Modeling, Optimization, and Robustness Analysis of Evidential Reasoning Rule Under Multidiscernment Framework
Evidential reasoning (ER) rule has been widely used in the fields of information fusion, multiattribute decision making, and pattern recognition. In current studies of ER rule, there is a strict one-to-one correspondence between the framework of discernment (FoD) of evidence and the FoD of reasoning...
Saved in:
Published in | IEEE transactions on aerospace and electronic systems Vol. 59; no. 6; pp. 8981 - 8994 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.12.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Evidential reasoning (ER) rule has been widely used in the fields of information fusion, multiattribute decision making, and pattern recognition. In current studies of ER rule, there is a strict one-to-one correspondence between the framework of discernment (FoD) of evidence and the FoD of reasoning results. However, this may not be satisfied in engineering practice, making it difficult to conduct the reasoning. When the element of FoD is changed, how the reasoning result will change is also a focus that deserves attention. As such, in this article, the modeling, optimization, and robustness analysis method of ER rule under multidiscernment framework is proposed. Specifically, the ER rule with transformation matrix is proposed to unify the evidence with different FoDs into the same FoD as reasoning results. A parameter optimization model is established based on the expected utility and interpretable constraints. A robustness analysis method of the proposed ER rule is proposed in the context of perturbation to further explore its performance. Particularly, the generation and transmission rules of perturbation are described, and two robustness criteria are defined. A case study of health assessment of laser gyroscope, the mainstream navigation equipment in the aerospace field, is conducted to present the implementation of the proposed method and verify its effectiveness in engineering practice. |
---|---|
AbstractList | Evidential reasoning (ER) rule has been widely used in the fields of information fusion, multiattribute decision making, and pattern recognition. In current studies of ER rule, there is a strict one-to-one correspondence between the framework of discernment (FoD) of evidence and the FoD of reasoning results. However, this may not be satisfied in engineering practice, making it difficult to conduct the reasoning. When the element of FoD is changed, how the reasoning result will change is also a focus that deserves attention. As such, in this article, the modeling, optimization, and robustness analysis method of ER rule under multidiscernment framework is proposed. Specifically, the ER rule with transformation matrix is proposed to unify the evidence with different FoDs into the same FoD as reasoning results. A parameter optimization model is established based on the expected utility and interpretable constraints. A robustness analysis method of the proposed ER rule is proposed in the context of perturbation to further explore its performance. Particularly, the generation and transmission rules of perturbation are described, and two robustness criteria are defined. A case study of health assessment of laser gyroscope, the mainstream navigation equipment in the aerospace field, is conducted to present the implementation of the proposed method and verify its effectiveness in engineering practice. |
