Material-Guided Multiview Fusion Network for Hyperspectral Object Tracking

Hyperspectral videos (HSVs) have more potential in object tracking than color videos, thanks to their material identification ability. Nevertheless, previous works have not fully explored the benefits of the material information, resulting in limited representation ability and tracking accuracy. To...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on geoscience and remote sensing Vol. 62; pp. 1 - 15
Main Authors Li, Zhuanfeng, Xiong, Fengchao, Zhou, Jun, Lu, Jianfeng, Zhao, Zhuang, Qian, Yuntao
Format Journal Article
LanguageEnglish
Published New York IEEE 2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Hyperspectral videos (HSVs) have more potential in object tracking than color videos, thanks to their material identification ability. Nevertheless, previous works have not fully explored the benefits of the material information, resulting in limited representation ability and tracking accuracy. To address this issue, this article introduces a material-guided multiview fusion network (MMF-Net) for improved tracking. Specifically, we combine false-color information, hyperspectral information, and material information obtained by hyperspectral unmixing to provide a rich multiview representation of the object. Cross-material attention (CMA) is employed to capture the interaction among materials, enabling the network to focus on the most relevant materials for the target. Furthermore, leveraging the discriminative ability of material view, a novel material-guided multiview fusion module is proposed to capture both intraview and cross-view long-range spatial dependencies for effective feature aggregation. Thanks to the enhanced representation ability of each view and the integration of the complementary advantages of all views, our network is more capable of suppressing the tracking drift in various challenging scenes and achieving accurate object localization. Extensive experiments show that our tracker achieves state-of-the-art tracking performance. The source code will be available at https://github.com/hscv/MMF-Net .
AbstractList Hyperspectral videos (HSVs) have more potential in object tracking than color videos, thanks to their material identification ability. Nevertheless, previous works have not fully explored the benefits of the material information, resulting in limited representation ability and tracking accuracy. To address this issue, this article introduces a material-guided multiview fusion network (MMF-Net) for improved tracking. Specifically, we combine false-color information, hyperspectral information, and material information obtained by hyperspectral unmixing to provide a rich multiview representation of the object. Cross-material attention (CMA) is employed to capture the interaction among materials, enabling the network to focus on the most relevant materials for the target. Furthermore, leveraging the discriminative ability of material view, a novel material-guided multiview fusion module is proposed to capture both intraview and cross-view long-range spatial dependencies for effective feature aggregation. Thanks to the enhanced representation ability of each view and the integration of the complementary advantages of all views, our network is more capable of suppressing the tracking drift in various challenging scenes and achieving accurate object localization. Extensive experiments show that our tracker achieves state-of-the-art tracking performance. The source code will be available at https://github.com/hscv/MMF-Net .
