A Multidataset Characterization of Window-Based Hyperparameters for Deep CNN-Driven sEMG Pattern Recognition

The control performance of myoelectric prostheses would not only depend on the feature extraction and classification algorithms but also on interactions of dynamic window-based hyperparameters (WBHP) used to construct input signals. However, the relationship between these hyperparameters and how the...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on human-machine systems Vol. 54; no. 1; pp. 131 - 142
Main Authors Kulwa, Frank, Zhang, Haoshi, Samuel, Oluwarotimi Williams, Asogbon, Mojisola Grace, Scheme, Erik, Khushaba, Rami, McEwan, Alistair A., Li, Guanglin
Format Journal Article
LanguageEnglish
Published New York IEEE 01.02.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The control performance of myoelectric prostheses would not only depend on the feature extraction and classification algorithms but also on interactions of dynamic window-based hyperparameters (WBHP) used to construct input signals. However, the relationship between these hyperparameters and how they influence the performance of the convolutional neural networks (CNNs) during motor intent decoding has not been studied. Therefore, we investigated the impact of various combinations of WBHP (window length and overlap) employed for the construction of raw two-dimensional (2-D) surface electromyogram (sEMG) signals on the performance of CNNs when used for motion intent decoding. Moreover, we examined the relationship between the window length of the 2-D sEMG and three commonly used CNN kernel sizes. To ensure high confidence in the findings, we implemented three CNNs, which are variants of the existing models, and a newly proposed CNN model. Experimental analysis was conducted using three distinct benchmark databases, two from upper limb amputees and one from able-bodied subjects. The results demonstrate that the performance of the CNNs improved as the overlap between consecutively generated 2-D signals increased, with 75% overlap yielding the optimal improvement by 12.62% accuracy and 39.60% F1-score compared to no overlap. Moreover, the CNNs performance was better for kernel size of seven than three and five across the databases. For the first time, we have established with multiple evidence that WBHP would substantially impact the decoding outcome and computational complexity of deep neural networks, and we anticipate that this may spur positive advancement in myoelectric control and related fields.
AbstractList The control performance of myoelectric prostheses would not only depend on the feature extraction and classification algorithms but also on interactions of dynamic window-based hyperparameters (WBHP) used to construct input signals. However, the relationship between these hyperparameters and how they influence the performance of the convolutional neural networks (CNNs) during motor intent decoding has not been studied. Therefore, we investigated the impact of various combinations of WBHP (window length and overlap) employed for the construction of raw two-dimensional (2-D) surface electromyogram (sEMG) signals on the performance of CNNs when used for motion intent decoding. Moreover, we examined the relationship between the window length of the 2-D sEMG and three commonly used CNN kernel sizes. To ensure high confidence in the findings, we implemented three CNNs, which are variants of the existing models, and a newly proposed CNN model. Experimental analysis was conducted using three distinct benchmark databases, two from upper limb amputees and one from able-bodied subjects. The results demonstrate that the performance of the CNNs improved as the overlap between consecutively generated 2-D signals increased, with 75% overlap yielding the optimal improvement by 12.62% accuracy and 39.60% F1-score compared to no overlap. Moreover, the CNNs performance was better for kernel size of seven than three and five across the databases. For the first time, we have established with multiple evidence that WBHP would substantially impact the decoding outcome and computational complexity of deep neural networks, and we anticipate that this may spur positive advancement in myoelectric control and related fields.
Author Samuel, Oluwarotimi Williams
Zhang, Haoshi
Asogbon, Mojisola Grace
Scheme, Erik
Khushaba, Rami
Kulwa, Frank
McEwan, Alistair A.