Author | Jiang, Jiang Zhou, Zhi-Jie Tang, Shuai-Wen Cao, You Li, Zhi-Gang |
Author_xml | – sequence: 1 givenname: Shuai-Wen orcidid: 0000-0003-2375-0480 surname: Tang fullname: Tang, Shuai-Wen email: 631845201@qq.com organization: College of Systems Engineering, National University of Defense Technology, Changsha, China – sequence: 2 givenname: You orcidid: 0000-0003-3632-451X surname: Cao fullname: Cao, You email: 936756268@qq.com organization: Control Technology Teaching and Research Office, High-Tech Institute, Qingzhou, Shandong, China – sequence: 3 givenname: Jiang orcidid: 0000-0003-2483-2947 surname: Jiang fullname: Jiang, Jiang email: jiangjiangnudt@163.com organization: College of Systems Engineering, National University of Defense Technology, Changsha, China – sequence: 4 givenname: Zhi-Jie orcidid: 0000-0003-0508-4648 surname: Zhou fullname: Zhou, Zhi-Jie email: zhouzj04@tsinghua.org.cn organization: College of Automation, Rocket Force University of Engineering, Xi'an, China – sequence: 5 givenname: Zhi-Gang orcidid: 0000-0003-1587-6032 surname: Li fullname: Li, Zhi-Gang email: 3296880261@qq.com organization: College of Automation, Rocket Force University of Engineering, Xi'an, China |
BookMark | eNp9kMtKxDAUhoMoOF4eQHARcGvHXDvNcpDxAoow6rqkyalE22RMUkWf3o7jQly4Ohz4v_9wvj207YMHhI4omVJK1NnDfHE_ZYTxKeeUcUm30IRKOStUSfg2mhBCq0IxSXfRXkrP4yoqwSeovw0WOuefTvHdKrvefersgj_F2lu8DM2QsoeU8Nzr7iO5hEOLF2_Ogs9Od3gJOgU_4ng5dIAfvYWIb4cuO-uSgej7MYgvou7hPcSXA7TT6i7B4c_cR48Xi4fzq-Lm7vL6fH5TGKZELqStGLBqJlrSaK6t1kKVwIA2VlVtQywrq1bJVoiWMkNmFbPGSKOoJqQxpOT76GTTu4rhdYCU6-cwxPGFVDNFqCSCCD6m6CZlYkgpQluvout1_KgpqddW67XVem21_rE6MrM_jHH5W1mO2nX_kscb0gHAr0tMlJVk_AsW8Yic |
CODEN | IEARAX |
CitedBy_id | crossref_primary_10_1007_s10489_023_05050_0 crossref_primary_10_1109_ACCESS_2024_3476314 crossref_primary_10_1109_TASE_2024_3402099 crossref_primary_10_1016_j_aei_2025_103225 |
Cites_doi | 10.1109/TCYB.2021.3120558 10.1016/j.inffus.2017.08.009 10.23919/iconac.2017.8082048 10.3233/JIFS-182529 10.1109/TSMC.2016.2630800 10.1016/j.knosys.2022.109559 10.1080/00207547908919637 10.1016/j.cie.2022.108895 10.1016/j.artint.2013.09.003 10.1109/TAES.2022.3232597 10.1016/j.knosys.2018.10.039 10.1109/TCYB.2022.3165030 10.1070/QEL17414 10.1016/j.ijar.2020.12.009 10.1016/S0377-2217(99)00441-5 10.3233/JIFS-210286 10.1016/j.cja.2023.03.037 10.1016/j.asoc.2021.107112 10.1016/j.eswa.2022.118620 10.3390/machines10040250 10.1109/TSMCA.2002.802746 10.1016/j.ejor.2005.02.064 10.1016/j.ins.2021.06.091 10.1016/j.isatra.2021.01.013 10.1109/TSMC.2019.2944640 10.1016/j.ejor.2004.09.059 10.1364/PRJ.369521 10.1016/j.ejor.2005.03.034 10.1016/j.ress.2022.108975 10.3390/math11051145 10.1109/TCYB.2021.3051676 10.1109/TCYB.2020.3015664 10.1016/j.ins.2020.07.072 10.1109/21.259681 10.1109/TII.2022.3182780 10.1016/0004-3702(85)90064-5 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
DBID | 97E RIA RIE AAYXX CITATION 7SP 7TB 8FD FR3 H8D L7M |
DOI | 10.1109/TAES.2023.3312351 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Aerospace Database Engineering Research Database Technology Research Database Mechanical & Transportation Engineering Abstracts Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
DatabaseTitleList | Aerospace Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1557-9603 |
EndPage | 8994 |
