Stress Detection via Multimodal Multitemporal-Scale Fusion: A Hybrid of Deep Learning and Handcrafted Feature Approach
Stress has significant effects on an individual's daily life in modern society, making its detection a topic of great interest over the decade. While numerous studies have delved into this field, the accuracy and reliability of stress detection methods still have room for improvement. In this s...
Saved in:
Published in | IEEE sensors journal Vol. 23; no. 22; pp. 27817 - 27827 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
15.11.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Stress has significant effects on an individual's daily life in modern society, making its detection a topic of great interest over the decade. While numerous studies have delved into this field, the accuracy and reliability of stress detection methods still have room for improvement. In this study, we propose a multimodal multitemporal-scale fusion-based stress detection system. First, a hybrid feature extraction module is proposed, which generates a feature set from the perspective of handcrafted and deep learning (DL) analysis across multiple temporal scales. Second, a stress detection module is proposed based on multisource feature fusion of electrocardiogram (ECG) and electrodermal activity (EDA) signals, which classifies a subject's state into baseline(/normal), stress, and amusement. In addition, the proposed system is tested on an open-access dataset WESAD using leave-one-out cross validation to verify its performance. The experimental results demonstrate that the proposed system succeeds in learning person-independent features for stress detection with high accuracy. |
---|---|
AbstractList | Stress has significant effects on an individual's daily life in modern society, making its detection a topic of great interest over the decade. While numerous studies have delved into this field, the accuracy and reliability of stress detection methods still have room for improvement. In this study, we propose a multimodal multitemporal-scale fusion-based stress detection system. First, a hybrid feature extraction module is proposed, which generates a feature set from the perspective of handcrafted and deep learning (DL) analysis across multiple temporal scales. Second, a stress detection module is proposed based on multisource feature fusion of electrocardiogram (ECG) and electrodermal activity (EDA) signals, which classifies a subject's state into baseline(/normal), stress, and amusement. In addition, the proposed system is tested on an open-access dataset WESAD using leave-one-out cross validation to verify its performance. The experimental results demonstrate that the proposed system succeeds in learning person-independent features for stress detection with high accuracy. |
Author | Niu, Xiaojing Niu, Jiale Wang, Lincong Dai, Zhicheng Zhao, Liang Zhu, Xiaoliang |
