Optimization of Metal Oxide Nanosensors and Development of a Feature Extraction Algorithm to Analyze VOC Profiles in Exhaled Breath

Exhaled volatile organic compounds (VOCs) have been identified as biomarkers for different diseases. Electronic noses (e-Noses) utilizing metal oxide (MOX) sensors for VOC detection are sensitive to a range of gases and offer rapid detection and portability. E-Noses have integrated feature extractio...

Full description

Saved in:
Bibliographic Details
Published inIEEE sensors journal Vol. 23; no. 15; p. 1
Main Authors Maciel, Mariana, Sankari, Safiya, Woollam, Mark, Agarwal, Mangilal
Format Journal Article
LanguageEnglish
Published New York IEEE 01.08.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Exhaled volatile organic compounds (VOCs) have been identified as biomarkers for different diseases. Electronic noses (e-Noses) utilizing metal oxide (MOX) sensors for VOC detection are sensitive to a range of gases and offer rapid detection and portability. E-Noses have integrated feature extraction algorithms, but in-house systems do not, and manual extraction is time-consuming and prone to error. MOX sensor arrays have been previously tested using synthetic VOCs but there are limited studies seeking to optimize exhaled breath analysis. The goal of this study is to develop an automated feature extraction algorithm to optimize SnO 2 nanosensor parameters and breath sampling methods. Python was used to develop an algorithm that can extract peak-peak value, relative abundance, slope, and other sensor features. After verifying algorithm performance, sensor operating parameters including heater/sensor voltages were optimized. Optimal parameters were utilized to analyze simulated breath with varying humidity levels. Exhaled breath sampling protocols were explored by testing different sensor housing designs, fractionating breath, and standardizing collection by volume. Optimal parameters for SnO 2 include a heater voltage equal to 2 V and a sensor voltage of 0.8 V, and the sensor could distinguish VOC profiles in simulated breath independent of varying humidity levels. Sensor testing with real breath samples showed no increase in reproducibility when fractionating breath, and that sampling 24 L provided the highest sensitivity. The SnO 2 sensors were utilized to analyze breath samples from three volunteers, and the results showed high intrasubject reproducibility as well as separation between subjects.
AbstractList Exhaled volatile organic compounds (VOCs) have been identified as biomarkers for different diseases. Electronic noses (e-Noses) utilizing metal oxide (MOX) sensors for VOC detection are sensitive to a range of gases and offer rapid detection and portability. E-Noses have integrated feature extraction algorithms, but in-house systems do not, and manual extraction is time-consuming and prone to error. MOX sensor arrays have been previously tested using synthetic VOCs but there are limited studies seeking to optimize exhaled breath analysis. The goal of this study is to develop an automated feature extraction algorithm to optimize SnO2 nanosensor parameters and breath sampling methods. Python was used to develop an algorithm that can extract peak–peak value, relative abundance, slope, and other sensor features. After verifying algorithm performance, sensor operating parameters including heater/sensor voltages were optimized. Optimal parameters were utilized to analyze simulated breath with varying humidity levels. Exhaled breath sampling protocols were explored by testing different sensor housing designs, fractionating breath, and standardizing collection by volume. Optimal parameters for SnO2 include a heater voltage equal to 2 V and a sensor voltage of 0.8 V, and the sensor could distinguish VOC profiles in simulated breath independent of varying humidity levels. Sensor testing with real breath samples showed no increase in reproducibility when fractionating breath, and that sampling 24 L provided the highest sensitivity. The SnO2 sensors were utilized to analyze breath samples from three volunteers, and the results showed high intrasubject reproducibility as well as separation between subjects.
