Material-Guided Multiview Fusion Network for Hyperspectral Object Tracking
Hyperspectral videos (HSVs) have more potential in object tracking than color videos, thanks to their material identification ability. Nevertheless, previous works have not fully explored the benefits of the material information, resulting in limited representation ability and tracking accuracy. To...
Saved in:
Published in | IEEE transactions on geoscience and remote sensing Vol. 62; pp. 1 - 15 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Hyperspectral videos (HSVs) have more potential in object tracking than color videos, thanks to their material identification ability. Nevertheless, previous works have not fully explored the benefits of the material information, resulting in limited representation ability and tracking accuracy. To address this issue, this article introduces a material-guided multiview fusion network (MMF-Net) for improved tracking. Specifically, we combine false-color information, hyperspectral information, and material information obtained by hyperspectral unmixing to provide a rich multiview representation of the object. Cross-material attention (CMA) is employed to capture the interaction among materials, enabling the network to focus on the most relevant materials for the target. Furthermore, leveraging the discriminative ability of material view, a novel material-guided multiview fusion module is proposed to capture both intraview and cross-view long-range spatial dependencies for effective feature aggregation. Thanks to the enhanced representation ability of each view and the integration of the complementary advantages of all views, our network is more capable of suppressing the tracking drift in various challenging scenes and achieving accurate object localization. Extensive experiments show that our tracker achieves state-of-the-art tracking performance. The source code will be available at https://github.com/hscv/MMF-Net . |
---|---|
AbstractList | Hyperspectral videos (HSVs) have more potential in object tracking than color videos, thanks to their material identification ability. Nevertheless, previous works have not fully explored the benefits of the material information, resulting in limited representation ability and tracking accuracy. To address this issue, this article introduces a material-guided multiview fusion network (MMF-Net) for improved tracking. Specifically, we combine false-color information, hyperspectral information, and material information obtained by hyperspectral unmixing to provide a rich multiview representation of the object. Cross-material attention (CMA) is employed to capture the interaction among materials, enabling the network to focus on the most relevant materials for the target. Furthermore, leveraging the discriminative ability of material view, a novel material-guided multiview fusion module is proposed to capture both intraview and cross-view long-range spatial dependencies for effective feature aggregation. Thanks to the enhanced representation ability of each view and the integration of the complementary advantages of all views, our network is more capable of suppressing the tracking drift in various challenging scenes and achieving accurate object localization. Extensive experiments show that our tracker achieves state-of-the-art tracking performance. The source code will be available at https://github.com/hscv/MMF-Net . |