Author Lu, Jianfeng
Zhou, Jun
Qian, Yuntao
Li, Zhuanfeng
Xiong, Fengchao
Zhao, Zhuang
Author_xml – sequence: 1
  givenname: Zhuanfeng
  orcidid: 0009-0004-6967-4625
  surname: Li
  fullname: Li, Zhuanfeng
  organization: School of Computer Science and Engineering, Nanjing University of Science and Technology, Nanjing, China
– sequence: 2
  givenname: Fengchao
  orcidid: 0000-0002-9753-4919
  surname: Xiong
  fullname: Xiong, Fengchao
  email: fcxiong@njust.edu.cn
  organization: School of Computer Science and Engineering, Nanjing University of Science and Technology, Nanjing, China
– sequence: 3
  givenname: Jun
  orcidid: 0000-0001-5822-8233
  surname: Zhou
  fullname: Zhou, Jun
  organization: School of Information and Communication Technology, Griffith University, Nathan, QLD, Australia
– sequence: 4
  givenname: Jianfeng
  orcidid: 0000-0002-9190-507X
  surname: Lu
  fullname: Lu, Jianfeng
  email: lujf@njust.edu.cn
  organization: School of Computer Science and Engineering, Nanjing University of Science and Technology, Nanjing, China
– sequence: 5
  givenname: Zhuang
  orcidid: 0000-0002-2052-8633
  surname: Zhao
  fullname: Zhao, Zhuang
  organization: School of Electronic and Optical Engineering, Nanjing University of Science and Technology, Nanjing, China
– sequence: 6
  givenname: Yuntao
  orcidid: 0000-0002-7418-5891
  surname: Qian
  fullname: Qian, Yuntao
  organization: College of Computer Science, Zhejiang University, Hangzhou, China
BookMark eNp9kE1LAzEQhoMo2FZ_gOBhwfPWfG2yOUqxrdJa0HoOSTYradfdNcla-u_d0h7Eg6cZhveZYZ4hOK-b2gJwg-AYISju17PXtzGGmI4JYSwj7AwMUJblKWSUnoMBRIKlOBf4EgxD2ECIaIb4ADwvVbTeqSqdda6wRbLsqui-nd0l0y64pk5ebNw1fpuUjU_m-9b60FoTvaqSld70XbL2ymxd_XEFLkpVBXt9qiPwPn1cT-bpYjV7mjwsUoMFjSlVDLOs5JAUTBecEWK4LiARGipGUG5wP9QC4azEkBlMRUmUwbostOJcYzICd8e9rW--Ohui3DSdr_uTEgsCRcY5gn0KHVPGNyF4W8rWu0_l9xJBeVAmD8rkQZk8KesZ_ocxLqrYW-j_ddW_5O2RdNbaX5coySmn5AefL3tD
CODEN IGRSD2
CitedBy_id crossref_primary_10_1109_JSTARS_2025_3544583
crossref_primary_10_1007_s40747_025_01821_z
crossref_primary_10_1109_TGRS_2025_3546058
crossref_primary_10_1145_3715698
crossref_primary_10_1109_JSTARS_2024_3458938
crossref_primary_10_1109_TGRS_2024_3446812
Cites_doi 10.1109/TGRS.2011.2155070
10.1109/CVPR.2019.00268
10.3390/rs15071735
10.1109/TGRS.2022.3232498
10.1007/978-3-319-10590-1_53
10.4324/9781410605337-29
10.1109/ICME51207.2021.9428240
10.1109/TGRS.2021.3111183
10.1109/TGRS.2023.3285802
10.1109/CVPRW.2017.35
10.1109/TIP.2016.2531283
10.1109/WHISPERS52202.2021.9484029
10.1007/978-3-031-20053-3_4
10.1109/TIP.2020.3045634
10.1007/978-3-030-04375-9_26
10.1109/TGRS.2023.3253173
10.1109/TGRS.2022.3204345
10.1109/CVPR52688.2022.01668
10.1109/TIP.2021.3131942
10.1016/j.patcog.2017.11.024
10.1109/TGRS.2019.2943366
10.1609/aaai.v34i04.5808
10.1109/ICCV48922.2021.01028
10.1109/ICCV.2017.324