ExternalDocumentID | 10_1109_TAES_2023_3312351 10246852 |
Genre | orig-research |
GrantInformation_xml | – fundername: Shaanxi Science and Technology Innovation Team grantid: 2022TD-24 – fundername: National Natural Science Foundation of China grantid: 62303474 funderid: 10.13039/501100001809 – fundername: New Liberal Arts Research and Reform Practice Project grantid: 2021140132 – fundername: Natural Science Foundation of Shandong Province; Shandong Provincial Natural Science Foundation grantid: ZR2023QF010 funderid: 10.13039/501100007129 |
GroupedDBID | -~X 0R~ 29I 4.4 41~ 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACIWK ACNCT AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P H~9 IAAWW IBMZZ ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 OCL P2P RIA RIE RNS TN5 VH1 AAYOK AAYXX CITATION RIG 7SP 7TB 8FD FR3 H8D L7M |
ID | FETCH-LOGICAL-c294t-5d82e2874f0ba3adaa496e2e1bd98fb0d268f95f44f12c0782dcc5c91a00bc063 |
IEDL.DBID | RIE |
ISSN | 0018-9251 |
IngestDate | Mon Jun 30 08:33:28 EDT 2025 Tue Jul 01 00:48:40 EDT 2025 Thu Apr 24 22:56:13 EDT 2025 Wed Aug 27 02:24:44 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c294t-5d82e2874f0ba3adaa496e2e1bd98fb0d268f95f44f12c0782dcc5c91a00bc063 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-3632-451X 0000-0003-0508-4648 0000-0003-1587-6032 0000-0003-2483-2947 0000-0003-2375-0480 |
PQID | 2901504043 |
PQPubID | 85477 |
PageCount | 14 |
ParticipantIDs | proquest_journals_2901504043 crossref_primary_10_1109_TAES_2023_3312351 crossref_citationtrail_10_1109_TAES_2023_3312351 ieee_primary_10246852 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-12-01 |
PublicationDateYYYYMMDD | 2023-12-01 |
PublicationDate_xml | – month: 12 year: 2023 text: 2023-12-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on aerospace and electronic systems |
PublicationTitleAbbrev | T-AES |
PublicationYear | 2023 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref35 ref12 ref34 ref15 ref37 ref14 ref36 ref31 ref30 ref11 ref33 ref10 ref32 ref2 ref1 ref17 ref16 ref19 ref18 Zhou (ref4) 2021; 47 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 ref8 ref7 ref9 ref3 ref6 ref5 |
References_xml | – ident: ref34 doi: 10.1109/TCYB.2021.3120558 – ident: ref11 doi: 10.1016/j.inffus.2017.08.009 – ident: ref10 doi: 10.23919/iconac.2017.8082048 – ident: ref12 doi: 10.3233/JIFS-182529 – ident: ref16 doi: 10.1109/TSMC.2016.2630800 – ident: ref21 doi: 10.1016/j.knosys.2022.109559 – ident: ref25 doi: 10.1080/00207547908919637 – ident: ref33 doi: 10.1016/j.cie.2022.108895 – ident: ref9 doi: 10.1016/j.artint.2013.09.003 – ident: ref3 doi: 10.1109/TAES.2022.3232597 – ident: ref17 doi: 10.1016/j.knosys.2018.10.039 – ident: ref24 doi: 10.1109/TCYB.2022.3165030 – volume: 47 start-page: 970 issue: 5 year: 2021 ident: ref4 article-title: Evidential reasoning theory and its applications publication-title: IEEECAA J. Autom. Sin. – ident: ref37 doi: 10.1070/QEL17414 – ident: ref20 doi: 10.1016/j.ijar.2020.12.009 – ident: ref26 doi: 10.1016/S0377-2217(99)00441-5 – ident: ref13 doi: 10.3233/JIFS-210286 – ident: ref15 doi: 10.1016/j.cja.2023.03.037 – ident: ref18 doi: 10.1016/j.asoc.2021.107112 – ident: ref22 doi: 10.1016/j.eswa.2022.118620 – ident: ref27 doi: 10.3390/machines10040250 – ident: ref5 doi: 10.1109/TSMCA.2002.802746 – ident: ref7 doi: 10.1016/j.ejor.2005.02.064 – ident: ref35 doi: 10.1016/j.ins.2021.06.091 – ident: ref19 doi: 