Author_xml | – sequence: 1 givenname: Liang orcidid: 0000-0003-0678-489X surname: Zhao fullname: Zhao, Liang email: liang.zhao@ccnu.edu.cn organization: National Engineering Research Center of Educational Big Data (NERC-EBD), Central China Normal University (CCNU), Wuhan, China – sequence: 2 givenname: Xiaojing surname: Niu fullname: Niu, Xiaojing email: xjniu@mails.ccnu.edu.cn organization: National Engineering Research Center for E-Learning (NERCEL), Central China Normal University (CCNU), Wuhan, China – sequence: 3 givenname: Lincong surname: Wang fullname: Wang, Lincong email: wanglc@mails.ccnu.edu.cn organization: Faculty of Artificial Intelligence in Education, Central China Normal University (CCNU), Wuhan, China – sequence: 4 givenname: Jiale orcidid: 0000-0002-3792-9628 surname: Niu fullname: Niu, Jiale email: niujiale@mails.ccnu.edu.cn organization: Faculty of Artificial Intelligence in Education, Central China Normal University (CCNU), Wuhan, China – sequence: 5 givenname: Xiaoliang orcidid: 0000-0002-8493-1931 surname: Zhu fullname: Zhu, Xiaoliang email: zhuxl@ccnu.edu.cn organization: National Engineering Research Center of Educational Big Data (NERC-EBD), Central China Normal University (CCNU), Wuhan, China – sequence: 6 givenname: Zhicheng orcidid: 0000-0002-3558-9690 surname: Dai fullname: Dai, Zhicheng email: dzc@ccnu.edu.cn organization: National Engineering Research Center of Educational Big Data (NERC-EBD), Central China Normal University (CCNU), Wuhan, China |
BookMark | eNp9kMFLwzAUxoNMcJv-AYKHgOfOpEnaxtuYm1OmHqbgraTpq2Z0bU3Swf57W-pBPAiP977D970PfhM0quoKELqkZEYpkTeP2-XzLCQhmzFGeUyTEzSmQiQBjXky6jUjAWfx-xmaOLcjhMpYxGN02HoLzuE78KC9qSt8MAo_taU3-zpX5SA97JvaqjLYalUCXrWuc97iOV4fM2tyXBfdA2jwBpStTPWBVZXjdbe0VYWHHK9A-dYCnjeNrZX-PEenhSodXPzcKXpbLV8X62Dzcv-wmG8CHUruAx6BkhQYzwjJpAIW6qSbTEgdiYjHQmaUKgaFYJIXeS5kLrIsgQIgYZpEbIquh79d7VcLzqe7urVVV5mGiSSURElIOlc8uLStnbNQpNp41dPwVpkypSTtIac95LSHnP5A7pL0T7KxZq_s8d_M1ZAxAPDLHwrOo4h9A7mfivk |
CODEN | ISJEAZ |
CitedBy_id | crossref_primary_10_3390_electronics13163217 crossref_primary_10_3390_s24185949 crossref_primary_10_1016_j_compeleceng_2024_109551 crossref_primary_10_3390_electronics13071238 |
Cites_doi | 10.1111/j.2044-8260.1992.tb00997.x 10.1016/j.bspc.2019.101736 10.1007/978-3-642-29336-8_16 10.1002/1097-4679(199311)49:6<815::AID-JCLP2270490609>3.0.CO;2-# 10.3390/s19173693 10.1159/000119004 10.7748/nr.13.2.42.s6 10.1016/j.bbe.2019.01.004 10.1109/EMBC46164.2021.9630615 10.1109/TPAMI.2008.26 10.1109/ACCESS.2021.3057578 10.1016/j.metabol.2011.10.005 10.1016/j.biopsych.2011.10.025 10.1016/j.compbiomed.2019.02.015 10.1007/978-3-642-29305-4_126 10.1159/000258725 10.1109/EMBC.2019.8856596 10.1109/TAFFC.2020.3014842 10.1109/TBME.2017.2764507 10.5755/j01.eee.19.7.2232 10.1016/j.bspc.2016.06.020 10.1016/j.psyneuen.2010.09.012 10.1109/TRIBES52498.2021.9751622 10.1007/978-3-319-92007-8_22 10.1109/LSP.2016.2542881 10.1145/3242969.3242985 10.1016/j.compbiomed.2021.104664 10.1523/JNEUROSCI.0979-09.2009 10.1109/JSEN.2023.3266322 10.1109/ACCESS.2019.2907076 10.3390/app12168052 10.1109/CCNC49033.2022.9700682 10.3390/s21227498 10.1016/j.measurement.2022.111648 10.1109/JSEN.2022.3186486 10.1109/FG.2015.7284844 10.1109/JIOT.2021.3122015 10.1109/AICCSA.2018.8612825 10.1080/02673843.2019.1596823 10.1016/j.jbi.2020.103610 10.1109/JSEN.2022.3157795 10.1109/EMBC48229.2022.9871842 10.1145/3397482.3450732 10.1006/frne.1993.1010 10.1145/2494091.2497346 10.1016/j.neuropharm.2011.07.014 10.4028/www.scientific.net/AMR.709.827 10.2307/2136404 10.1109/JBHI.2015.2446195 10.1109/JBHI.2019.2893222 10.1109/MSP.2021.3106285 10.1109/TBME.2017.2679136 10.1016/j.bspc.2021.103235 10.1016/j.comnet.2019.01.026 10.1109/ACCESS.2021.3085502 10.1186/1475-925X-10-96 10.1016/j.eswa.2021.115326 10.1109/INFOTEH.2019.8717754 10.3390/s20195552 10.1016/j.neubiorev.2009.11.005 10.1016/j.jbi.2015.11.007 