Li, Guanglin
Author_xml – sequence: 1
  givenname: Frank
  orcidid: 0000-0001-7003-1716
  surname: Kulwa
  fullname: Kulwa, Frank
  email: frankkulwankulila@siat.ac.cn
  organization: CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institute of Artificial Intelligence and Robotics for Society, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
– sequence: 2
  givenname: Haoshi
  orcidid: 0000-0003-2771-4436
  surname: Zhang
  fullname: Zhang, Haoshi
  email: zhanghaoshi@siat.ac.cn
  organization: CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institute of Artificial Intelligence and Robotics for Society, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
– sequence: 3
  givenname: Oluwarotimi Williams
  orcidid: 0000-0003-1945-1402
  surname: Samuel
  fullname: Samuel, Oluwarotimi Williams
  email: samuel@siat.ac.cn
  organization: CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institute of Artificial Intelligence and Robotics for Society, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
– sequence: 4
  givenname: Mojisola Grace
  orcidid: 0009-0006-1503-9356
  surname: Asogbon
  fullname: Asogbon, Mojisola Grace
  email: grace@siat.ac.cn
  organization: CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institute of Artificial Intelligence and Robotics for Society, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
– sequence: 5
  givenname: Erik
  orcidid: 0000-0002-4421-1016
  surname: Scheme
  fullname: Scheme, Erik
  email: escheme@unb.ca
  organization: Institute of Biomedical Engineering, University of New Brunswick, Fredericton, NB, Canada
– sequence: 6
  givenname: Rami
  orcidid: 0000-0001-8528-8979
  surname: Khushaba
  fullname: Khushaba, Rami
  email: rkhushab@gmail.com
  organization: Australian Centre for Field Robotics, Sydney University, Chippendale, NSW, Australia
– sequence: 7
  givenname: Alistair A.
  orcidid: 0000-0002-6660-3192
  surname: McEwan
  fullname: McEwan, Alistair A.
  email: a.mcewan@derby.ac.uk
  organization: School of Computing and Engineering, University of Derby, Derby, U.K
– sequence: 8
  givenname: Guanglin
  orcidid: 0000-0001-9016-2617
  surname: Li
  fullname: Li, Guanglin
  email: gl.li@siat.ac.cn
  organization: CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institute of Artificial Intelligence and Robotics for Society, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
BookMark eNp9kEtLAzEQx4MoWB8fQPAQ8Lw1jyYmx1ofFWwVH3hcsruzmlI3a5Iq9dObtRXEg3OZOfz-M8xvB202rgGEDijpU0r08cN4ct9nhPE-50wLLjdQj1GpMsaJ2PyZmabbaD-EGUmlmBBC9dB8iCeLebSViSZAxKMX400ZwdtPE61rsKvxk20q95GdJqDC42ULvk3QKyQq4Np5fAbQ4tF0mp15-w4NDueTS3xrYgIafAele25st2wPbdVmHmB_3XfR48X5w2icXd9cXo2G11nJ9CBmgnIqayWI0aKQStMyNU0HEpgxtVRMKVrzAVQVUboAQopCkpqUoLQhrBB8Fx2t9rbevS0gxHzmFr5JJ3OmkyclFemokxVVeheChzovbfx-Onpj5zkleWc37-zmnd18bTcl6Z9k6-2r8ct_M4erjAWAXzyXhHPKvwDghIc3
CODEN ITHSA6
CitedBy_id crossref_primary_10_1016_j_bspc_2024_106803
crossref_primary_10_1016_j_heliyon_2024_e28716
crossref_primary_10_3390_s24092702
Cites_doi 10.3389/fnins.2017.00379
10.1038/sdata.2014.53
10.1109/TNSRE.2010.2100828
10.1109/EMBC.2016.7591039
10.1109/IJCNN.2017.7966185
10.1109/GlobalSIP45357.2019.8969418
10.1038/srep36571
10.1109/EMBC.2019.8856648
10.1016/j.compag.2022.107264
10.1109/EMBC.2019.8857638
10.1109/SMC.2018.00035
10.1088/1741-2560/13/3/036001
10.3389/fnins.2016.00114
10.1109/LSENS.2019.2898257
10.1109/EMBC44109.2020.9175260
10.1109/LRA.2021.3062320
10.1109/TNSRE.2014.2366752
10.1109/ISFEE.2018.8742484
10.5220/0006960201070114
