Optimization of Metal Oxide Nanosensors and Development of a Feature Extraction Algorithm to Analyze VOC Profiles in Exhaled Breath
Exhaled volatile organic compounds (VOCs) have been identified as biomarkers for different diseases. Electronic noses (e-Noses) utilizing metal oxide (MOX) sensors for VOC detection are sensitive to a range of gases and offer rapid detection and portability. E-Noses have integrated feature extractio...
Saved in:
Published in | IEEE sensors journal Vol. 23; no. 15; p. 1 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.08.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Exhaled volatile organic compounds (VOCs) have been identified as biomarkers for different diseases. Electronic noses (e-Noses) utilizing metal oxide (MOX) sensors for VOC detection are sensitive to a range of gases and offer rapid detection and portability. E-Noses have integrated feature extraction algorithms, but in-house systems do not, and manual extraction is time-consuming and prone to error. MOX sensor arrays have been previously tested using synthetic VOCs but there are limited studies seeking to optimize exhaled breath analysis. The goal of this study is to develop an automated feature extraction algorithm to optimize SnO 2 nanosensor parameters and breath sampling methods. Python was used to develop an algorithm that can extract peak-peak value, relative abundance, slope, and other sensor features. After verifying algorithm performance, sensor operating parameters including heater/sensor voltages were optimized. Optimal parameters were utilized to analyze simulated breath with varying humidity levels. Exhaled breath sampling protocols were explored by testing different sensor housing designs, fractionating breath, and standardizing collection by volume. Optimal parameters for SnO 2 include a heater voltage equal to 2 V and a sensor voltage of 0.8 V, and the sensor could distinguish VOC profiles in simulated breath independent of varying humidity levels. Sensor testing with real breath samples showed no increase in reproducibility when fractionating breath, and that sampling 24 L provided the highest sensitivity. The SnO 2 sensors were utilized to analyze breath samples from three volunteers, and the results showed high intrasubject reproducibility as well as separation between subjects. |
---|---|
AbstractList | Exhaled volatile organic compounds (VOCs) have been identified as biomarkers for different diseases. Electronic noses (e-Noses) utilizing metal oxide (MOX) sensors for VOC detection are sensitive to a range of gases and offer rapid detection and portability. E-Noses have integrated feature extraction algorithms, but in-house systems do not, and manual extraction is time-consuming and prone to error. MOX sensor arrays have been previously tested using synthetic VOCs but there are limited studies seeking to optimize exhaled breath analysis. The goal of this study is to develop an automated feature extraction algorithm to optimize SnO2 nanosensor parameters and breath sampling methods. Python was used to develop an algorithm that can extract peak–peak value, relative abundance, slope, and other sensor features. After