10.1016/j.isatra.2021.01.013 – ident: ref28 doi: 10.1109/TSMC.2019.2944640 – ident: ref6 doi: 10.1016/j.ejor.2004.09.059 – ident: ref36 doi: 10.1364/PRJ.369521 – ident: ref8 doi: 10.1016/j.ejor.2005.03.034 – ident: ref23 doi: 10.1016/j.ress.2022.108975 – ident: ref32 doi: 10.3390/math11051145 – ident: ref14 doi: 10.1109/TCYB.2021.3051676 – ident: ref29 doi: 10.1109/TCYB.2020.3015664 – ident: ref30 doi: 10.1016/j.ins.2020.07.072 – ident: ref2 doi: 10.1109/21.259681 – ident: ref31 doi: 10.1109/TII.2022.3182780 – ident: ref1 doi: 10.1016/0004-3702(85)90064-5 |
SSID | ssj0014843 |
Score | 2.4275048 |
Snippet | Evidential reasoning (ER) rule has been widely used in the fields of information fusion, multiattribute decision making, and pattern recognition. In current... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 8981 |
SubjectTerms | Analytical models Cognition Data integration Decision making Evidential reasoning Evidential reasoning (ER) rule Expected utility framework of discernment (FoD) Laser gyroscopes Modelling Optimization Optimization models parameter optimization Pattern recognition Perturbation Perturbation methods Robustness robustness analysis Rockets |
Title | Modeling, Optimization, and Robustness Analysis of Evidential Reasoning Rule Under Multidiscernment Framework |
URI | https://ieeexplore.ieee.org/document/10246852 https://www.proquest.com/docview/2901504043 |
Volume | 59 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NS8MwGA66kx78nDidkoMnsTVN09ochziG4IS5gbeSr17cVnHtxV9v3jQdfqB4K6UpgSd58yZ5n-dB6MIuSZooRQMZmThgXMhAUpEGghaxykTKswI2ig_jdDRj98_JsyerOy6MMcYVn5kQHt1dvi5VDUdldoZTlmaJjbibdufWkLXWVwYs8yVykZ3BdtX2V5gR4dfTwd1TCD7hYRwDNzT6sgg5V5UfoditL8NdNG571pSVvIR1JUP1_k208d9d30M7PtPEg2Zo7KMNszxA25_0Bw_RApzQgI9-hR9t6Fh4TuYVFkuNJ6WsVxVEQtwql-CywI0NqY0LczwxYuVOc_GknhvsLJSwY_QC19db-OJhW_7VRbPh3fR2FHj_hUBRzqog0Rk1oIdfEClioYVgPDXURFJbCCXRNM0KnhSMFRFVkGtopRLFI0GIVDb3OUKdZbk0xwhzAgK4IhXapohRLHnGMsmkse_TG0F4D5EWkFx5cXLwyJjnbpNCeA4Y5oBh7jHsoct1k9dGmeOvj7uAyacPGzh6qN_CnvvJu8qpOwYC2aGTX5qdoi34e1PW0ked6q02ZzY5qeS5G5Qfn5fghA |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3LSsQwFA2iC3XhWxyfWbgSW5M0rc1SxGF8jTCO4K7k1Y3jjDjtxq83N03FB4q7UloaOM29N8k95yB06FKSIVqzSFGbRFxIFSkms0iyMtG5zERewkLxtp_1HvjVY_oYyOqeC2Ot9c1nNoZLf5ZvJrqGrTI3wxnP8tRF3DmX-FPa0LU-Dg14HprkqJvDLm-HQ0xKxMnw7OI-BqfwOEmAHUq_pCHvq_IjGPsM011G_XZsTWPJU1xXKtZv32Qb_z34FbQUak181vwcq2jGjtfQ4icFwnX0DF5owEg_xncueDwHVuYxlmODBxNVTyuIhbjVLsGTEjdGpC4yjPDAyqnfz8WDemSxN1HCntMLbN9g4ou7bQPYBnroXgzPe1FwYIg0E7yKUpMzC4r4JVEykUZKLjLLLFXGgaiIYVleirTkvKRMQ7VhtE61oJIQpV31s4lmx5Ox3UJYEJDAlZk0rkikiRI5zxVX1t3PTiURHURaQAod5MnBJWNU-GUKEQVgWACGRcCwg44-XnlptDn-engDMPn0YANHB-22sBdh-k4L5jeCQHho-5fXDtB8b3h7U9xc9q930AJ8qWly2UWz1Wtt91ypUql9_4O-A35C480 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Modeling%2C+Optimization%2C+and+Robustness+Analysis+of+Evidential+Reasoning+Rule+Under+Multidiscernment+Framework&rft.jtitle=IEEE+transactions+on+aerospace+and+electronic+systems&rft.au=Tang%2C+Shuai-Wen&rft.au=Cao%2C+You&rft.au=Jiang%2C+Jiang&rft.au=Zhou%2C+Zhi-Jie&rft.date=2023-12-01&rft.pub=IEEE&rft.issn=0018-9251&rft.volume=59&rft.issue=6&rft.spage=8981&rft.epage=8994&rft_id=info:doi/10.1109%2FTAES.2023.3312351&rft.externalDocID=10246852 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9251&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9251&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9251&client=summon |