Exhaled volatile organic compounds (VOCs) have been identified as biomarkers for different diseases. Electronic noses (e-Noses) utilizing metal oxide (MOX) sensors for VOC detection are sensitive to a range of gases and offer rapid detection and portability. E-Noses have integrated feature extraction algorithms, but in-house systems do not, and manual extraction is time-consuming and prone to error. MOX sensor arrays have been previously tested using synthetic VOCs but there are limited studies seeking to optimize exhaled breath analysis. The goal of this study is to develop an automated feature extraction algorithm to optimize SnO 2 nanosensor parameters and breath sampling methods. Python was used to develop an algorithm that can extract peak-peak value, relative abundance, slope, and other sensor features. After verifying algorithm performance, sensor operating parameters including heater/sensor voltages were optimized. Optimal parameters were utilized to analyze simulated breath with varying humidity levels. Exhaled breath sampling protocols were explored by testing different sensor housing designs, fractionating breath, and standardizing collection by volume. Optimal parameters for SnO 2 include a heater voltage equal to 2 V and a sensor voltage of 0.8 V, and the sensor could distinguish VOC profiles in simulated breath independent of varying humidity levels. Sensor testing with real breath samples showed no increase in reproducibility when fractionating breath, and that sampling 24 L provided the highest sensitivity. The SnO 2 sensors were utilized to analyze breath samples from three volunteers, and the results showed high intrasubject reproducibility as well as separation between subjects.
Author Sankari, Safiya
Maciel, Mariana
Woollam, Mark
Agarwal, Mangilal
Author_xml – sequence: 1
  givenname: Mariana
  surname: Maciel
  fullname: Maciel, Mariana
  organization: Integrated Nanosystems Development Institute, Indiana University-Purdue University, Indianapolis, IN, USA
– sequence: 2
  givenname: Safiya
  surname: Sankari
  fullname: Sankari, Safiya
  organization: Integrated Nanosystems Development Institute, Indiana University-Purdue University, Indianapolis, IN, USA
– sequence: 3
  givenname: Mark
  surname: Woollam
  fullname: Woollam, Mark
  organization: Integrated Nanosystems Development Institute, Indiana University-Purdue University, Indianapolis, IN, USA
– sequence: 4
  givenname: Mangilal
  surname: Agarwal
  fullname: Agarwal, Mangilal
  organization: Integrated Nanosystems Development Institute, Indiana University-Purdue University, Indianapolis, IN, USA
BookMark eNp9kMFOGzEQhi0UJAj0ASr1YInzpvba3rWPIQRoBQkSbdXbyrs7Jo42dmo7FXDlxbtLOFQcOM0cvv_XzDdGI-cdIPSZkgmlRH39fj9fTHKSswnLpVSFPEDHVAiZ0ZLL0bAzknFW_j5C4xjXhFBVivIYvSy3yW7ss07WO-wNvoWkO7x8tC3ghXY-gos-RKxdiy_gL3R-uwGXBlTjS9BpFwDPH1PQzWvFtHvwwabVBiePp053T8-Afy1n-C54YzuI2LqeX-kOWnwe-oLVKTo0uovw6W2eoJ-X8x-z6-xmefVtNr3JmlzxlPHCEK5LkKSRRV2C4HX_UMtqWWrJ2n5hqqiJVKpRRhRNrY0QpmkpLdrCsJydoLN97zb4PzuIqVr7XehPjFUuOVckF0r0VLmnmuBjDGCqxqZXPf2PtqsoqQbj1WC8GoxXb8b7JH2X3Aa70eHpw8yXfcYCwH88LSTNOfsHWM6P8A