Author | Lu, Jianfeng Zhou, Jun Qian, Yuntao Li, Zhuanfeng Xiong, Fengchao Zhao, Zhuang |
Author_xml | – sequence: 1 givenname: Zhuanfeng orcidid: 0009-0004-6967-4625 surname: Li fullname: Li, Zhuanfeng organization: School of Computer Science and Engineering, Nanjing University of Science and Technology, Nanjing, China – sequence: 2 givenname: Fengchao orcidid: 0000-0002-9753-4919 surname: Xiong fullname: Xiong, Fengchao email: fcxiong@njust.edu.cn organization: School of Computer Science and Engineering, Nanjing University of Science and Technology, Nanjing, China – sequence: 3 givenname: Jun orcidid: 0000-0001-5822-8233 surname: Zhou fullname: Zhou, Jun organization: School of Information and Communication Technology, Griffith University, Nathan, QLD, Australia – sequence: 4 givenname: Jianfeng orcidid: 0000-0002-9190-507X surname: Lu fullname: Lu, Jianfeng email: lujf@njust.edu.cn organization: School of Computer Science and Engineering, Nanjing University of Science and Technology, Nanjing, China – sequence: 5 givenname: Zhuang orcidid: 0000-0002-2052-8633 surname: Zhao fullname: Zhao, Zhuang organization: School of Electronic and Optical Engineering, Nanjing University of Science and Technology, Nanjing, China – sequence: 6 givenname: Yuntao orcidid: 0000-0002-7418-5891 surname: Qian fullname: Qian, Yuntao organization: College of Computer Science, Zhejiang University, Hangzhou, China |
BookMark | eNp9kE1LAzEQhoMo2FZ_gOBhwfPWfG2yOUqxrdJa0HoOSTYradfdNcla-u_d0h7Eg6cZhveZYZ4hOK-b2gJwg-AYISju17PXtzGGmI4JYSwj7AwMUJblKWSUnoMBRIKlOBf4EgxD2ECIaIb4ADwvVbTeqSqdda6wRbLsqui-nd0l0y64pk5ebNw1fpuUjU_m-9b60FoTvaqSld70XbL2ymxd_XEFLkpVBXt9qiPwPn1cT-bpYjV7mjwsUoMFjSlVDLOs5JAUTBecEWK4LiARGipGUG5wP9QC4azEkBlMRUmUwbostOJcYzICd8e9rW--Ohui3DSdr_uTEgsCRcY5gn0KHVPGNyF4W8rWu0_l9xJBeVAmD8rkQZk8KesZ_ocxLqrYW-j_ddW_5O2RdNbaX5coySmn5AefL3tD |
CODEN | IGRSD2 |
CitedBy_id | crossref_primary_10_1109_JSTARS_2025_3544583 crossref_primary_10_1007_s40747_025_01821_z crossref_primary_10_1109_TGRS_2025_3546058 crossref_primary_10_1145_3715698 crossref_primary_10_1109_JSTARS_2024_3458938 crossref_primary_10_1109_TGRS_2024_3446812 |
Cites_doi | 10.1109/TGRS.2011.2155070 10.1109/CVPR.2019.00268 10.3390/rs15071735 10.1109/TGRS.2022.3232498 10.1007/978-3-319-10590-1_53 10.4324/9781410605337-29 10.1109/ICME51207.2021.9428240 10.1109/TGRS.2021.3111183 10.1109/TGRS.2023.3285802 10.1109/CVPRW.2017.35 10.1109/TIP.2016.2531283 10.1109/WHISPERS52202.2021.9484029 10.1007/978-3-031-20053-3_4 10.1109/TIP.2020.3045634 10.1007/978-3-030-04375-9_26 10.1109/TGRS.2023.3253173 10.1109/TGRS.2022.3204345 10.1109/CVPR52688.2022.01668 10.1109/TIP.2021.3131942 10.1016/j.patcog.2017.11.024 10.1109/TGRS.2019.2943366 10.1609/aaai.v34i04.5808 10.1109/ICCV48922.2021.01028 10.1109/ICCV.2017.324 10.1109/ICASSP43922.2022.9746089 10.1109/TIP.2023.3263109 10.1109/MGRS.2021.3115137 10.1109/CVPR42600.2020.00670 10.1109/MGRS.2021.3071158 