10.1109/ICASSP43922.2022.9746089
10.1109/TIP.2023.3263109
10.1109/MGRS.2021.3115137
10.1109/CVPR42600.2020.00670
10.1109/MGRS.2021.3071158
10.1145/2964284.2967274
10.1109/TIP.2022.3216995
10.1109/TGRS.2021.3095292
10.1109/TGRS.2022.3213513
10.1109/TGRS.2022.3184755
10.3390/rs15061557
10.1109/TCSVT.2021.3073673
10.1109/WHISPERS52202.2021.9484032
10.1016/j.isprsjprs.2021.10.018
10.1109/TMM.2021.3090595
10.1109/CVPR52688.2022.00854
10.1109/TGRS.2022.3215431
10.1109/TGRS.2022.3192460
10.1609/aaai.v34i05.6431
10.1109/JSTARS.2019.2939829
10.1109/WHISPERS52202.2021.9483958
10.1109/TPAMI.2016.2609928
10.3390/rs14153512
10.1109/TGRS.2018.2856370
10.1109/TGRS.2023.3250471
10.1109/TGRS.2013.2240001
10.1109/CVPR46437.2021.01356
10.1109/ICIP40778.2020.9191105
10.1109/TGRS.2022.3140809
10.1109/JSTARS.2021.3080919
10.1007/978-3-030-58452-8_13
10.1109/ICCV.2019.00972
10.1109/CVPR.2017.515
10.1109/TKDE.2018.2872063
10.1109/TGRS.2021.3096809
10.1109/TIP.2020.2965302
10.1609/aaai.v34i07.6944
10.48550/ARXIV.1706.03762
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID 97E
RIA
RIE
AAYXX
CITATION
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
DOI 10.1109/TGRS.2024.3366536
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Water Resources Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList
Aerospace Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1558-0644
EndPage 15
ExternalDocumentID 10_1109_TGRS_2024_3366536
10438474
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 62002169; 62371237; 62071421
  funderid: 10.13039/501100001809
– fundername: “111” Program
  grantid: B13022
– fundername: Fundamental Research Funds for the Central Universities
  grantid: 30923010213
  funderid: 10.13039/501100012226
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AETIX
AFRAH
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IBMZZ
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
RXW
TAE
TN5
VH1
Y6R
AAYOK
AAYXX
CITATION
RIG
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
ID FETCH-LOGICAL-c294t-4a6265f703d6bd7633c7bd039b0a6318c2d76b9125f206c249f3ac2bfdba77b23
IEDL.DBID RIE
ISSN 0196-2892
IngestDate Mon Jun 30 10:17:57 EDT 2025
Tue Jul 01 02:15:20 EDT 2025
Thu Apr 24 23:01:41 EDT 2025
Wed Aug 27 02:02:17 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c294t-4a6265f703d6bd7633c7bd039b0a6318c2d76b9125f206c249f3ac2bfdba77b23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-9190-507X
0000-0002-7418-5891
0009-0004-6967-4625
0000-0002-9753-4919
0000-0001-5822-8233
0000-0002-2052-8633
PQID 2930957710
PQPubID 85465
PageCount 15
ParticipantIDs crossref_primary_10_1109_TGRS_2024_3366536
proquest_journals_2930957710
crossref_citationtrail_10_1109_TGRS_2024_3366536
ieee_primary_10438474
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20240000
2024-00-00
20240101
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – year: 2024
  text: 20240000
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on geoscience and remote sensing
PublicationTitleAbbrev TGRS
PublicationYear 2024
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref57
ref12
ref56
ref15
ref59
ref14
ref58
ref53
ref52
ref11
ref55
ref10
ref54
ref17
ref16
ref19
ref18
ref51
ref50
ref46