CODEN ISJEAZ
CitedBy_id crossref_primary_10_1093_milmed_usae078
crossref_primary_10_1016_j_aca_2024_342468
crossref_primary_10_1109_TIM_2024_3476565
crossref_primary_10_1016_j_sna_2024_115720
Cites_doi 10.1016/j.jtho.2018.01.024
10.5194/amt-12-1441-2019
10.1155/2019/7247802
10.3390/s21082877
10.1016/j.snb.2020.129376
10.14309/ctg.0000000000000239
10.1149/1945-7111/ab67a6
10.1109/TIE.2021.3080218
10.1016/j.chempr.2019.08.004
10.1183/16000617.0002-2019
10.1016/B978-0-12-814562-3.00004-7
10.1039/D0AY01172J
10.1007/s11306-017-1241-8
10.1016/j.cccn.2004.04.023
10.1002/elan.202100087
10.1088/1752-7163/ac4916
10.2147/VMRR.S148594
10.1007/s00408-017-9987-3
10.1002/aelm.202001071
10.1111/jvh.13630
10.1080/05704928.2020.1848857
10.3390/diagnostics12040776
10.1088/1752-7163/abc09b
10.1109/RBME.2020.2993591
10.1016/j.cej.2019.123104
10.3390/S100302088
10.3390/s19184029
10.1016/j.snb.2018.09.082
10.1016/j.chemolab.2015.03.010
10.1088/1752-7155/5/3/037109
10.1038/s41699-019-0125-3
10.1002/ijc.29166
10.1016/j.snb.2019.127371
10.1016/j.protcy.2012.02.101
10.1109/ISOEN.2017.7968886
10.1097/CCM.0b013e31818b308b
10.1109/DTS52014.2021.9497897
10.1016/j.matpr.2022.02.388
10.3389/fvets.2016.00047
10.3389/fsens.2021.657931
10.3390/s21072271
10.1021/ac062009a
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
7U5
8FD
L7M
DOI 10.1109/JSEN.2023.3288968
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore
CrossRef
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Solid State and Superconductivity Abstracts

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Engineering
EISSN 1558-1748
EndPage 1
ExternalDocumentID 10_1109_JSEN_2023_3288968
10168124
Genre orig-research
GrantInformation_xml – fundername: Defense Threat Reduction Agency
  grantid: 2021-501
  funderid: 10.13039/100000774
GroupedDBID -~X
0R~
29I
4.4
5GY
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AGQYO
AHBIQ
AJQPL
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
EBS
F5P
HZ~
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
TWZ
AAYXX
CITATION
7SP
7U5
8FD
L7M
ID FETCH-LOGICAL-c294t-46f04a7e80c86b7e54b437d3b87a83dd3b396b0899c9f56cbaf55fcd116d6f323
IEDL.DBID RIE
ISSN 1530-437X
IngestDate Mon Jun 30 08:36:10 EDT 2025
Thu Apr 24 23:01:51 EDT 2025
Tue Jul 01 04:27:11 EDT 2025
Wed Aug 27 02:56:27 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 15
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c294t-46f04a7e80c86b7e54b437d3b87a83dd3b396b0899c9f56cbaf55fcd116d6f323
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-3039-0073
0009-0001-4389-8426
PQID 2844902595
PQPubID 75733
PageCount 1
ParticipantIDs crossref_citationtrail_10_1109_JSEN_2023_3288968
proquest_journals_2844902595
ieee_primary_10168124
crossref_primary_10_1109_JSEN_2023_3288968