10.1145/2964284.2967274 10.1109/TIP.2022.3216995 10.1109/TGRS.2021.3095292 10.1109/TGRS.2022.3213513 10.1109/TGRS.2022.3184755 10.3390/rs15061557 10.1109/TCSVT.2021.3073673 10.1109/WHISPERS52202.2021.9484032 10.1016/j.isprsjprs.2021.10.018 10.1109/TMM.2021.3090595 10.1109/CVPR52688.2022.00854 10.1109/TGRS.2022.3215431 10.1109/TGRS.2022.3192460 10.1609/aaai.v34i05.6431 10.1109/JSTARS.2019.2939829 10.1109/WHISPERS52202.2021.9483958 10.1109/TPAMI.2016.2609928 10.3390/rs14153512 10.1109/TGRS.2018.2856370 10.1109/TGRS.2023.3250471 10.1109/TGRS.2013.2240001 10.1109/CVPR46437.2021.01356 10.1109/ICIP40778.2020.9191105 10.1109/TGRS.2022.3140809 10.1109/JSTARS.2021.3080919 10.1007/978-3-030-58452-8_13 10.1109/ICCV.2019.00972 10.1109/CVPR.2017.515 10.1109/TKDE.2018.2872063 10.1109/TGRS.2021.3096809 10.1109/TIP.2020.2965302 10.1609/aaai.v34i07.6944 10.48550/ARXIV.1706.03762 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
DBID | 97E RIA RIE AAYXX CITATION 7UA 8FD C1K F1W FR3 H8D H96 KR7 L.G L7M |
DOI | 10.1109/TGRS.2024.3366536 |
DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Water Resources Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Water Resources Abstracts Environmental Sciences and Pollution Management |
DatabaseTitleList | Aerospace Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 1558-0644 |
EndPage | 15 |
ExternalDocumentID | 10_1109_TGRS_2024_3366536 10438474 |
Genre | orig-research |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 62002169; 62371237; 62071421 funderid: 10.13039/501100001809 – fundername: “111” Program grantid: B13022 – fundername: Fundamental Research Funds for the Central Universities grantid: 30923010213 funderid: 10.13039/501100012226 |
GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT AENEX AETIX AFRAH AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IBMZZ ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS RXW TAE TN5 VH1 Y6R AAYOK AAYXX CITATION RIG 7UA 8FD C1K F1W FR3 H8D H96 KR7 L.G L7M |
ID | FETCH-LOGICAL-c294t-4a6265f703d6bd7633c7bd039b0a6318c2d76b9125f206c249f3ac2bfdba77b23 |
IEDL.DBID | RIE |
ISSN | 0196-2892 |
IngestDate | Mon Jun 30 10:17:57 EDT 2025 Tue Jul 01 02:15:20 EDT 2025 Thu Apr 24 23:01:41 EDT 2025 Wed Aug 27 02:02:17 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c294t-4a6265f703d6bd7633c7bd039b0a6318c2d76b9125f206c249f3ac2bfdba77b23 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-9190-507X 0000-0002-7418-5891 0009-0004-6967-4625 0000-0002-9753-4919 0000-0001-5822-8233 0000-0002-2052-8633 |
PQID | 2930957710 |
PQPubID | 85465 |
PageCount | 15 |
ParticipantIDs | crossref_primary_10_1109_TGRS_2024_3366536 proquest_journals_2930957710 crossref_citationtrail_10_1109_TGRS_2024_3366536 ieee_primary_10438474 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20240000 2024-00-00 20240101 |
PublicationDateYYYYMMDD | 2024-01-01 |
PublicationDate_xml | – year: 2024 text: 20240000 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on geoscience and remote sensing |
PublicationTitleAbbrev | TGRS |
