A Multidataset Characterization of Window-Based Hyperparameters for Deep CNN-Driven sEMG Pattern Recognition
The control performance of myoelectric prostheses would not only depend on the feature extraction and classification algorithms but also on interactions of dynamic window-based hyperparameters (WBHP) used to construct input signals. However, the relationship between these hyperparameters and how the...
Saved in:
Published in | IEEE transactions on human-machine systems Vol. 54; no. 1; pp. 131 - 142 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.02.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The control performance of myoelectric prostheses would not only depend on the feature extraction and classification algorithms but also on interactions of dynamic window-based hyperparameters (WBHP) used to construct input signals. However, the relationship between these hyperparameters and how they influence the performance of the convolutional neural networks (CNNs) during motor intent decoding has not been studied. Therefore, we investigated the impact of various combinations of WBHP (window length and overlap) employed for the construction of raw two-dimensional (2-D) surface electromyogram (sEMG) signals on the performance of CNNs when used for motion intent decoding. Moreover, we examined the relationship between the window length of the 2-D sEMG and three commonly used CNN kernel sizes. To ensure high confidence in the findings, we implemented three CNNs, which are variants of the existing models, and a newly proposed CNN model. Experimental analysis was conducted using three distinct benchmark databases, two from upper limb amputees and one from able-bodied subjects. The results demonstrate that the performance of the CNNs improved as the overlap between consecutively generated 2-D signals increased, with 75% overlap yielding the optimal improvement by 12.62% accuracy and 39.60% F1-score compared to no overlap. Moreover, the CNNs performance was better for kernel size of seven than three and five across the databases. For the first time, we have established with multiple evidence that WBHP would substantially impact the decoding outcome and computational complexity of deep neural networks, and we anticipate that this may spur positive advancement in myoelectric control and related fields. |
---|---|
AbstractList | The control performance of myoelectric prostheses would not only depend on the feature extraction and classification algorithms but also on interactions of dynamic window-based hyperparameters (WBHP) used to construct input signals. However, the relationship between these hyperparameters and how they influence the performance of the convolutional neural networks (CNNs) during motor intent decoding has not been studied. Therefore, we investigated the impact of various combinations of WBHP (window length and overlap) employed for the construction of raw two-dimensional (2-D) surface electromyogram (sEMG) signals on the performance of CNNs when used for motion intent decoding. Moreover, we examined the relationship between the window length of the 2-D sEMG and three commonly used CNN kernel sizes. To ensure high confidence in the findings, we implemented three CNNs, which are variants of the existing models, and a newly proposed CNN model. Experimental analysis was conducted using three distinct