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-08-01
PublicationDateYYYYMMDD 2023-08-01
PublicationDate_xml – month: 08
  year: 2023
  text: 2023-08-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE sensors journal
PublicationTitleAbbrev JSEN
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
ref12
ref34
ref15
ref14
ref36
ref31
ref30
ref11
ref33
ref10
ref32
ref2
ref1
ref17
ref39
ref16
ref38
ref19
ref18
ref23
ref26
ref25
ref20
ref42
Morati (ref24)
ref41
ref22
ref44
ref21
ref43
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
Aguir (ref37) 2016
ref40
References_xml – ident: ref30
  doi: 10.1016/j.jtho.2018.01.024
– ident: ref19
  doi: 10.5194/amt-12-1441-2019
– ident: ref5
  doi: 10.1155/2019/7247802
– ident: ref33
  doi: 10.3390/s21082877
– ident: ref21
  doi: 10.1016/j.snb.2020.129376
– ident: ref40
  doi: 10.14309/ctg.0000000000000239
– ident: ref9
  doi: 10.1149/1945-7111/ab67a6
– ident: ref34
  doi: 10.1109/TIE.2021.3080218
– ident: ref39
  doi: 10.1016/j.chempr.2019.08.004
– start-page: 20
  volume-title: Proc. 5th Int. Conf. Adv. Sens., Actuators, Metering Sens. (ALLSENSORS)
  ident: ref24
  article-title: Data analysis-based gas identification with a single metal oxide sensor operating in dynamic temperature regime
– ident: ref3
  doi: 10.1183/16000617.0002-2019
– ident: ref14
  doi: 10.1016/B978-0-12-814562-3.00004-7
– ident: ref12
  doi: 10.1039/D0AY01172J
– ident: ref44
  doi: 10.1007/s11306-017-1241-8
– ident: ref7
  doi: 10.1016/j.cccn.2004.04.023
– ident: ref23
  doi: 10.1002/elan.202100087
– ident: ref35
  doi: 10.1088/1752-7163/ac4916
– ident: ref2
  doi: 10.2147/VMRR.S148594
– ident: ref10
  doi: 10.1007/s00408-017-9987-3
– ident: ref20
  doi: 10.1002/aelm.202001071
– ident: ref4
  doi: 10.1111/jvh.13630
– ident: ref6
  doi: 10.1080/05704928.2020.1848857
– ident: ref29
  doi: 10.3390/diagnostics12040776
– ident: ref36
  doi: 10.1088/1752-7163/abc09b
– ident: ref13
  doi: 10.1109/RBME.2020.2993591
– ident: ref28
  doi: 10.1016/j.cej.2019.123104
– ident: ref16
  doi: 10.3390/S100302088
– ident: ref15
  doi: 10.3390/s19184029
– ident: ref22
  doi: 10.1016/j.snb.2018.09.082
– ident: ref32
  doi: 10.1016/j.chemolab.2015.03.010
– ident: ref27
  doi: 10.1088/1752-7155/5/3/037109
– ident: ref26
  doi: 10.1038/s41699-019-0125-3
– ident: ref38
  doi: 10.1002/ijc.29166
– ident: ref42
  doi: 10.1016/j.snb.2019.127371
– ident: ref11
  doi: 10.1016/j.protcy.2012.02.101
– ident: ref25
  doi: 10.1109/ISOEN.2017.7968886
– ident: ref43
  doi: 10.1097/CCM.0b013e31818b308b
– ident: ref8
  doi: 10.1109/DTS52014.2021.9497897
– ident: ref31
  doi: 10.1016/j.matpr.2022.02.388
– volume-title: Heated sensitive layer gas sensor
  year: 2016
  ident: ref37
– ident: ref1
  doi: 10.3389/fvets.2016.00047
– ident: ref17
  doi: 10.3389/fsens.2021.657931
– ident: ref18
  doi: 10.3390/s21072271
– ident: ref41
  doi: 10.1021/ac062009a
SSID ssj0019757
Score 2.412806