PublicationYear | 2024 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref57 ref12 ref56 ref15 ref59 ref14 ref58 ref53 ref52 ref11 ref55 ref10 ref54 ref17 ref16 ref19 ref18 ref51 ref50 ref46 ref45 ref48 ref47 ref42 Andrew (ref43) ref41 ref44 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 ref34 ref37 Xiong (ref30) 2022 ref36 ref31 ref33 ref32 ref2 ref1 ref39 ref38 ref24 ref23 ref26 ref25 ref20 ref64 ref63 ref22 ref21 ref65 ref28 ref27 ref29 ref60 ref62 Simonyan (ref35) ref61 |
References_xml | – ident: ref58 doi: 10.1109/TGRS.2011.2155070 – ident: ref44 doi: 10.1109/CVPR.2019.00268 – ident: ref21 doi: 10.3390/rs15071735 – ident: ref52 doi: 10.1109/TGRS.2022.3232498 – ident: ref25 doi: 10.1007/978-3-319-10590-1_53 – ident: ref56 doi: 10.4324/9781410605337-29 – ident: ref40 doi: 10.1109/ICME51207.2021.9428240 – ident: ref13 doi: 10.1109/TGRS.2021.3111183 – ident: ref22 doi: 10.1109/TGRS.2023.3285802 – ident: ref12 doi: 10.1109/CVPRW.2017.35 – volume-title: The Hyperspectral Object Tracking Challenge (HOT2022) year: 2022 ident: ref30 – ident: ref63 doi: 10.1109/TIP.2016.2531283 – start-page: 1 volume-title: Proc. Int. Conf. Learn. Represent. (ICLR) ident: ref35 article-title: Very deep convolutional networks for large-scale image recognition – ident: ref64 doi: 10.1109/WHISPERS52202.2021.9484029 – ident: ref47 doi: 10.1007/978-3-031-20053-3_4 – ident: ref9 doi: 10.1109/TIP.2020.3045634 – ident: ref32 doi: 10.1007/978-3-030-04375-9_26 – ident: ref36 doi: 10.1109/TGRS.2023.3253173 – ident: ref49 doi: 10.1109/TGRS.2022.3204345 – ident: ref46 doi: 10.1109/CVPR52688.2022.01668 – ident: ref26 doi: 10.1109/TIP.2021.3131942 – ident: ref27 doi: 10.1016/j.patcog.2017.11.024 – ident: ref10 doi: 10.1109/TGRS.2019.2943366 – ident: ref41 doi: 10.1609/aaai.v34i04.5808 – ident: ref50 doi: 10.1109/ICCV48922.2021.01028 – ident: ref60 doi: 10.1109/ICCV.2017.324 – ident: ref29 doi: 10.1109/ICASSP43922.2022.9746089 – ident: ref33 doi: 10.1109/TIP.2023.3263109 – ident: ref7 doi: 10.1109/MGRS.2021.3115137 – ident: ref5 doi: 10.1109/CVPR42600.2020.00670 – ident: ref23 doi: 10.1109/MGRS.2021.3071158 – ident: ref61 doi: 10.1145/2964284.2967274 – ident: ref18 doi: 10.1109/TIP.2022.3216995 – ident: ref38 doi: 10.1109/TGRS.2021.3095292 – ident: ref45 doi: 10.1109/TGRS.2022.3213513 – ident: ref2 doi: 10.1109/TGRS.2022.3184755 – ident: ref15 doi: 10.3390/rs15061557 – ident: ref48 doi: 10.1109/TCSVT.2021.3073673 – ident: ref17 doi: 10.1109/WHISPERS52202.2021.9484032 – ident: ref31 doi: 10.1016/j.isprsjprs.2021.10.018 – ident: ref39 doi: 10.1109/TMM.2021.3090595 – ident: ref6 doi: 10.1109/CVPR52688.2022.00854 – ident: ref14 doi: 10.1109/TGRS.2022.3215431 – ident: ref54 doi: 10.1109/TGRS.2022.3192460 – ident: ref42 doi: 10.1609/aaai.v34i05.6431 – ident: ref24 doi: 10.1109/JSTARS.2019.2939829 – start-page: 1247 volume-title: Proc. ICML ident: ref43 article-title: Deep canonical correlation analysis – ident: ref20 doi: 10.1109/WHISPERS52202.2021.9483958 – ident: ref3 doi: 10.1109/TPAMI.2016.2609928 – ident: ref19 doi: 10.3390/rs14153512 – ident: ref34 doi: 10.1109/TGRS.2018.2856370 – ident: ref53 doi: 10.1109/TGRS.2023.3250471 – ident: ref57 doi: 10.1109/TGRS.2013.2240001 – ident: ref55 doi: 10.1109/CVPR46437.2021.01356 – ident: ref16 doi: 10.1109/ICIP40778.2020.9191105 – ident: ref8 doi: 10.1109/TGRS.2022.3140809 – ident: ref28 doi: 10.1109/JSTARS.2021.3080919 – ident: ref59 doi: 10.1007/978-3-030-58452-8_13 – ident: ref62 doi: 10.1109/ICCV.2019.00972 – ident: ref4 doi: 10.1109/CVPR.2017.515 – ident: ref37 doi: 10.1109/TKDE.2018.2872063 – ident: ref1 doi: 10.1109/TGRS.2021.3096809 – ident: ref11 doi: 10.1109/TIP.2020.2965302 – ident: ref65 doi: 10.1609/aaai.v34i07.6944 – ident: ref51 doi: 10.48550/ARXIV.1706.03762 |