ref45
ref48
ref47
ref42
Andrew (ref43)
ref41
ref44
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
ref34
ref37
Xiong (ref30) 2022
ref36
ref31
ref33
ref32
ref2
ref1
ref39
ref38
ref24
ref23
ref26
ref25
ref20
ref64
ref63
ref22
ref21
ref65
ref28
ref27
ref29
ref60
ref62
Simonyan (ref35)
ref61
References_xml – ident: ref58
  doi: 10.1109/TGRS.2011.2155070
– ident: ref44
  doi: 10.1109/CVPR.2019.00268
– ident: ref21
  doi: 10.3390/rs15071735
– ident: ref52
  doi: 10.1109/TGRS.2022.3232498
– ident: ref25
  doi: 10.1007/978-3-319-10590-1_53
– ident: ref56
  doi: 10.4324/9781410605337-29
– ident: ref40
  doi: 10.1109/ICME51207.2021.9428240
– ident: ref13
  doi: 10.1109/TGRS.2021.3111183
– ident: ref22
  doi: 10.1109/TGRS.2023.3285802
– ident: ref12
  doi: 10.1109/CVPRW.2017.35
– volume-title: The Hyperspectral Object Tracking Challenge (HOT2022)
  year: 2022
  ident: ref30
– ident: ref63
  doi: 10.1109/TIP.2016.2531283
– start-page: 1
  volume-title: Proc. Int. Conf. Learn. Represent. (ICLR)
  ident: ref35
  article-title: Very deep convolutional networks for large-scale image recognition
– ident: ref64
  doi: 10.1109/WHISPERS52202.2021.9484029
– ident: ref47
  doi: 10.1007/978-3-031-20053-3_4
– ident: ref9
  doi: 10.1109/TIP.2020.3045634
– ident: ref32
  doi: 10.1007/978-3-030-04375-9_26
– ident: ref36
  doi: 10.1109/TGRS.2023.3253173
– ident: ref49
  doi: 10.1109/TGRS.2022.3204345
– ident: ref46
  doi: 10.1109/CVPR52688.2022.01668
– ident: ref26
  doi: 10.1109/TIP.2021.3131942
– ident: ref27
  doi: 10.1016/j.patcog.2017.11.024
– ident: ref10
  doi: 10.1109/TGRS.2019.2943366
– ident: ref41
  doi: 10.1609/aaai.v34i04.5808
– ident: ref50
  doi: 10.1109/ICCV48922.2021.01028
– ident: ref60
  doi: 10.1109/ICCV.2017.324
– ident: ref29
  doi: 10.1109/ICASSP43922.2022.9746089
– ident: ref33
  doi: 10.1109/TIP.2023.3263109
– ident: ref7
  doi: 10.1109/MGRS.2021.3115137
– ident: ref5
  doi: 10.1109/CVPR42600.2020.00670
– ident: ref23
  doi: 10.1109/MGRS.2021.3071158
– ident: ref61
  doi: 10.1145/2964284.2967274
– ident: ref18
  doi: 10.1109/TIP.2022.3216995
– ident: ref38
  doi: 10.1109/TGRS.2021.3095292
– ident: ref45
  doi: 10.1109/TGRS.2022.3213513
– ident: ref2
  doi: 10.1109/TGRS.2022.3184755
– ident: ref15
  doi: 10.3390/rs15061557
– ident: ref48
  doi: 10.1109/TCSVT.2021.3073673
– ident: ref17
  doi: 10.1109/WHISPERS52202.2021.9484032
– ident: ref31
  doi: 10.1016/j.isprsjprs.2021.10.018
– ident: ref39
  doi: 10.1109/TMM.2021.3090595
– ident: ref6
  doi: 10.1109/CVPR52688.2022.00854
– ident: ref14
  doi: 10.1109/TGRS.2022.3215431
– ident: ref54
  doi: 10.1109/TGRS.2022.3192460
– ident: ref42
  doi: 10.1609/aaai.v34i05.6431
– ident: ref24
  doi: 10.1109/JSTARS.2019.2939829
– start-page: 1247
  volume-title: Proc. ICML
  ident: ref43
  article-title: Deep canonical correlation analysis
– ident: ref20
  doi: 10.1109/WHISPERS52202.2021.9483958
– ident: ref3
  doi: 10.1109/TPAMI.2016.2609928
– ident: ref19
  doi: 10.3390/rs14153512
– ident: ref34
  doi: 10.1109/TGRS.2018.2856370
– ident: ref53
  doi: 10.1109/TGRS.2023.3250471
– ident: ref57
  doi: 10.1109/TGRS.2013.2240001
– ident: ref55
  doi: 10.1109/CVPR46437.2021.01356
– ident: ref16
  doi: 10.1109/ICIP40778.2020.9191105