10.1016/j.cmpb.2020.105482 10.1109/CVPRW.2018.00096 10.1016/j.nlm.2008.02.002 10.1016/j.bjoms.2013.01.004 10.1109/TITB.2011.2169804 10.1038/377530a0 10.3390/electronics10131550 10.1111/j.1744-6570.2008.00113.x 10.1145/3505688.3505694 10.1088/1361-6579/aae13e 10.1109/TITS.2005.848368 10.1371/journal.pone.0043571 10.1016/j.cmpb.2012.07.003 10.1109/IECBES.2018.8626634 10.1109/ACCESS.2021.3060441 10.1109/CBMI.2018.8516497 10.1109/ACCESS.2021.3055551 10.1016/j.neubiorev.2016.10.011 10.1186/1687-5281-2014-28 10.3758/s13428-020-01516-y 10.1146/annurev.psych.48.1.191 10.1109/EMBC.2016.7591557 10.1016/j.cmpb.2021.106207 10.1109/MAES.2021.3115198 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
DBID | 97E RIA RIE AAYXX CITATION 7SP 7U5 8FD L7M |
DOI | 10.1109/JSEN.2023.3314718 |
DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Xplore CrossRef Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
DatabaseTitleList | Solid State and Superconductivity Abstracts |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography Engineering |
EISSN | 1558-1748 |
EndPage | 27827 |
ExternalDocumentID | 10_1109_JSEN_2023_3314718 10254466 |
Genre | orig-research |
GrantInformation_xml | – fundername: AI and Faculty Empowerment Pilot Project grantid: CCNUAI&FE2022-02 – fundername: Ministry of Education of Humanities and Social Science Project grantid: 22YJC880117 – fundername: Fundamental Research Funds for the Central Universities grantid: CCNU22LJ005 funderid: 10.13039/501100012226 – fundername: Hubei Provincial Natural Science Foundation of China grantid: 2021CFB157; 2023AFA020 funderid: 10.13039/501100003819 – fundername: National Natural Science Foundation of China grantid: 61937001; 62207018; 62277026 funderid: 10.13039/501100001809 – fundername: National Key Research and Development Program of China grantid: 2020AAA0108804 funderid: 10.13039/501100012166 |
GroupedDBID | -~X 0R~ 29I 4.4 5GY 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AGQYO AHBIQ AJQPL AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 EBS F5P HZ~ IFIPE IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS TWZ AAYXX CITATION 7SP 7U5 8FD L7M |
ID | FETCH-LOGICAL-c294t-46ea91e34b00b9ae32c82c8b59c6564759b11a3ef5394fdd59d5bb8efee83c063 |
IEDL.DBID | RIE |
ISSN | 1530-437X |
IngestDate | Mon Jun 30 10:23:20 EDT 2025 Tue Jul 01 04:27:17 EDT 2025 Thu Apr 24 22:52:03 EDT 2025 Wed Aug 27 02:37:25 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 22 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c294t-46ea91e34b00b9ae32c82c8b59c6564759b11a3ef5394fdd59d5bb8efee83c063 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-8493-1931 0000-0003-0678-489X 0000-0002-3792-9628 0000-0002-3558-9690 |
PQID | 2890106820 |
PQPubID | 75733 |
PageCount | 11 |
ParticipantIDs | crossref_citationtrail_10_1109_JSEN_2023_3314718 proquest_journals_2890106820 ieee_primary_10254466 crossref_primary_10_1109_JSEN_2023_3314718 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-11-15 |
PublicationDateYYYYMMDD | 2023-11-15 |
PublicationDate_xml | – month: 11 year: 2023 text: 2023-11-15 day: 15 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE sensors journal |
PublicationTitleAbbrev | JSEN |