verifying algorithm performance, sensor operating parameters including heater/sensor voltages were optimized. Optimal parameters were utilized to analyze simulated breath with varying humidity levels. Exhaled breath sampling protocols were explored by testing different sensor housing designs, fractionating breath, and standardizing collection by volume. Optimal parameters for SnO2 include a heater voltage equal to 2 V and a sensor voltage of 0.8 V, and the sensor could distinguish VOC profiles in simulated breath independent of varying humidity levels. Sensor testing with real breath samples showed no increase in reproducibility when fractionating breath, and that sampling 24 L provided the highest sensitivity. The SnO2 sensors were utilized to analyze breath samples from three volunteers, and the results showed high intrasubject reproducibility as well as separation between subjects. Exhaled volatile organic compounds (VOCs) have been identified as biomarkers for different diseases. Electronic noses (e-Noses) utilizing metal oxide (MOX) sensors for VOC detection are sensitive to a range of gases and offer rapid detection and portability. E-Noses have integrated feature extraction algorithms, but in-house systems do not, and manual extraction is time-consuming and prone to error. MOX sensor arrays have been previously tested using synthetic VOCs but there are limited studies seeking to optimize exhaled breath analysis. The goal of this study is to develop an automated feature extraction algorithm to optimize SnO 2 nanosensor parameters and breath sampling methods. Python was used to develop an algorithm that can extract peak-peak value, relative abundance, slope, and other sensor features. After verifying algorithm performance, sensor operating parameters including heater/sensor voltages were optimized. Optimal parameters were utilized to analyze simulated breath with varying humidity levels. Exhaled breath sampling protocols were explored by testing different sensor housing designs, fractionating breath, and standardizing collection by volume. Optimal parameters for SnO 2 include a heater voltage equal to 2 V and a sensor voltage of 0.8 V, and the sensor could distinguish VOC profiles in simulated breath independent of varying humidity levels. Sensor testing with real breath samples showed no increase in reproducibility when fractionating breath, and that sampling 24 L provided the highest sensitivity. The SnO 2 sensors were utilized to analyze breath samples from three volunteers, and the results showed high intrasubject reproducibility as well as separation between subjects. |
Author | Sankari, Safiya Maciel, Mariana Woollam, Mark Agarwal, Mangilal |
Author_xml | – sequence: 1 givenname: Mariana surname: Maciel fullname: Maciel, Mariana organization: Integrated Nanosystems Development Institute, Indiana University-Purdue University, Indianapolis, IN, USA – sequence: 2 givenname: Safiya surname: Sankari fullname: Sankari, Safiya organization: Integrated Nanosystems Development Institute, Indiana University-Purdue University, Indianapolis, IN, USA – sequence: 3 givenname: Mark surname: Woollam fullname: Woollam, Mark organization: Integrated Nanosystems Development Institute, Indiana University-Purdue University, Indianapolis, IN, USA – sequence: 4 givenname: Mangilal surname: Agarwal fullname: Agarwal, Mangilal organization: Integrated Nanosystems Development Institute, Indiana University-Purdue University, Indianapolis, IN, USA |
