Short-Wavelength Spin-Wave Transducer Using the Transmission of Spin-Waves Across Two Magnetic Films
There has been growing interest in using spin waves as an alternative information carrier or state variable. One proposed use of spin waves is to utilize the diffraction and interference of spin waves to perform highly parallelized computing of specific functions. This new class of device would requ...
Saved in:
Published in | IEEE transactions on magnetics Vol. 59; no. 7; p. 1 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.07.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 0018-9464 1941-0069 |
DOI | 10.1109/TMAG.2023.3276200 |
Cover
Loading…
Abstract | There has been growing interest in using spin waves as an alternative information carrier or state variable. One proposed use of spin waves is to utilize the diffraction and interference of spin waves to perform highly parallelized computing of specific functions. This new class of device would require isotropic dispersion relations. The subject of this work is a transducer design to convert electrical signals into short-wavelength forward-volume spin-waves. Short-wavelength spin waves would enable spin-wave devices to scale down to smaller sizes and potentially allow the use of films that are CMOS compatible but suffer from higher damping. This work presents a new design of electrical-to-spin-wave transducers that can excite short-wavelength spin waves by first exciting large-wavelength (1.43 μm for example) spin-waves using relatively large coplanar waveguides. The spin-waves are then transformed into short-wavelength (132 nm) spin-waves by traveling into an adjacent film where their wavelengths decrease significantly. Simulations show that this design is able to excite spin waves with significantly larger amplitudes (> 10×) than an appropriately sized CPW on top of the magnetic film with the same input power. |
---|---|
AbstractList | There has been growing interest in using spin waves as an alternative information carrier or state variable. One proposed use of spin waves is to utilize the diffraction and interference of spin waves to perform highly parallelized computing of specific functions. This new class of devices would require isotropic dispersion relations. The subject of this work is a transducer designed to convert electrical signals into short-wavelength forward-volume spin waves. Short-wavelength spin waves would enable spin-wave devices to scale down to smaller sizes and potentially allow the use of films that are CMOS compatible but suffer from higher damping. This work presents a new design of electrical-to-spin-wave transducers that can excite short-wavelength spin waves by first exciting large-wavelength ([Formula Omitted] for example) spin waves using relatively large coplanar waveguides (CPWs). The spin waves are then transformed into short-wavelength (132 nm) spin waves by traveling into an adjacent film where their wavelengths decrease significantly. Simulations show that this design is able to excite spin waves with significantly larger amplitudes ([Formula Omitted]) than an appropriately sized CPW on top of the magnetic film with the same input power. There has been growing interest in using spin waves as an alternative information carrier or state variable. One proposed use of spin waves is to utilize the diffraction and interference of spin waves to perform highly