benchmark databases, two from upper limb amputees and one from able-bodied subjects. The results demonstrate that the performance of the CNNs improved as the overlap between consecutively generated 2-D signals increased, with 75% overlap yielding the optimal improvement by 12.62% accuracy and 39.60% F1-score compared to no overlap. Moreover, the CNNs performance was better for kernel size of seven than three and five across the databases. For the first time, we have established with multiple evidence that WBHP would substantially impact the decoding outcome and computational complexity of deep neural networks, and we anticipate that this may spur positive advancement in myoelectric control and related fields. |
Author | Samuel, Oluwarotimi Williams Zhang, Haoshi Asogbon, Mojisola Grace Scheme, Erik Khushaba, Rami Kulwa, Frank McEwan, Alistair A. Li, Guanglin |
Author_xml | – sequence: 1 givenname: Frank orcidid: 0000-0001-7003-1716 surname: Kulwa fullname: Kulwa, Frank email: frankkulwankulila@siat.ac.cn organization: CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institute of Artificial Intelligence and Robotics for Society, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China – sequence: 2 givenname: Haoshi orcidid: 0000-0003-2771-4436 surname: Zhang fullname: Zhang, Haoshi email: zhanghaoshi@siat.ac.cn organization: CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institute of Artificial Intelligence and Robotics for Society, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China – sequence: 3 givenname: Oluwarotimi Williams orcidid: 0000-0003-1945-1402 surname: Samuel fullname: Samuel, Oluwarotimi Williams email: samuel@siat.ac.cn organization: CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institute of Artificial Intelligence and Robotics for Society, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China – sequence: 4 givenname: Mojisola Grace orcidid: 0009-0006-1503-9356 surname: Asogbon fullname: Asogbon, Mojisola Grace email: grace@siat.ac.cn organization: CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institute of Artificial Intelligence and Robotics for Society, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China – sequence: 5 givenname: Erik orcidid: 0000-0002-4421-1016 surname: Scheme fullname: Scheme, Erik email: escheme@unb.ca organization: Institute of Biomedical Engineering, University of New Brunswick, Fredericton, NB, Canada – sequence: 6 givenname: Rami orcidid: 0000-0001-8528-8979 surname: Khushaba fullname: Khushaba, Rami email: rkhushab@gmail.com organization: Australian Centre for Field Robotics, Sydney University, Chippendale, NSW, Australia – sequence: 7 givenname: Alistair A. orcidid: 0000-0002-6660-3192 surname: McEwan fullname: McEwan, Alistair A. email: a.mcewan@derby.ac.uk organization: School of Computing and Engineering, University of Derby, Derby, U.K – sequence: 8 givenname: Guanglin orcidid: 0000-0001-9016-2617 surname: Li fullname: Li, Guanglin email: gl.li@siat.ac.cn organization: CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institute of Artificial Intelligence and Robotics for Society, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China |