10.3389/fnbot.2021.659876
10.1109/ACCESS.2020.2990770
10.1109/TNSRE.2021.3077413
10.18100/ijamec.795227
10.1016/j.bspc.2021.103062
10.1088/1741-2560/13/4/046011
10.1049/iet-csr.2020.0008
10.1109/TNSRE.2019.2896269
10.1007/s10462-021-10033-z
10.1109/ACCESS.2019.2891350
10.1109/DEPCOS-RELCOMEX.2006.38
10.1109/LRA.2021.3111850
10.1109/TBCAS.2019.2959160
10.1109/MetroInd4.0IoT54413.2022.9831573
10.3389/fbioe.2020.00158
10.1109/SSCI.2017.8280908
10.1109/ICDSP.2017.8096153
10.1109/ICoIAS.2018.8494201
10.1109/THMS.2019.2925191
10.3390/app10217639
10.1007/s12555-019-0802-1
10.3390/sym12101710
10.1109/TNSRE.2013.2294907
10.1109/TNSRE.2009.2039590
10.3389/fnbot.2016.00009
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
7TB
8FD
FR3
JQ2
L7M
L~C
L~D
DOI 10.1109/THMS.2023.3329536
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2168-2305
EndPage 142
ExternalDocumentID 10_1109_THMS_2023_3329536
10360331
Genre orig-research
GrantInformation_xml – fundername: Ministry of Science and Technology, Shenzhen
  grantid: #QN2022032013L
– fundername: National Natural Science Foundation of China
  grantid: #62150410439
  funderid: 10.13039/501100001809
– fundername: Key-Area Research and Development Program of Guangdong Province
  grantid: 2020B0909020004
– fundername: Science and Technology Program of Guangdong Province
  grantid: #2022A0505090007
– fundername: ANSO Scholarship for Young Talented Students
– fundername: Innovative Talent Exchange Program for Foreign Experts
  grantid: DL2022024002L
– fundername: Jinan 5150 Program for Talents Introduction
– fundername: Guangdong Basic and Applied Research Foundation
  grantid: #2023A1515011478
GroupedDBID 0R~
4.4
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
AENEX
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
HZ~
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
RIG
7SC
7SP
7TB
8FD
FR3
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c294t-51316f850a95b6891c5b69146e2aaf682881f34edd089be00bb60f0ce89a02b53
IEDL.DBID RIE
ISSN 2168-2291
IngestDate Sun Jun 29 16:35:51 EDT 2025
Tue Jul 01 03:01:00 EDT 2025
Thu Apr 24 23:04:28 EDT 2025
Wed Aug 27 02:02:12 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c294t-51316f850a95b6891c5b69146e2aaf682881f34edd089be00bb60f0ce89a02b53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-4421-1016
0009-0006-1503-9356
0000-0001-7003-1716
0000-0003-1945-1402
0000-0002-6660-3192
0000-0001-9016-2617
0000-0001-8528-8979
0000-0003-2771-4436
PQID 2920286805
PQPubID 85416
PageCount 12
ParticipantIDs crossref_citationtrail_10_1109_THMS_2023_3329536
crossref_primary_10_1109_THMS_2023_3329536
proquest_journals_2920286805
ieee_primary_10360331
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-Feb.
2024-2-00
20240201
PublicationDateYYYYMMDD 2024-02-01
PublicationDate_xml – month: 02
  year: 2024
  text: 2024-Feb.
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on human-machine systems
PublicationTitleAbbrev THMS
PublicationYear 2024
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref11
ref10
Zhang (ref47)
ref17
ref16
ref19
ref18
ref50
ref48
ref42
ref41
ref44
ref43
ref49
ref8
ref7
Farrell (ref25)
ref9
ref4
ref3
ref6
ref5
ref35
ref34
Kingma (ref45)
ref37
ref36
ref31
ref30
ref33
ref32
ref2
ref1
ref38
ref24
ref23
ref26
Yu (ref39) 2015
ref20
ref22
ref21
ref28
ref27
ref29
Ruder (ref46) 2016
Bai (ref40) 2018
References_xml – ident: ref14
  doi: 10.3389/fnins.2017.00379
– ident: ref30
  doi: 10.1038/sdata.2014.53
– volume-title: Proc. Myoelectric Symp.