parallelized computing of specific functions. This new class of device would require isotropic dispersion relations. The subject of this work is a transducer design to convert electrical signals into short-wavelength forward-volume spin-waves. Short-wavelength spin waves would enable spin-wave devices to scale down to smaller sizes and potentially allow the use of films that are CMOS compatible but suffer from higher damping. This work presents a new design of electrical-to-spin-wave transducers that can excite short-wavelength spin waves by first exciting large-wavelength (1.43 μm for example) spin-waves using relatively large coplanar waveguides. The spin-waves are then transformed into short-wavelength (132 nm) spin-waves by traveling into an adjacent film where their wavelengths decrease significantly. Simulations show that this design is able to excite spin waves with significantly larger amplitudes (> 10×) than an appropriately sized CPW on top of the magnetic film with the same input power. |
Author | Bernstein, Gary H. Porod, Wolfgang Chisum, Jonathan Aquino, Hadrian Renaldo O. Connelly, David Orlov, Alexei |
Author_xml | – sequence: 1 givenname: Hadrian Renaldo O. orcidid: 0000-0001-8648-2650 surname: Aquino fullname: Aquino, Hadrian Renaldo O. organization: Department of Electrical Engineering, University of Notre Dame, Notre Dame, IN, USA – sequence: 2 givenname: David orcidid: 0000-0002-9559-7342 surname: Connelly fullname: Connelly, David organization: Department of Electrical Engineering, University of Notre Dame, Notre Dame, IN, USA – sequence: 3 givenname: Alexei surname: Orlov fullname: Orlov, Alexei organization: Department of Electrical Engineering, University of Notre Dame, Notre Dame, IN, USA – sequence: 4 givenname: Jonathan orcidid: 0000-0003-0304-9742 surname: Chisum fullname: Chisum, Jonathan organization: Department of Electrical Engineering, University of Notre Dame, Notre Dame, IN, USA – sequence: 5 givenname: Gary H. surname: Bernstein fullname: Bernstein, Gary H. organization: Department of Electrical Engineering, University of Notre Dame, Notre Dame, IN, USA – sequence: 6 givenname: Wolfgang orcidid: 0000-0002-9854-6540 surname: Porod fullname: Porod, Wolfgang organization: Department of Electrical Engineering, University of Notre Dame, Notre Dame, IN, USA |
BookMark | eNp9kEtLAzEUhYNUsK3-AMFFwPXUvGYyWZZiq1Bx0SkuQ2YmaVOmmZqkiv_e6QMUF64u5_Kd-zgD0HOt0wDcYjTCGImH4mU8GxFE6IgSnhGELkAfC4YThDLRA32EcJ4IlrErMAhh00mWYtQH9WLd-pi8qQ_daLeKa7jYWXfUsPDKhXpfaQ-XwboVjOtzc2tDsK2DrfnBAxxXvg0BFp8tfFErp6Ot4NQ223ANLo1qgr451yFYTh-LyVMyf509T8bzpCKCxSStNc9RxY1mpOIl50KwklcmyzDCouRYcMoRNWUpDK4NMpzWaSZylupMlcrQIbg_zd359n2vQ5Sbdu9dt1KSnCKGGcO8o_iJOp7rtZGVjSp2_0SvbCMxkodI5SFSeYhUniPtnPiPc-ftVvmvfz13J4_VWv_iMWGEcPoNS9SD-w |
CODEN | IEMGAQ |
CitedBy_id | crossref_primary_10_1021_acs_nanolett_3c01592 |
Cites_doi | 10.1088/0022-3727/48/1/015001 10.1038/s41598-021-97627-3 10.1063/5.0019328 10.1109/TMAG.2013.2249576 10.1109/TMAG.2021.3084097 10.1063/1.4995991 10.1063/1.3231875 10.1038/ncomms3702 10.1088/0022-3727/43/26/264001 10.1016/j.jmmm.2017.06.057 10.1088/0953-8984/23/5/053202 10.1109/TMAG.2016.2517000 10.1038/s41467-020-15265-1 10.1063/1.4899186 10.1103/PhysRevB.103.184403 10.1016/j.physleta.2017.02.042 10.1088/0022-3719/19/35/014 10.1103/PhysRevResearch.2.043203 10.1140/epjb/e2018-80623-x 10.7567/APEX.11.053002 10.1021/acs.nanolett.0c02645 10.1038/s41598-022-07625-2 10.1063/1.3631756 10.1038/s41467-018-03199-8 10.1038/nnano.2016.16 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