BookMark | eNp9kEtLAzEQx4MoWB8fQPAQ8Lw1jyYmx1ofFWwVH3hcsruzmlI3a5Iq9dObtRXEg3OZOfz-M8xvB202rgGEDijpU0r08cN4ct9nhPE-50wLLjdQj1GpMsaJ2PyZmabbaD-EGUmlmBBC9dB8iCeLebSViSZAxKMX400ZwdtPE61rsKvxk20q95GdJqDC42ULvk3QKyQq4Np5fAbQ4tF0mp15-w4NDueTS3xrYgIafAele25st2wPbdVmHmB_3XfR48X5w2icXd9cXo2G11nJ9CBmgnIqayWI0aKQStMyNU0HEpgxtVRMKVrzAVQVUboAQopCkpqUoLQhrBB8Fx2t9rbevS0gxHzmFr5JJ3OmkyclFemokxVVeheChzovbfx-Onpj5zkleWc37-zmnd18bTcl6Z9k6-2r8ct_M4erjAWAXzyXhHPKvwDghIc3 |
CODEN | ITHSA6 |
CitedBy_id | crossref_primary_10_1016_j_bspc_2024_106803 crossref_primary_10_1016_j_heliyon_2024_e28716 crossref_primary_10_3390_s24092702 |
Cites_doi | 10.3389/fnins.2017.00379 10.1038/sdata.2014.53 10.1109/TNSRE.2010.2100828 10.1109/EMBC.2016.7591039 10.1109/IJCNN.2017.7966185 10.1109/GlobalSIP45357.2019.8969418 10.1038/srep36571 10.1109/EMBC.2019.8856648 10.1016/j.compag.2022.107264 10.1109/EMBC.2019.8857638 10.1109/SMC.2018.00035 10.1088/1741-2560/13/3/036001 10.3389/fnins.2016.00114 10.1109/LSENS.2019.2898257 10.1109/EMBC44109.2020.9175260 10.1109/LRA.2021.3062320 10.1109/TNSRE.2014.2366752 10.1109/ISFEE.2018.8742484 10.5220/0006960201070114 10.3389/fnbot.2021.659876 10.1109/ACCESS.2020.2990770 10.1109/TNSRE.2021.3077413 10.18100/ijamec.795227 10.1016/j.bspc.2021.103062 10.1088/1741-2560/13/4/046011 10.1049/iet-csr.2020.0008 10.1109/TNSRE.2019.2896269 10.1007/s10462-021-10033-z 10.1109/ACCESS.2019.2891350 10.1109/DEPCOS-RELCOMEX.2006.38 10.1109/LRA.2021.3111850 10.1109/TBCAS.2019.2959160 10.1109/MetroInd4.0IoT54413.2022.9831573 10.3389/fbioe.2020.00158 10.1109/SSCI.2017.8280908 10.1109/ICDSP.2017.8096153 10.1109/ICoIAS.2018.8494201 10.1109/THMS.2019.2925191 10.3390/app10217639 10.1007/s12555-019-0802-1 10.3390/sym12101710 10.1109/TNSRE.2013.2294907 10.1109/TNSRE.2009.2039590 10.3389/fnbot.2016.00009 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 7TB 8FD FR3 JQ2 L7M L~C L~D |
DOI | 10.1109/THMS.2023.3329536 |
DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Technology Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2168-2305 |
EndPage | 142 |
ExternalDocumentID | 10_1109_THMS_2023_3329536 10360331 |
Genre | orig-research |
GrantInformation_xml | – fundername: Ministry of Science and Technology, Shenzhen grantid: #QN2022032013L – fundername: National Natural Science Foundation of China grantid: #62150410439 funderid: 10.13039/501100001809 – fundername: Key-Area Research and Development Program of Guangdong Province grantid: 2020B0909020004 – fundername: Science and Technology Program of Guangdong Province grantid: #2022A0505090007 – fundername: ANSO Scholarship for Young Talented Students – fundername: Innovative Talent Exchange Program for Foreign Experts grantid: DL2022024002L – fundername: Jinan 5150 Program for Talents Introduction – fundername: Guangdong Basic and Applied Research Foundation grantid: #2023A1515011478 |
GroupedDBID | 0R~ 4.4 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACIWK AENEX AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD HZ~ IFIPE IPLJI JAVBF M43 O9- OCL PQQKQ RIA RIE RNS AAYXX CITATION RIG 7SC 7SP 7TB 8FD FR3 JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c294t-51316f850a95b6891c5b69146e2aaf682881f34edd089be00bb60f0ce89a02b53 |
IEDL.DBID | RIE |
ISSN | 2168-2291 |
IngestDate | Sun Jun 29 16:35:51 EDT 2025 Tue Jul 01 03:01:00 EDT 2025 Thu Apr 24 23:04:28 EDT 2025 Wed Aug 27 02:02:12 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c294t-51316f850a95b6891c5b69146e2aaf682881f34edd089be00bb60f0ce89a02b53 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-4421-1016 0009-0006-1503-9356 0000-0001-7003-1716 0000-0003-1945-1402 0000-0002-6660-3192 0000-0001-9016-2617 0000-0001-8528-8979 0000-0003-2771-4436 |