BookMark | eNp9kMFOGzEQhi0UJAj0ASr1YInzpvba3rWPIQRoBQkSbdXbyrs7Jo42dmo7FXDlxbtLOFQcOM0cvv_XzDdGI-cdIPSZkgmlRH39fj9fTHKSswnLpVSFPEDHVAiZ0ZLL0bAzknFW_j5C4xjXhFBVivIYvSy3yW7ss07WO-wNvoWkO7x8tC3ghXY-gos-RKxdiy_gL3R-uwGXBlTjS9BpFwDPH1PQzWvFtHvwwabVBiePp053T8-Afy1n-C54YzuI2LqeX-kOWnwe-oLVKTo0uovw6W2eoJ-X8x-z6-xmefVtNr3JmlzxlPHCEK5LkKSRRV2C4HX_UMtqWWrJ2n5hqqiJVKpRRhRNrY0QpmkpLdrCsJydoLN97zb4PzuIqVr7XehPjFUuOVckF0r0VLmnmuBjDGCqxqZXPf2PtqsoqQbj1WC8GoxXb8b7JH2X3Aa70eHpw8yXfcYCwH88LSTNOfsHWM6P8A |
CODEN | ISJEAZ |
CitedBy_id | crossref_primary_10_1093_milmed_usae078 crossref_primary_10_1016_j_aca_2024_342468 crossref_primary_10_1109_TIM_2024_3476565 crossref_primary_10_1016_j_sna_2024_115720 |
Cites_doi | 10.1016/j.jtho.2018.01.024 10.5194/amt-12-1441-2019 10.1155/2019/7247802 10.3390/s21082877 10.1016/j.snb.2020.129376 10.14309/ctg.0000000000000239 10.1149/1945-7111/ab67a6 10.1109/TIE.2021.3080218 10.1016/j.chempr.2019.08.004 10.1183/16000617.0002-2019 10.1016/B978-0-12-814562-3.00004-7 10.1039/D0AY01172J 10.1007/s11306-017-1241-8 10.1016/j.cccn.2004.04.023 10.1002/elan.202100087 10.1088/1752-7163/ac4916 10.2147/VMRR.S148594 10.1007/s00408-017-9987-3 10.1002/aelm.202001071 10.1111/jvh.13630 10.1080/05704928.2020.1848857 10.3390/diagnostics12040776 10.1088/1752-7163/abc09b 10.1109/RBME.2020.2993591 10.1016/j.cej.2019.123104 10.3390/S100302088 10.3390/s19184029 10.1016/j.snb.2018.09.082 10.1016/j.chemolab.2015.03.010 10.1088/1752-7155/5/3/037109 10.1038/s41699-019-0125-3 10.1002/ijc.29166 10.1016/j.snb.2019.127371 10.1016/j.protcy.2012.02.101 10.1109/ISOEN.2017.7968886 10.1097/CCM.0b013e31818b308b 10.1109/DTS52014.2021.9497897 10.1016/j.matpr.2022.02.388 10.3389/fvets.2016.00047 10.3389/fsens.2021.657931 10.3390/s21072271 10.1021/ac062009a |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
DBID | 97E RIA RIE AAYXX CITATION 7SP 7U5 8FD L7M |
DOI | 10.1109/JSEN.2023.3288968 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Xplore CrossRef Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
DatabaseTitleList | Solid State and Superconductivity Abstracts |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography Engineering |
EISSN | 1558-1748 |
EndPage | 1 |
ExternalDocumentID | 10_1109_JSEN_2023_3288968 10168124 |
Genre | orig-research |
GrantInformation_xml | – fundername: Defense Threat Reduction Agency grantid: 2021-501 funderid: 10.13039/100000774 |
GroupedDBID | -~X 0R~ 29I 4.4 5GY 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AGQYO AHBIQ AJQPL AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 EBS F5P HZ~ IFIPE IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS TWZ AAYXX CITATION 7SP 7U5 8FD L7M |
ID | FETCH-LOGICAL-c294t-46f04a7e80c86b7e54b437d3b87a83dd3b396b0899c9f56cbaf55fcd116d6f323 |
IEDL.DBID | RIE |
ISSN | 1530-437X |