SSID | ssj0014517 |
Score | 2.4892182 |
Snippet | Hyperspectral videos (HSVs) have more potential in object tracking than color videos, thanks to their material identification ability. Nevertheless, previous... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1 |
SubjectTerms | Aggregation Feature extraction Hyperspectral imaging Hyperspectral object tracking hyperspectral unmixing Localization multihead attention multiview fusion Object tracking Representations Source code Spatial dependencies Spatial resolution Target tracking Tracking Video Videos Visualization |
Title | Material-Guided Multiview Fusion Network for Hyperspectral Object Tracking |
URI | https://ieeexplore.ieee.org/document/10438474 https://www.proquest.com/docview/2930957710 |
Volume | 62 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NS8MwFH-4gaAHP6bi_KIHT0Jnm6TpchRxjsEmqIPdSr4KomyytRf_el_Sbg5F8RZKkob38pLf-wzApRJRogQVYewqEDLF4rBrmAm7luZCklhK7XKHhyPeH7PBJJnUyeo-F8Za64PPbMc1vS_fzHTpTGUo4Yziacoa0EDNrUrWWrkMWBLXudE8RC2C1C7MOBLXz_ePT6gKEtahlPPEl2P-uoT8qyo_jmJ_v_R2YbRcWRVW8topC9XRH9-KNv576XuwUyPN4KbaGvuwYact2F6rP9iCTR__qRcHMBjKwu_F8L58MdYEPjHXuQ2CXukMasGoihcPEOQGfVReqxzNOf7hQTlbToC3nnZ290MY9-6eb_th_cxCqIlgRcgkKjVJjqJvuDJ43lCdKhNRoSLJUeQ1wY9KIBLKScQ16ms5lZqo3CiZporQI2hOZ1N7DEFiEyY10jiVhuUa21ohXktIV3HNu6YN0ZLuma5rkLunMN4yr4tEInOsyhyrsppVbbhaDXmvCnD81fnQkX6tY0X1NpwtuZvVMrrIEOggvkwRYp38MuwUttzslcXlDJrFvLTniEEKdeH33idrbNbz |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1JS8QwFH64IOrBXRzXHjwJHdtsnRxFHMdlRtARvJVsBVFG0fbir_cl7agoirdQGhLey8v73hqAfS0TriWVceo7EDLN0rhjmY07jhZSkVQp42uH-wPRu2Xnd_yuKVYPtTDOuZB85tp-GGL59slU3lWGEs4o3qZsEqZR8fO0Ltf6CBownjbV0SJGO4I0Qcw0kYfD0-sbNAYJa1MqBA8NmT_VUHhX5cdlHDRMdxEG473ViSUP7arUbfP2rW3jvze_BAsN1oyO6sOxDBNutALzXzoQrsBMyAA1r6tw3ldlOI3xaXVvnY1Caa4PHETdyrvUokGdMR4hzI16aL7WVZovuMKV9t6cCPWe8Z73NbjtngyPe3Hz0EJsiGRlzBSaNbxA4bdCW7xxqMm0TajUiRIo9IbgRy0RCxUkEQYttoIqQ3RhtcoyTeg6TI2eRm4DIu44UwZpnCnLCoNjoxGxcdLRwoiObUEypntumi7k_jGMxzxYI4nMPatyz6q8YVULDj6mPNctOP76ec2T_suPNdVbsD3mbt5I6WuOUAcRZoYga_OXaXsw2xv2L_PLs8HFFsz5lWr_yzZMlS-V20FEUurdcA7fAc1V2jw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Material-Guided+Multiview+Fusion+Network+for+Hyperspectral+Object+Tracking&rft.jtitle=IEEE+transactions+on+geoscience+and+remote+sensing&rft.au=Li%2C+Zhuanfeng&rft.au=Xiong%2C+Fengchao&rft.au=Zhou%2C+Jun&rft.au=Lu%2C+Jianfeng&rft.date=2024&rft.issn=0196-2892&rft.eissn=1558-0644&rft.volume=62&rft.spage=1&rft.epage=15&rft_id=info:doi/10.1109%2FTGRS.2024.3366536&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TGRS_2024_3366536 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0196-2892&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0196-2892&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0196-2892&client=summon |