– ident: ref8
  doi: 10.1109/TGRS.2022.3140809
– ident: ref28
  doi: 10.1109/JSTARS.2021.3080919
– ident: ref59
  doi: 10.1007/978-3-030-58452-8_13
– ident: ref62
  doi: 10.1109/ICCV.2019.00972
– ident: ref4
  doi: 10.1109/CVPR.2017.515
– ident: ref37
  doi: 10.1109/TKDE.2018.2872063
– ident: ref1
  doi: 10.1109/TGRS.2021.3096809
– ident: ref11
  doi: 10.1109/TIP.2020.2965302
– ident: ref65
  doi: 10.1609/aaai.v34i07.6944
– ident: ref51
  doi: 10.48550/ARXIV.1706.03762
SSID ssj0014517
Score 2.4892182
Snippet Hyperspectral videos (HSVs) have more potential in object tracking than color videos, thanks to their material identification ability. Nevertheless, previous...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Aggregation
Feature extraction
Hyperspectral imaging
Hyperspectral object tracking
hyperspectral unmixing
Localization
multihead attention
multiview fusion
Object tracking
Representations
Source code
Spatial dependencies
Spatial resolution
Target tracking
Tracking
Video
Videos
Visualization
Title Material-Guided Multiview Fusion Network for Hyperspectral Object Tracking
URI https://ieeexplore.ieee.org/document/10438474
https://www.proquest.com/docview/2930957710
Volume 62
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NS8MwFH-4gaAHP6bi_KIHT0Jnm6TpchRxjsEmqIPdSr4KomyytRf_el_Sbg5F8RZKkob38pLf-wzApRJRogQVYewqEDLF4rBrmAm7luZCklhK7XKHhyPeH7PBJJnUyeo-F8Za64PPbMc1vS_fzHTpTGUo4Yziacoa0EDNrUrWWrkMWBLXudE8RC2C1C7MOBLXz_ePT6gKEtahlPPEl2P-uoT8qyo_jmJ_v_R2YbRcWRVW8topC9XRH9-KNv576XuwUyPN4KbaGvuwYact2F6rP9iCTR__qRcHMBjKwu_F8L58MdYEPjHXuQ2CXukMasGoihcPEOQGfVReqxzNOf7hQTlbToC3nnZ290MY9-6eb_th_cxCqIlgRcgkKjVJjqJvuDJ43lCdKhNRoSLJUeQ1wY9KIBLKScQ16ms5lZqo3CiZporQI2hOZ1N7DEFiEyY10jiVhuUa21ohXktIV3HNu6YN0ZLuma5rkLunMN4yr4tEInOsyhyrsppVbbhaDXmvCnD81fnQkX6tY0X1NpwtuZvVMrrIEOggvkwRYp38MuwUttzslcXlDJrFvLTniEEKdeH33idrbNbz
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1JS8QwFH64IOrBXRzXHjwJHdtsnRxFHMdlRtARvJVsBVFG0fbir_cl7agoirdQGhLey8v73hqAfS0TriWVceo7EDLN0rhjmY07jhZSkVQp42uH-wPRu2Xnd_yuKVYPtTDOuZB85tp-GGL59slU3lWGEs4o3qZsEqZR8fO0Ltf6CBownjbV0SJGO4I0Qcw0kYfD0-sbNAYJa1MqBA8NmT_VUHhX5cdlHDRMdxEG473ViSUP7arUbfP2rW3jvze_BAsN1oyO6sOxDBNutALzXzoQrsBMyAA1r6tw3ldlOI3xaXVvnY1Caa4PHETdyrvUokGdMR4hzI16aL7WVZovuMKV9t6cCPWe8Z73NbjtngyPe3Hz0EJsiGRlzBSaNbxA4bdCW7xxqMm0TajUiRIo9IbgRy0RCxUkEQYttoIqQ3RhtcoyTeg6TI2eRm4DIu44UwZpnCnLCoNjoxGxcdLRwoiObUEypntumi7k_jGMxzxYI4nMPatyz6q8YVULDj6mPNctOP76ec2T_suPNdVbsD3mbt5I6WuOUAcRZoYga_OXaXsw2xv2L_PLs8HFFsz5lWr_yzZMlS-V20FEUurdcA7fAc1V2jw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Material-Guided+Multiview+Fusion+Network+for+Hyperspectral+Object+Tracking&rft.jtitle=IEEE+transactions+on+geoscience+and+remote+sensing&rft.au=Li%2C+Zhuanfeng&rft.au=Xiong%2C+Fengchao&rft.au=Zhou%2C+Jun&rft.au=Lu%2C+Jianfeng&rft.date=2024&rft.issn=0196-2892&rft.eissn=1558-0644&rft.volume=62&rft.spage=1&rft.epage=15&rft_id=info:doi/10.1109%2FTGRS.2024.3366536&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TGRS_2024_3366536
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0196-2892&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0196-2892&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0196-2892&client=summon