  ident: ref25
  article-title: Analysis window induced controller delay for multifunctional prostheses
– ident: ref26
  doi: 10.1109/TNSRE.2010.2100828
– ident: ref11
  doi: 10.1109/EMBC.2016.7591039
– year: 2016
  ident: ref46
  article-title: An overview of gradient descent optimization algorithms
– ident: ref44
  doi: 10.1109/IJCNN.2017.7966185
– ident: ref22
  doi: 10.1109/GlobalSIP45357.2019.8969418
– ident: ref29
  doi: 10.1038/srep36571
– ident: ref19
  doi: 10.1109/EMBC.2019.8856648
– ident: ref35
  doi: 10.1016/j.compag.2022.107264
– ident: ref12
  doi: 10.1109/EMBC.2019.8857638
– ident: ref36
  doi: 10.1109/SMC.2018.00035
– ident: ref5
  doi: 10.1088/1741-2560/13/3/036001
– ident: ref4
  doi: 10.3389/fnins.2016.00114
– ident: ref2
  doi: 10.1109/LSENS.2019.2898257
– ident: ref31
  doi: 10.1109/EMBC44109.2020.9175260
– ident: ref23
  doi: 10.1109/LRA.2021.3062320
– ident: ref49
  doi: 10.1109/TNSRE.2014.2366752
– ident: ref28
  doi: 10.1109/ISFEE.2018.8742484
– ident: ref18
  doi: 10.5220/0006960201070114
– ident: ref10
  doi: 10.3389/fnbot.2021.659876
– year: 2018
  ident: ref40
  article-title: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling
– ident: ref38
  doi: 10.1109/ACCESS.2020.2990770
– ident: ref20
  doi: 10.1109/TNSRE.2021.3077413
– volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref47
  article-title: Generalized cross entropy loss for training deep neural networks with noisy labels
– year: 2015
  ident: ref39
  article-title: Multi-scale context aggregation by dilated convolutions
– ident: ref16
  doi: 10.18100/ijamec.795227
– ident: ref3
  doi: 10.1016/j.bspc.2021.103062
– ident: ref27
  doi: 10.1088/1741-2560/13/4/046011
– ident: ref1
  doi: 10.1049/iet-csr.2020.0008
– ident: ref48
  doi: 10.1109/TNSRE.2019.2896269
– ident: ref37
  doi: 10.1007/s10462-021-10033-z
– start-page: 1
  volume-title: Proc. Int. Conf. Learn. Representations
  ident: ref45
  article-title: Adam: A method for stochastic optimization
– ident: ref50
  doi: 10.1109/ACCESS.2019.2891350
– ident: ref33
  doi: 10.1109/DEPCOS-RELCOMEX.2006.38
– ident: ref13
  doi: 10.1109/LRA.2021.3111850
– ident: ref17
  doi: 10.1109/TBCAS.2019.2959160
– ident: ref34
  doi: 10.1109/MetroInd4.0IoT54413.2022.9831573
– ident: ref9
  doi: 10.3389/fbioe.2020.00158
– ident: ref32
  doi: 10.1109/SSCI.2017.8280908
– ident: ref42
  doi: 10.1109/ICDSP.2017.8096153
– ident: ref41
  doi: 10.1109/ICoIAS.2018.8494201
– ident: ref7
  doi: 10.1109/THMS.2019.2925191
– ident: ref43
  doi: 10.3390/app10217639
– ident: ref15
  doi: 10.1007/s12555-019-0802-1
– ident: ref24
  doi: 10.3390/sym12101710
– ident: ref6
  doi: 10.1109/TNSRE.2013.2294907
– ident: ref8
  doi: 10.1109/TNSRE.2009.2039590
– ident: ref21
  doi: 10.3389/fnbot.2016.00009
SSID ssj0000825558
Score 2.4334407
