
0000-0002-9559-7342
0000-0002-9854-6540
PQID 2830414417
PQPubID 85461
PageCount 1
ParticipantIDs crossref_citationtrail_10_1109_TMAG_2023_3276200
proquest_journals_2830414417
crossref_primary_10_1109_TMAG_2023_3276200
ieee_primary_10124227
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-07-01
PublicationDateYYYYMMDD 2023-07-01
PublicationDate_xml – month: 07
  year: 2023
  text: 2023-07-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on magnetics
PublicationTitleAbbrev TMAG
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref30
ref11
ref10
stancil (ref7) 2009
ref2
ref1
ref17
ref16
ref19
ref18
(ref5) 2021
ref24
ref23
ref26
ref20
varga (ref28) 2013
ref22
ref21
klos (ref27) 2016
ref29
ref8
ref9
ref4
ref3
ref6
dey (ref25) 2017
References_xml – ident: ref24
  doi: 10.1088/0022-3727/48/1/015001
– ident: ref14
  doi: 10.1038/s41598-021-97627-3
– ident: ref4
  doi: 10.1063/5.0019328
– ident: ref30
  doi: 10.1109/TMAG.2013.2249576
– ident: ref8
  doi: 10.1109/TMAG.2021.3084097
– ident: ref17
  doi: 10.1063/1.4995991
– ident: ref11
  doi: 10.1063/1.3231875
– ident: ref10
  doi: 10.1038/ncomms3702
– ident: ref6
  doi: 10.1088/0022-3727/43/26/264001
– year: 2013
  ident: ref28
  article-title: Experimental study of novel nanomagnet logic devices
– ident: ref23
  doi: 10.1016/j.jmmm.2017.06.057
– ident: ref29
  doi: 10.1088/0953-8984/23/5/053202
– ident: ref16
  doi: 10.1109/TMAG.2016.2517000
– year: 2017
  ident: ref25
  article-title: Experimental study of exchange-coupled nanomagnets
– year: 2009
  ident: ref7
  publication-title: Spin Waves Theory and applications
– ident: ref20
  doi: 10.1038/s41467-020-15265-1
– ident: ref22
  doi: 10.1063/1.4899186
– ident: ref15
  doi: 10.1103/PhysRevB.103.184403
– ident: ref1
  doi: 10.1016/j.physleta.2017.02.042
– ident: ref26
  doi: 10.1088/0022-3719/19/35/014
– ident: ref12
  doi: 10.1103/PhysRevResearch.2.043203
– year: 2021
  ident: ref5
  publication-title: International Roadmap for Devices and Systems 2020 Edition
– ident: ref3
  doi: 10.1140/epjb/e2018-80623-x
– ident: ref19
  doi: 10.7567/APEX.11.053002
– start-page: 283
  year: 2016
  ident: ref27
  article-title: Magnonic crystals: From simple models toward applications
  publication-title: Magnetic Structures of 2D and 3D Nanoparticles
– ident: ref21
  doi: 10.1021/acs.nanolett.0c02645
– ident: ref13
  doi: 10.1038/s41598-022-07625-2
– ident: ref18
  doi: 10.1063/1.3631756
– ident: ref9
  doi: 10.1038/s41467-018-03199-8
– ident: ref2
  doi: 10.1038/nnano.2016.16
SSID ssj0014510
Score 2.4000313
Snippet There has been growing interest in using spin waves as an alternative information carrier or state variable. One proposed use of spin waves is to utilize the...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Coplanar waveguides
Damping
exchange dominated spin waves
Magnetic films
Magnetic separation
Magnetism
Magnonics
Magnons
Parallel processing
Radio frequency
Saturation magnetization
simulation
spin waves
Strips
Transducers
Wave diffraction
yttrium iron garnet (YIG)
Title Short-Wavelength Spin-Wave Transducer Using the Transmission of Spin-Waves Across Two Magnetic Films
URI https://ieeexplore.ieee.org/document/10124227
https://www.proquest.com/docview/2830414417
Volume 59
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bS-wwEB5UEPTB21Fcb-TBJ6G1l6RpHhdxFUFfXNG3kqvK0a64XQR_vZm0q4sHD761JSkJ3yQzk8x8A3DIjbPWyiJiyqGDwkwkmS0jw4skszmjfrFjtMVVcX5DL-7YXZesHnJhfM8QfGZjfAx3-WakJ3hUdoxcVDTL-DzMe8-tTdb6vDKgLG3zTdIS68bT7gozTcTx8LJ_FmOd8DjP_OLHbLYZJRSqqvyzFQf9MliFq-nI2rCSv_GkUbF-_0ba-Ouhr8FKZ2mSfisa6zBn6w1YnuEf3IDFEP-px3_AXD94Ozy6lViHor5vHsj1y2Md3klQZ8aLwCsJAQbE24ztRy8jeNhGRu6r-Zj0w6TJ8G1ELuV9jVmSZPD49DzehJvB6fDkPOoKMEQ6E7SJmLG8TDR3lmaaK86FoIpr53W6twwVTwXP_Y7hlBIuNS5xPDesECVltpBKunwLFupRbbeBMOpy45AsjBuqjBSFYzItCp3bLJMl60EyRaTSHTs5Fsl4qoKXkogKQawQxKoDsQdHn11eWmqO_zXeRFBmGrZ49GBvinvVrd5xhaRoFD1NvvNDt11Ywr-3cbt7sNC8Tuy-t04adRCk8gOCQN__
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB7xUEV7KJSCuhSoD5wqJeRhx_FxhbpdHrsXFpVb5CcgIIvYrCr119fjZOmqVavekshWEn1jz9ie7xuAI26ctVYWEVMOFyjMRJLZMjK8SDKbM-oHO2ZbjIvhFT27ZtcdWT1wYXzPkHxmY7wMZ_lmque4VXaMWlQ0y_gqrDNk47Z0rZdDA8rSlnGSllg5nnaHmGkijiej_tcYK4XHeeaHP_LZltxQqKvyx2QcPMxgE8aLb2sTS-7jeaNi_eM32cb__vgteNvFmqTfGsc7WLH1NrxZUiDchlchA1TP3oO5vPWRePRNYiWK-qa5JZdPd3W4J8GhGW8EzySkGBAfNbYPvZXgdhuZul_NZ6QffppMvk_JSN7UyJMkg7uHx9kOXA2-TE6GUVeCIdKZoE3EjOVlormzNNNccS4EVVw779V9bKh4Knju5wynlHCpcYnjuWGFKCmzhVTS5buwVk9r-wEIoy43DuXCuKHKSFE4JtOi0LnNMlmyHiQLRCrd6ZNjmYyHKqxTElEhiBWCWHUg9uDzS5enVpzjX413EJSlhi0ePdhf4F5143dWoSwaxbUm3_tLt0-wMZyMLqqL0_H5R3iNb2qzePdhrXme2wMfqzTqMFjoT1kB40c
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Short-Wavelength+Spin-Wave+Transducer+Using+the+Transmission+of+Spin-Waves+Across+Two+Magnetic+Films&rft.jtitle=IEEE+transactions+on+magnetics&rft.au=Aquino%2C+Hadrian+Renaldo+O.&rft.au=Connelly%2C+David&rft.au=Orlov%2C+Alexei&rft.au=Chisum%2C+Jonathan&rft.date=2023-07-01&rft.pub=IEEE&rft.issn=0018-9464&rft.spage=1&rft.epage=1&rft_id=info:doi/10.1109%2FTMAG.2023.3276200&rft.externalDocID=10124227
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9464&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9464&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9464&client=summon