DBID | 97E RIA RIE AAYXX CITATION 7SP 7U5 8BQ 8FD JG9 L7M |
DOI | 10.1109/TMAG.2023.3276200 |
DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Materials Research Database Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX Electronics & Communications Abstracts |
DatabaseTitleList | Materials Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 1941-0069 |
EndPage | 1 |
ExternalDocumentID | 10_1109_TMAG_2023_3276200 10124227 |
Genre | orig-research |
GrantInformation_xml | – fundername: National Science Foundation grantid: 1731824 funderid: 10.13039/100000001 |
GroupedDBID | -~X 0R~ 29I 4.4 5GY 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT AENEX AGQYO AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS F5P HZ~ IFIPE IPLJI JAVBF LAI M43 MS~ O9- OCL P2P RIA RIE RNS TN5 TWZ 5VS AAYXX AETIX AGSQL AI. AIBXA ALLEH CITATION EJD H~9 IAAWW IBMZZ ICLAB IFJZH RIG VH1 VJK XXG 7SP 7U5 8BQ 8FD JG9 L7M |
ID | FETCH-LOGICAL-c294t-5de780c7fe42c7b77994b7cf661019b71973703fbb9f1df0f73d569845e6abaf3 |
IEDL.DBID | RIE |
ISSN | 0018-9464 |
IngestDate | Mon Jun 30 08:19:37 EDT 2025 Tue Jul 01 01:53:39 EDT 2025 Thu Apr 24 23:03:49 EDT 2025 Wed Aug 27 02:56:21 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 7 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c294t-5de780c7fe42c7b77994b7cf661019b71973703fbb9f1df0f73d569845e6abaf3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-0304-9742 0000-0001-8648-2650 0000-0002-9559-7342 0000-0002-9854-6540 |
PQID | 2830414417 |
PQPubID | 85461 |
PageCount | 1 |
ParticipantIDs | crossref_citationtrail_10_1109_TMAG_2023_3276200 proquest_journals_2830414417 crossref_primary_10_1109_TMAG_2023_3276200 ieee_primary_10124227 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-07-01 |
PublicationDateYYYYMMDD | 2023-07-01 |
PublicationDate_xml | – month: 07 year: 2023 text: 2023-07-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on magnetics |
PublicationTitleAbbrev | TMAG |
PublicationYear | 2023 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref12 ref15 ref14 ref30 ref11 ref10 stancil (ref7) 2009 ref2 ref1 ref17 ref16 ref19 ref18 (ref5) 2021 ref24 ref23 ref26 ref20 varga (ref28) 2013 ref22 ref21 klos (ref27) 2016 ref29 ref8 ref9 ref4 ref3 ref6 dey (ref25) 2017 |
References_xml | – ident: ref24 doi: 10.1088/0022-3727/48/1/015001 – ident: ref14 doi: 10.1038/s41598-021-97627-3 – ident: ref4 doi: 10.1063/5.0019328 – ident: ref30 doi: 10.1109/TMAG.2013.2249576 – ident: ref8 doi: 10.1109/TMAG.2021.3084097 – ident: ref17 doi: 10.1063/1.4995991 – ident: ref11 doi: 10.1063/1.3231875 – ident: ref10 doi: 10.1038/ncomms3702 – ident: ref6 doi: 10.1088/0022-3727/43/26/264001 – year: 2013 ident: ref28 article-title: Experimental study of novel nanomagnet logic devices – ident: ref23 doi: 10.1016/j.jmmm.2017.06.057 – ident: ref29 doi: 10.1088/0953-8984/23/5/053202 – ident: ref16 doi: 10.1109/TMAG.2016.2517000 – year: 2017 ident: ref25 article-title: Experimental study of exchange-coupled nanomagnets – year: 2009 ident: ref7 publication-title: Spin Waves Theory and applications – ident: ref20 doi: 10.1038/s41467-020-15265-1 – ident: ref22 doi: 10.1063/1.4899186 – ident: ref15 doi: 10.1103/PhysRevB.103.184403 – ident: ref1 doi: 10.1016/j.physleta.2017.02.042 – ident: ref26 doi: 10.1088/0022-3719/19/35/014 – ident: ref12 doi: 10.1103/PhysRevResearch.2.043203 – year: 2021 ident: ref5 publication-title: International Roadmap for Devices and Systems 2020 Edition – ident: ref3 doi: 10.1140/epjb/e2018-80623-x – ident: ref19 doi: 10.7567/APEX.11.053002 – start-page: 283 year: 2016 ident: ref27 article-title: Magnonic crystals: From simple models toward applications publication-title: Magnetic Structures of 2D and 3D Nanoparticles – ident: ref21 doi: 10.1021/acs.nanolett.0c02645 – ident: ref13 doi: 10.1038/s41598-022-07625-2 – ident: ref18 doi: 10.1063/1.3631756 – ident: ref9 doi: 10.1038/s41467-018-03199-8 – ident: ref2 doi: 10.1038/nnano.2016.16 |
SSID | ssj0014510 |
Score | 2.4000313 |
Snippet | There has been growing interest in using spin waves as an alternative information carrier or state variable. One proposed use of spin waves is to utilize the... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1 |
SubjectTerms | Coplanar waveguides Damping exchange dominated spin waves Magnetic films Magnetic separation Magnetism Magnonics Magnons Parallel processing Radio frequency Saturation magnetization simulation spin waves Strips Transducers Wave diffraction yttrium iron garnet (YIG) |
Title | Short-Wavelength Spin-Wave Transducer Using the Transmission of Spin-Waves Across Two Magnetic Films |
URI | https://ieeexplore.ieee.org/document/10124227 https://www.proquest.com/docview/2830414417 |
Volume | 59 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bS-wwEB5UEPTB21Fcb-TBJ6G1l6RpHhdxFUFfXNG3kqvK0a64XQR_vZm0q4sHD761JSkJ3yQzk8x8A3DIjbPWyiJiyqGDwkwkmS0jw4skszmjfrFjtMVVcX5DL-7YXZesHnJhfM8QfGZjfAx3-WakJ3hUdoxcVDTL-DzMe8-tTdb6vDKgLG3zTdIS68bT7gozTcTx8LJ_FmOd8DjP_OLHbLYZJRSqqvyzFQf9MliFq-nI2rCSv_GkUbF-_0ba-Ouhr8FKZ2mSfisa6zBn6w1YnuEf3IDFEP-px3_AXD94Ozy6lViHor5vHsj1y2Md3klQZ8aLwCsJAQbE24ztRy8jeNhGRu6r-Zj0w6TJ8G1ELuV9jVmSZPD49DzehJvB6fDkPOoKMEQ6E7SJmLG8TDR3lmaaK86FoIpr53W6twwVTwXP_Y7hlBIuNS5xPDesECVltpBKunwLFupRbbeBMOpy45AsjBuqjBSFYzItCp3bLJMl60EyRaTSHTs5Fsl4qoKXkogKQawQxKoDsQdHn11eWmqO_zXeRFBmGrZ49GBvinvVrd5xhaRoFD1NvvNDt11Ywr-3cbt7sNC8Tuy-t04adRCk8gOCQN__ |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB7xUEV7KJSCuhSoD5wqJeRhx_FxhbpdHrsXFpVb5CcgIIvYrCr119fjZOmqVavekshWEn1jz9ie7xuAI26ctVYWEVMOFyjMRJLZMjK8SDKbM-oHO2ZbjIvhFT27ZtcdWT1wYXzPkHxmY7wMZ_lmque4VXaMWlQ0y_gqrDNk47Z0rZdDA8rSlnGSllg5nnaHmGkijiej_tcYK4XHeeaHP_LZltxQqKvyx2QcPMxgE8aLb2sTS-7jeaNi_eM32cb__vgteNvFmqTfGsc7WLH1NrxZUiDchlchA1TP3oO5vPWRePRNYiWK-qa5JZdPd3W4J8GhGW8EzySkGBAfNbYPvZXgdhuZul_NZ6QffppMvk_JSN7UyJMkg7uHx9kOXA2-TE6GUVeCIdKZoE3EjOVlormzNNNccS4EVVw779V9bKh4Knju5wynlHCpcYnjuWGFKCmzhVTS5buwVk9r-wEIoy43DuXCuKHKSFE4JtOi0LnNMlmyHiQLRCrd6ZNjmYyHKqxTElEhiBWCWHUg9uDzS5enVpzjX413EJSlhi0ePdhf4F5143dWoSwaxbUm3_tLt0-wMZyMLqqL0_H5R3iNb2qzePdhrXme2wMfqzTqMFjoT1kB40c |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Short-Wavelength+Spin-Wave+Transducer+Using+the+Transmission+of+Spin-Waves+Across+Two+Magnetic+Films&rft.jtitle=IEEE+transactions+on+magnetics&rft.au=Aquino%2C+Hadrian+Renaldo+O.&rft.au=Connelly%2C+David&rft.au=Orlov%2C+Alexei&rft.au=Chisum%2C+Jonathan&rft.date=2023-07-01&rft.pub=IEEE&rft.issn=0018-9464&rft.spage=1&rft.epage=1&rft_id=info:doi/10.1109%2FTMAG.2023.3276200&rft.externalDocID=10124227 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9464&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9464&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9464&client=summon |