IngestDate | Mon Jun 30 08:36:10 EDT 2025 Thu Apr 24 23:01:51 EDT 2025 Tue Jul 01 04:27:11 EDT 2025 Wed Aug 27 02:56:27 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 15 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c294t-46f04a7e80c86b7e54b437d3b87a83dd3b396b0899c9f56cbaf55fcd116d6f323 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-3039-0073 0009-0001-4389-8426 |
PQID | 2844902595 |
PQPubID | 75733 |
PageCount | 1 |
ParticipantIDs | crossref_citationtrail_10_1109_JSEN_2023_3288968 proquest_journals_2844902595 ieee_primary_10168124 crossref_primary_10_1109_JSEN_2023_3288968 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-08-01 |
PublicationDateYYYYMMDD | 2023-08-01 |
PublicationDate_xml | – month: 08 year: 2023 text: 2023-08-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE sensors journal |
PublicationTitleAbbrev | JSEN |
PublicationYear | 2023 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref35 ref12 ref34 ref15 ref14 ref36 ref31 ref30 ref11 ref33 ref10 ref32 ref2 ref1 ref17 ref39 ref16 ref38 ref19 ref18 ref23 ref26 ref25 ref20 ref42 Morati (ref24) ref41 ref22 ref44 ref21 ref43 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 Aguir (ref37) 2016 ref40 |
References_xml | – ident: ref30 doi: 10.1016/j.jtho.2018.01.024 – ident: ref19 doi: 10.5194/amt-12-1441-2019 – ident: ref5 doi: 10.1155/2019/7247802 – ident: ref33 doi: 10.3390/s21082877 – ident: ref21 doi: 10.1016/j.snb.2020.129376 – ident: ref40 doi: 10.14309/ctg.0000000000000239 – ident: ref9 doi: 10.1149/1945-7111/ab67a6 – ident: ref34 doi: 10.1109/TIE.2021.3080218 – ident: ref39 doi: 10.1016/j.chempr.2019.08.004 – start-page: 20 volume-title: Proc. 5th Int. Conf. Adv. Sens., Actuators, Metering Sens. (ALLSENSORS) ident: ref24 article-title: Data analysis-based gas identification with a single metal oxide sensor operating in dynamic temperature regime – ident: ref3 doi: 10.1183/16000617.0002-2019 – ident: ref14 doi: 10.1016/B978-0-12-814562-3.00004-7 – ident: ref12 doi: 10.1039/D0AY01172J – ident: ref44 doi: 10.1007/s11306-017-1241-8 – ident: ref7 doi: 10.1016/j.cccn.2004.04.023 – ident: ref23 doi: 10.1002/elan.202100087 – ident: ref35 doi: 10.1088/1752-7163/ac4916 – ident: ref2 doi: 10.2147/VMRR.S148594 – ident: ref10 doi: 10.1007/s00408-017-9987-3 – ident: ref20 doi: 10.1002/aelm.202001071 – ident: ref4 doi: 10.1111/jvh.13630 – ident: ref6 doi: 10.1080/05704928.2020.1848857 – ident: ref29 doi: 10.3390/diagnostics12040776 – ident: ref36 doi: 10.1088/1752-7163/abc09b – ident: ref13 doi: 10.1109/RBME.2020.2993591 – ident: ref28 doi: 10.1016/j.cej.2019.123104 – ident: ref16 doi: 10.3390/S100302088 – ident: ref15 doi: 10.3390/s19184029 – ident: ref22 doi: 10.1016/j.snb.2018.09.082 – ident: ref32 doi: 10.1016/j.chemolab.2015.03.010 – ident: ref27 doi: 10.1088/1752-7155/5/3/037109 – ident: ref26 doi: 10.1038/s41699-019-0125-3 – ident: ref38 doi: 10.1002/ijc.29166 – ident: ref42 doi: 10.1016/j.snb.2019.127371 – ident: ref11 doi: 10.1016/j.protcy.2012.02.101 – ident: ref25 doi: 10.1109/ISOEN.2017.7968886 – ident: ref43 doi: 10.1097/CCM.0b013e31818b308b – ident: ref8 doi: 10.1109/DTS52014.2021.9497897 – ident: ref31 doi: 10.1016/j.matpr.2022.02.388 – volume-title: Heated sensitive layer gas sensor year: 2016 ident: ref37 – ident: ref1 doi: 10.3389/fvets.2016.00047 – ident: ref17 doi: 10.3389/fsens.2021.657931 – ident: ref18 doi: 10.3390/s21072271 – ident: ref41 doi: 10.1021/ac062009a |