PQID | 2920286805 |
PQPubID | 85416 |
PageCount | 12 |
ParticipantIDs | crossref_citationtrail_10_1109_THMS_2023_3329536 crossref_primary_10_1109_THMS_2023_3329536 proquest_journals_2920286805 ieee_primary_10360331 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-Feb. 2024-2-00 20240201 |
PublicationDateYYYYMMDD | 2024-02-01 |
PublicationDate_xml | – month: 02 year: 2024 text: 2024-Feb. |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on human-machine systems |
PublicationTitleAbbrev | THMS |
PublicationYear | 2024 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref12 ref15 ref14 ref11 ref10 Zhang (ref47) ref17 ref16 ref19 ref18 ref50 ref48 ref42 ref41 ref44 ref43 ref49 ref8 ref7 Farrell (ref25) ref9 ref4 ref3 ref6 ref5 ref35 ref34 Kingma (ref45) ref37 ref36 ref31 ref30 ref33 ref32 ref2 ref1 ref38 ref24 ref23 ref26 Yu (ref39) 2015 ref20 ref22 ref21 ref28 ref27 ref29 Ruder (ref46) 2016 Bai (ref40) 2018 |
References_xml | – ident: ref14 doi: 10.3389/fnins.2017.00379 – ident: ref30 doi: 10.1038/sdata.2014.53 – volume-title: Proc. Myoelectric Symp. ident: ref25 article-title: Analysis window induced controller delay for multifunctional prostheses – ident: ref26 doi: 10.1109/TNSRE.2010.2100828 – ident: ref11 doi: 10.1109/EMBC.2016.7591039 – year: 2016 ident: ref46 article-title: An overview of gradient descent optimization algorithms – ident: ref44 doi: 10.1109/IJCNN.2017.7966185 – ident: ref22 doi: 10.1109/GlobalSIP45357.2019.8969418 – ident: ref29 doi: 10.1038/srep36571 – ident: ref19 doi: 10.1109/EMBC.2019.8856648 – ident: ref35 doi: 10.1016/j.compag.2022.107264 – ident: ref12 doi: 10.1109/EMBC.2019.8857638 – ident: ref36 doi: 10.1109/SMC.2018.00035 – ident: ref5 doi: 10.1088/1741-2560/13/3/036001 – ident: ref4 doi: 10.3389/fnins.2016.00114 – ident: ref2 doi: 10.1109/LSENS.2019.2898257 – ident: ref31 doi: 10.1109/EMBC44109.2020.9175260 – ident: ref23 doi: 10.1109/LRA.2021.3062320 – ident: ref49 doi: 10.1109/TNSRE.2014.2366752 – ident: ref28 doi: 10.1109/ISFEE.2018.8742484 – ident: ref18 doi: 10.5220/0006960201070114 – ident: ref10 doi: 10.3389/fnbot.2021.659876 – year: 2018 ident: ref40 article-title: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling – ident: ref38 doi: 10.1109/ACCESS.2020.2990770 – ident: ref20 doi: 10.1109/TNSRE.2021.3077413 – volume-title: Proc. Adv. Neural Inf. Process. Syst. ident: ref47 article-title: Generalized cross entropy loss for training deep neural networks with noisy labels – year: 2015 ident: ref39 article-title: Multi-scale context aggregation by dilated convolutions – ident: ref16 doi: 10.18100/ijamec.795227 – ident: ref3 doi: 10.1016/j.bspc.2021.103062 – ident: ref27 doi: 10.1088/1741-2560/13/4/046011 – ident: ref1 doi: 10.1049/iet-csr.2020.0008 – ident: ref48 doi: 10.1109/TNSRE.2019.2896269 – ident: ref37 doi: 10.1007/s10462-021-10033-z – start-page: 1 volume-title: Proc. Int. Conf. Learn. Representations ident: ref45 article-title: Adam: A method for stochastic optimization – ident: ref50 doi: 10.1109/ACCESS.2019.2891350 – ident: ref33 doi: 10.1109/DEPCOS-RELCOMEX.2006.38 – ident: ref13 doi: 10.1109/LRA.2021.3111850 – ident: ref17 doi: 10.1109/TBCAS.2019.2959160 – ident: ref34 doi: 10.1109/MetroInd4.0IoT54413.2022.9831573 – ident: ref9 doi: 10.3389/fbioe.2020.00158 – ident: ref32 doi: 10.1109/SSCI.2017.8280908 – ident: ref42 doi: 10.1109/ICDSP.2017.8096153 – ident: ref41 doi: 10.1109/ICoIAS.2018.8494201 – ident: ref7 doi: 10.1109/THMS.2019.2925191 – ident: ref43 doi: 10.3390/app10217639 – ident: ref15 doi: 10.1007/s12555-019-0802-1 – ident: ref24 doi: 10.3390/sym12101710 – ident: ref6 doi: 10.1109/TNSRE.2013.2294907 – ident: ref8 doi: 10.1109/TNSRE.2009.2039590 – ident: ref21 doi: 10.3389/fnbot.2016.00009 |