Snippet Exhaled volatile organic compounds (VOCs) have been identified as biomarkers for different diseases. Electronic noses (e-Noses) utilizing metal oxide (MOX)...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Algorithms
Biomarkers
Breath biopsy
Breath tests
Electric potential
Electronic noses
Feature extraction
Fractionation
Humidity
metal oxide sensors
Metal oxides
Nanosensors
Optimization
Parameters
Peak values
Reproducibility
Sampling methods
Sensor arrays
sensor optimization
Sensors
Tin dioxide
tin oxide sensors
VOCs
Volatile organic compounds
Voltage
Title Optimization of Metal Oxide Nanosensors and Development of a Feature Extraction Algorithm to Analyze VOC Profiles in Exhaled Breath
URI https://ieeexplore.ieee.org/document/10168124
https://www.proquest.com/docview/2844902595
Volume 23
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1La9wwEB6aXNoe-khTum0adOipYMe25IeOadgQAtkttCl7M3p2lyR28XohyTV_vBpZG5aGhtwEHhnhkTTfeGa-AfiSZsJayUSUY-sAZhMeiVIji2iV6Mwaajx98dmkODlnp7N8ForVfS2MMcYnn5kYhz6Wr1u1wl9lB-hpokHagi3nuQ3FWvchA156Wk93gpOI0XIWQphpwg9Of4wnMfYJj2lWVRxpVTeMkO-q8uAq9vbl-DVM1isb0kou4lUvY3X7D2njk5f-Bl4FpEkOh63xFp6ZZgdebvAP7sDz0AJ9fvMO7qbu8rgKVZmkteTMOFxOptcLbYi7g9ulc3jbbklEo8lGqhGKCoJIctUZMr7uu6FUghxe_m67RT-_In1LPPfJrSG_pkfk-9AmfEkWjZOfOwulyTfErvNdOD8e_zw6iUKHhkhlnPURK2zCRGmqRFWFLE3OpPv0msqqFBXVbkB5ITGyqLjNCyWFzXOrdJoWurA0o-9hu2kb8wGI82ZLqah7mlIHIgtu3dyUWSGN1g7zjCBZq6xWgb4cu2hc1t6NSXiNWq5Ry3XQ8gi-3k_5M3B3PCa8i1rbEBwUNoK99caow_Fe1s6mM4zP8vzjf6Z9ghf49iFVcA-2-25lPjv40st9v23_AmwZ6-w
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB5BORQOPEpRFwr4wAkpaRI7Dx9LtdVSurtItGhvUfxiV20TlM1Kba_943gcb7UCgbhZylixMrZnJjPzfQAf4qQyRrAqSJE6gJmIB1WuEEW0iFRiNNUOvng8yUbn7GSWznyzuuuF0Vq74jMd4tDl8lUjV_ir7AAjTTRID-GRNfxp3Ldr3ScNeO6APe0ZjgJG85lPYsYRPzj5NpyEyBQe0qQoOAKrbpghx6vyx2XsLMzxM5is19YXllyEq06E8vY32Mb_XvxzeOp9TXLYb44X8EDXO_BkA4FwB7Y9Cfr85iXcTe31ceX7MkljyFhbz5xMrxdKE3sLN0sb8jbtklS1IhvFRihaEfQlV60mw-uu7ZslyOHlj6ZddPMr0jXEoZ_cavJ9ekS-9kThS7Korfzc2ihFPqH3Ot-F8-Ph2dEo8BwNgUw46wKWmYhVuS4iWWQi1ykT9tMrKoq8KqiyA8ozgblFyU2aSVGZNDVSxXGmMkMT-gq26qbWe0BsPJsLSe3TmFo3MuPGzo2ZqYRWyno9A4jWKiulBzBHHo3L0gUyES9RyyVqufRaHsDH-yk_e_SOfwnvotY2BHuFDWB_vTFKf8CXpbXqDDO0PH39l2nvYXt0Nj4tTz9PvryBx_imvnBwH7a6dqXfWmemE-_cFv4F3y7vNQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimization+of+Metal+Oxide+Nanosensors+and+Development+of+a+Feature+Extraction+Algorithm+to+Analyze+VOC+Profiles+in+Exhaled+Breath&rft.jtitle=IEEE+sensors+journal&rft.au=Maciel%2C+Mariana&rft.au=Sankari%2C+Safiya&rft.au=Woollam%2C+Mark&rft.au=Agarwal%2C+Mangilal&rft.date=2023-08-01&rft.issn=1530-437X&rft.eissn=1558-1748&rft.volume=23&rft.issue=15&rft.spage=16571&rft.epage=16578&rft_id=info:doi/10.1109%2FJSEN.2023.3288968&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_JSEN_2023_3288968
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-437X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-437X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-437X&client=summon