PublicationYear | 2023 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref57 ref12 ref56 ref15 ref59 ref14 ref58 ref53 ref52 ref11 ref55 ref10 ref54 ref17 ref16 ref19 ref18 ref51 ref50 Thakur (ref90) 2023 ref91 Maes (ref21) 2008; 29 ref46 ref45 ref89 ref48 ref47 ref42 ref86 ref41 ref85 ref44 ref88 ref43 ref87 Sapolsky (ref22) 2004 ref49 ref7 ref9 ref4 ref3 ref6 ref5 ref82 ref81 ref40 ref84 ref83 (ref8) 2017 ref80 Shi (ref28) ref35 ref79 ref34 ref78 ref37 ref36 ref31 ref30 ref74 ref33 ref77 ref32 ref76 ref2 ref1 ref39 ref38 Baevsky (ref75) 2009 ref71 ref70 ref73 ref72 ref24 ref68 ref23 ref67 ref26 ref25 ref69 ref20 ref64 ref63 ref66 ref65 ref27 ref29 ref60 ref62 ref61 |
References_xml | – ident: ref40 doi: 10.1111/j.2044-8260.1992.tb00997.x – ident: ref53 doi: 10.1016/j.bspc.2019.101736 – ident: ref24 doi: 10.1007/978-3-642-29336-8_16 – ident: ref39 doi: 10.1002/1097-4679(199311)49:6<815::AID-JCLP2270490609>3.0.CO;2-# – ident: ref44 doi: 10.3390/s19173693 – ident: ref91 doi: 10.1159/000119004 – ident: ref48 doi: 10.7748/nr.13.2.42.s6 – ident: ref60 doi: 10.1016/j.bbe.2019.01.004 – volume-title: Methodical Recommendations Use KARDiVAR System for Determination of the Stress Level and Estimation of the Body Adaptability Standards of Measurements and Physiological Interpretation year: 2009 ident: ref75 – ident: ref73 doi: 10.1109/EMBC46164.2021.9630615 – ident: ref82 doi: 10.1109/TPAMI.2008.26 – ident: ref69 doi: 10.1109/ACCESS.2021.3057578 – ident: ref13 doi: 10.1016/j.metabol.2011.10.005 – start-page: 1 volume-title: Proc. Int. Symp. Quality Life Technol. ident: ref28 article-title: Personalized stress detection from physiological measurements – volume-title: PISA 2015 Results (Volume III): Students’ Well-Being year: 2017 ident: ref8 – ident: ref19 doi: 10.1016/j.biopsych.2011.10.025 – ident: ref56 doi: 10.1016/j.compbiomed.2019.02.015 – ident: ref3 doi: 10.1007/978-3-642-29305-4_126 – ident: ref26 doi: 10.1159/000258725 – ident: ref52 doi: 10.1109/EMBC.2019.8856596 – ident: ref65 doi: 10.1109/TAFFC.2020.3014842 – volume: 29 start-page: 287 year: 2008 ident: ref21 article-title: The cytokine hypothesis of depression: Inflammation, oxidative & nitrosative stress (IO&NS) and leaky gut as new targets for adjunctive treatments in depression publication-title: Neuro Endocrinology Lett. – ident: ref7 doi: 10.1109/TBME.2017.2764507 – ident: ref36 doi: 10.5755/j01.eee.19.7.2232 – ident: ref41 doi: 10.1016/j.bspc.2016.06.020 – ident: ref20 doi: 10.1016/j.psyneuen.2010.09.012 – ident: ref72 doi: 10.1109/TRIBES52498.2021.9751622 – ident: ref76 doi: 10.1007/978-3-319-92007-8_22 – ident: ref79 doi: 10.1109/LSP.2016.2542881 – ident: ref37 doi: 10.1145/3242969.3242985 – ident: ref87 doi: 10.1016/j.compbiomed.2021.104664 – ident: ref32 doi: 10.1523/JNEUROSCI.0979-09.2009 – ident: ref84 doi: 10.1109/JSEN.2023.3266322 – ident: ref6 doi: 10.1109/ACCESS.2019.2907076 – ident: ref85 doi: 10.3390/app12168052 – ident: ref63 doi: 10.1109/CCNC49033.2022.9700682 – ident: ref49 doi: 10.3390/s21227498 – ident: ref59 doi: 10.1016/j.measurement.2022.111648 – ident: ref74 doi: 10.1109/JSEN.2022.3186486 – ident: ref45 doi: 10.1109/FG.2015.7284844 – ident: ref83 doi: 10.1109/JIOT.2021.3122015 – ident: ref10 doi: 10.1109/AICCSA.2018.8612825 – ident: ref1 doi: 10.1080/02673843.2019.1596823 – ident: ref57 doi: 10.1016/j.jbi.2020.103610 – ident: ref64 doi: 10.1109/JSEN.2022.3157795 – ident: ref67 doi: 10.1109/EMBC48229.2022.9871842 – ident: ref71 doi: 10.1145/3397482.3450732 – ident: ref11 doi: 10.1006/frne.1993.1010 – ident: ref29 doi: 