SSID | ssj0000825558 |
Score | 2.4334407 |
Snippet | The control performance of myoelectric prostheses would not only depend on the feature extraction and classification algorithms but also on interactions of... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 131 |
SubjectTerms | Algorithms Artificial neural networks Convolution neural network (CNN) Convolutional neural networks Decoding Electromyography Feature extraction Kernels Myoelectric control Myoelectricity Neural networks Pattern recognition Prostheses Prosthetics surface electromyogram (sEMG) signal upper limb window length window overlap Windows |
Title | A Multidataset Characterization of Window-Based Hyperparameters for Deep CNN-Driven sEMG Pattern Recognition |
URI | https://ieeexplore.ieee.org/document/10360331 https://www.proquest.com/docview/2920286805 |
Volume | 54 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwELWgJzhAC0UsFOQDJ6QEf8SufWy3LSukXSFoRW9R7EwutEm1m1Wl_npmnOyqgEA9JYdxZOnZ43nxvBnGPkARncWjJRO1QoISFfpBdxgyIPIgg7ehIYHzfGFnF8WXS3M5itWTFgYAUvIZ5PSa7vLrLq7pVxnucG2FJtX0Y2Rug1hr-0OFuI5J_TiVtIi-8nK8xZTCfzqfzb_n1Co811rRleVv51BqrPKXN05HzNlztthMbsgs-Zmv-5DHuz_qNj549rvs2Rhs8qNhdeyxR9C-YE_vlSB8ya6OeNLgUqboCno-3RZwHvSZvGv4D-Tt3W12jAY1nyFxXVLB8GtKpFlxDHr5CcANny4W2cmSnCdfnc4_86-pcmfLv21SlLp2n12cnZ5PZ9nYgSGLyhd9ZqSWtnFGVN4E67yM-PDoXEFVVWORrTnZ6ALqWjgfQIgQrGhEBOcroYLRr9hO27XwmnFtvD-sLASHX0Y3UcXCONAyBoxhQKsJExs8yjiWJ6cuGVdloinClwRhSRCWI4QT9nE75GaozfE_432C5J7hgMaEHWxQL8ftuyqphZdy1gnz5h_D3rInaFIM-dsHbKdfruEdhid9eJ-W5S9ugd6W |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZQewAOPIu60IIPnJAS_Ihd-9huWwJ0IwRb0VsUO5MLJal2s6rUX9-xk10VEIhTchhblj57HvZ8M4S8hcwbjaYlYbXAAMUL1IPmwCUQggfurHZNIDjPCp2fZ58u1MVIVo9cGACIyWeQht_4ll93fhWuyvCES81kYE1vo-FXfKBrba5UQrSjYkdOwTXiLywf3zE5s-_n-exbGpqFp1KK8Gj5iyWKrVX-0MfRyJw-JsV6eUNuyY901bvU3_xWufG_1_-EPBrdTXo47I-n5B60z8jDO0UIn5PLQxpZuCFXdAk9nW5KOA8MTdo19DtG7t11coQCNc0xdF2EkuE_QyrNkqLbS48Brui0KJLjRVCfdHky-0C_xNqdLf26TlLq2h1yfnoyn-bJ2IMh8cJmfaK45LoxilVWOW0s9_ixqF5BVFWjMV4zvJEZ1DUz1gFjzmnWMA_GVkw4JV-QrbZrYZdQqaw9qDQ4gzOjoqh8pgxI7h16MSDFhLA1HqUfC5SHPhmXZQxUmC0DhGWAsBwhnJB3myFXQ3WOfwnvBEjuCA5oTMjeGvVyPMDLMjTxEkYbpl7-Zdgbcj-fz87Ks4_F51fkAYpnQzb3HtnqFyvYR2eld6_jFr0FNVDh3w |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Multidataset+Characterization+of+Window-Based+Hyperparameters+for+Deep+CNN-Driven+sEMG+Pattern+Recognition&rft.jtitle=IEEE+transactions+on+human-machine+systems&rft.au=Kulwa%2C+Frank&rft.au=Zhang%2C+Haoshi&rft.au=Samuel%2C+Oluwarotimi+Williams&rft.au=Asogbon%2C+Mojisola+Grace&rft.date=2024-02-01&rft.pub=IEEE&rft.issn=2168-2291&rft.volume=54&rft.issue=1&rft.spage=131&rft.epage=142&rft_id=info:doi/10.1109%2FTHMS.2023.3329536&rft.externalDocID=10360331 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2291&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2291&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2291&client=summon |