SSID | ssj0019757 |
Score | 2.412806 |
Snippet | Exhaled volatile organic compounds (VOCs) have been identified as biomarkers for different diseases. Electronic noses (e-Noses) utilizing metal oxide (MOX)... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1 |
SubjectTerms | Algorithms Biomarkers Breath biopsy Breath tests Electric potential Electronic noses Feature extraction Fractionation Humidity metal oxide sensors Metal oxides Nanosensors Optimization Parameters Peak values Reproducibility Sampling methods Sensor arrays sensor optimization Sensors Tin dioxide tin oxide sensors VOCs Volatile organic compounds Voltage |
Title | Optimization of Metal Oxide Nanosensors and Development of a Feature Extraction Algorithm to Analyze VOC Profiles in Exhaled Breath |
URI | https://ieeexplore.ieee.org/document/10168124 https://www.proquest.com/docview/2844902595 |
Volume | 23 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1La9wwEB6aXNoe-khTum0adOipYMe25IeOadgQAtkttCl7M3p2lyR28XohyTV_vBpZG5aGhtwEHhnhkTTfeGa-AfiSZsJayUSUY-sAZhMeiVIji2iV6Mwaajx98dmkODlnp7N8ForVfS2MMcYnn5kYhz6Wr1u1wl9lB-hpokHagi3nuQ3FWvchA156Wk93gpOI0XIWQphpwg9Of4wnMfYJj2lWVRxpVTeMkO-q8uAq9vbl-DVM1isb0kou4lUvY3X7D2njk5f-Bl4FpEkOh63xFp6ZZgdebvAP7sDz0AJ9fvMO7qbu8rgKVZmkteTMOFxOptcLbYi7g9ulc3jbbklEo8lGqhGKCoJIctUZMr7uu6FUghxe_m67RT-_In1LPPfJrSG_pkfk-9AmfEkWjZOfOwulyTfErvNdOD8e_zw6iUKHhkhlnPURK2zCRGmqRFWFLE3OpPv0msqqFBXVbkB5ITGyqLjNCyWFzXOrdJoWurA0o-9hu2kb8wGI82ZLqah7mlIHIgtu3dyUWSGN1g7zjCBZq6xWgb4cu2hc1t6NSXiNWq5Ry3XQ8gi-3k_5M3B3PCa8i1rbEBwUNoK99caow_Fe1s6mM4zP8vzjf6Z9ghf49iFVcA-2-25lPjv40st9v23_AmwZ6-w |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB5BORQOPEpRFwr4wAkpaRI7Dx9LtdVSurtItGhvUfxiV20TlM1Kba_943gcb7UCgbhZylixMrZnJjPzfQAf4qQyRrAqSJE6gJmIB1WuEEW0iFRiNNUOvng8yUbn7GSWznyzuuuF0Vq74jMd4tDl8lUjV_ir7AAjTTRID-GRNfxp3Ldr3ScNeO6APe0ZjgJG85lPYsYRPzj5NpyEyBQe0qQoOAKrbpghx6vyx2XsLMzxM5is19YXllyEq06E8vY32Mb_XvxzeOp9TXLYb44X8EDXO_BkA4FwB7Y9Cfr85iXcTe31ceX7MkljyFhbz5xMrxdKE3sLN0sb8jbtklS1IhvFRihaEfQlV60mw-uu7ZslyOHlj6ZddPMr0jXEoZ_cavJ9ekS-9kThS7Korfzc2ihFPqH3Ot-F8-Ph2dEo8BwNgUw46wKWmYhVuS4iWWQi1ykT9tMrKoq8KqiyA8ozgblFyU2aSVGZNDVSxXGmMkMT-gq26qbWe0BsPJsLSe3TmFo3MuPGzo2ZqYRWyno9A4jWKiulBzBHHo3L0gUyES9RyyVqufRaHsDH-yk_e_SOfwnvotY2BHuFDWB_vTFKf8CXpbXqDDO0PH39l2nvYXt0Nj4tTz9PvryBx_imvnBwH7a6dqXfWmemE-_cFv4F3y7vNQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimization+of+Metal+Oxide+Nanosensors+and+Development+of+a+Feature+Extraction+Algorithm+to+Analyze+VOC+Profiles+in+Exhaled+Breath&rft.jtitle=IEEE+sensors+journal&rft.au=Maciel%2C+Mariana&rft.au=Sankari%2C+Safiya&rft.au=Woollam%2C+Mark&rft.au=Agarwal%2C+Mangilal&rft.date=2023-08-01&rft.issn=1530-437X&rft.eissn=1558-1748&rft.volume=23&rft.issue=15&rft.spage=16571&rft.epage=16578&rft_id=info:doi/10.1109%2FJSEN.2023.3288968&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_JSEN_2023_3288968 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-437X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-437X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-437X&client=summon |