Snippet The control performance of myoelectric prostheses would not only depend on the feature extraction and classification algorithms but also on interactions of...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 131
SubjectTerms Algorithms
Artificial neural networks
Convolution neural network (CNN)
Convolutional neural networks
Decoding
Electromyography
Feature extraction
Kernels
Myoelectric control
Myoelectricity
Neural networks
Pattern recognition
Prostheses
Prosthetics
surface electromyogram (sEMG) signal
upper limb
window length
window overlap
Windows
Title A Multidataset Characterization of Window-Based Hyperparameters for Deep CNN-Driven sEMG Pattern Recognition
URI https://ieeexplore.ieee.org/document/10360331
https://www.proquest.com/docview/2920286805
Volume 54
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwELWgJzhAC0UsFOQDJ6QEf8SufWy3LSukXSFoRW9R7EwutEm1m1Wl_npmnOyqgEA9JYdxZOnZ43nxvBnGPkARncWjJRO1QoISFfpBdxgyIPIgg7ehIYHzfGFnF8WXS3M5itWTFgYAUvIZ5PSa7vLrLq7pVxnucG2FJtX0Y2Rug1hr-0OFuI5J_TiVtIi-8nK8xZTCfzqfzb_n1Co811rRleVv51BqrPKXN05HzNlztthMbsgs-Zmv-5DHuz_qNj549rvs2Rhs8qNhdeyxR9C-YE_vlSB8ya6OeNLgUqboCno-3RZwHvSZvGv4D-Tt3W12jAY1nyFxXVLB8GtKpFlxDHr5CcANny4W2cmSnCdfnc4_86-pcmfLv21SlLp2n12cnZ5PZ9nYgSGLyhd9ZqSWtnFGVN4E67yM-PDoXEFVVWORrTnZ6ALqWjgfQIgQrGhEBOcroYLRr9hO27XwmnFtvD-sLASHX0Y3UcXCONAyBoxhQKsJExs8yjiWJ6cuGVdloinClwRhSRCWI4QT9nE75GaozfE_432C5J7hgMaEHWxQL8ftuyqphZdy1gnz5h_D3rInaFIM-dsHbKdfruEdhid9eJ-W5S9ugd6W
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZQewAOPIu60IIPnJAS_Ihd-9huWwJ0IwRb0VsUO5MLJal2s6rUX9-xk10VEIhTchhblj57HvZ8M4S8hcwbjaYlYbXAAMUL1IPmwCUQggfurHZNIDjPCp2fZ58u1MVIVo9cGACIyWeQht_4ll93fhWuyvCES81kYE1vo-FXfKBrba5UQrSjYkdOwTXiLywf3zE5s-_n-exbGpqFp1KK8Gj5iyWKrVX-0MfRyJw-JsV6eUNuyY901bvU3_xWufG_1_-EPBrdTXo47I-n5B60z8jDO0UIn5PLQxpZuCFXdAk9nW5KOA8MTdo19DtG7t11coQCNc0xdF2EkuE_QyrNkqLbS48Brui0KJLjRVCfdHky-0C_xNqdLf26TlLq2h1yfnoyn-bJ2IMh8cJmfaK45LoxilVWOW0s9_ixqF5BVFWjMV4zvJEZ1DUz1gFjzmnWMA_GVkw4JV-QrbZrYZdQqaw9qDQ4gzOjoqh8pgxI7h16MSDFhLA1HqUfC5SHPhmXZQxUmC0DhGWAsBwhnJB3myFXQ3WOfwnvBEjuCA5oTMjeGvVyPMDLMjTxEkYbpl7-Zdgbcj-fz87Ks4_F51fkAYpnQzb3HtnqFyvYR2eld6_jFr0FNVDh3w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Multidataset+Characterization+of+Window-Based+Hyperparameters+for+Deep+CNN-Driven+sEMG+Pattern+Recognition&rft.jtitle=IEEE+transactions+on+human-machine+systems&rft.au=Kulwa%2C+Frank&rft.au=Zhang%2C+Haoshi&rft.au=Samuel%2C+Oluwarotimi+Williams&rft.au=Asogbon%2C+Mojisola+Grace&rft.date=2024-02-01&rft.pub=IEEE&rft.issn=2168-2291&rft.volume=54&rft.issue=1&rft.spage=131&rft.epage=142&rft_id=info:doi/10.1109%2FTHMS.2023.3329536&rft.externalDocID=10360331
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2291&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2291&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2291&client=summon