10.1145/2494091.2497346 – ident: ref18 doi: 10.1016/j.neuropharm.2011.07.014 – ident: ref34 doi: 10.4028/www.scientific.net/AMR.709.827 – ident: ref38 doi: 10.2307/2136404 – ident: ref47 doi: 10.1109/JBHI.2015.2446195 – ident: ref30 doi: 10.1109/JBHI.2019.2893222 – ident: ref61 doi: 10.1109/MSP.2021.3106285 – ident: ref78 doi: 10.1109/TBME.2017.2679136 – ident: ref81 doi: 10.1016/j.bspc.2021.103235 – ident: ref88 doi: 10.1016/j.comnet.2019.01.026 – ident: ref25 doi: 10.1109/ACCESS.2021.3085502 – volume-title: Why Zebras Don’t Get Ulcers: The Acclaimed Guide to Stress, Stress-Related Diseases, and Coping year: 2004 ident: ref22 – ident: ref4 doi: 10.1186/1475-925X-10-96 – ident: ref68 doi: 10.1016/j.eswa.2021.115326 – ident: ref58 doi: 10.1109/INFOTEH.2019.8717754 – ident: ref42 doi: 10.3390/s20195552 – ident: ref5 doi: 10.1016/j.neubiorev.2009.11.005 – ident: ref62 doi: 10.1016/j.jbi.2015.11.007 – ident: ref16 doi: 10.1016/j.cmpb.2020.105482 – ident: ref50 doi: 10.1109/CVPRW.2018.00096 – volume-title: Approaching (Almost) any Machine Learning Problem year: 2023 ident: ref90 – ident: ref9 doi: 10.1016/j.nlm.2008.02.002 – ident: ref31 doi: 10.1016/j.bjoms.2013.01.004 – ident: ref55 doi: 10.1109/TITB.2011.2169804 – ident: ref12 doi: 10.1038/377530a0 – ident: ref66 doi: 10.3390/electronics10131550 – ident: ref2 doi: 10.1111/j.1744-6570.2008.00113.x – ident: ref51 doi: 10.1145/3505688.3505694 – ident: ref89 doi: 10.1088/1361-6579/aae13e – ident: ref33 doi: 10.1109/TITS.2005.848368 – ident: ref46 doi: 10.1371/journal.pone.0043571 – ident: ref23 doi: 10.1016/j.cmpb.2012.07.003 – ident: ref77 doi: 10.1109/IECBES.2018.8626634 – ident: ref54 doi: 10.1109/ACCESS.2021.3060441 – ident: ref43 doi: 10.1109/CBMI.2018.8516497 – ident: ref86 doi: 10.1109/ACCESS.2021.3055551 – ident: ref14 doi: 10.1016/j.neubiorev.2016.10.011 – ident: ref35 doi: 10.1186/1687-5281-2014-28 – ident: ref80 doi: 10.3758/s13428-020-01516-y – ident: ref17 doi: 10.1146/annurev.psych.48.1.191 – ident: ref15 doi: 10.1109/EMBC.2016.7591557 – ident: ref27 doi: 10.1016/j.cmpb.2021.106207 – ident: ref70 doi: 10.1109/MAES.2021.3115198 |
SSID | ssj0019757 |
Score | 2.4365776 |
Snippet | Stress has significant effects on an individual's daily life in modern society, making its detection a topic of great interest over the decade. While numerous... Stress has significant effects on an individual’s daily life in modern society, making its detection a topic of great interest over the decade. While numerous... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 27817 |
SubjectTerms | Anxiety disorders Deep learning Deep learning (DL) Electrocardiography Feature extraction Human factors Hybrid systems Modules multimodal fusion multitemporal-scale physiological signal Physiology Signal classification Stress stress detection Stress measurement |
Title | Stress Detection via Multimodal Multitemporal-Scale Fusion: A Hybrid of Deep Learning and Handcrafted Feature Approach |
URI | https://ieeexplore.ieee.org/document/10254466 https://www.proquest.com/docview/2890106820 |
Volume | 23 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Rb9QwDLa2vQweGBtDHAyUhz0htTRL2mt4O207nSZxL8eke6uaxAXE1puOdtL49dhpbhpMIKSq6oMTVfrixI7tzwDHaJR1npPCDJNq04aXlHmtklIbKy36xlu-7_g0L2aX-mKZL2OxeqiFQcSQfIYpf4ZYvl-5nq_KSMOZUKsotmGbPLehWOs-ZGDGgdaTNDhLtBovYwhTZubDxeJ8nnKf8FQpybvxb4dQ6KryaCsO58t0D-abPxvSSr6nfWdT9_MP0sb__vXn8CxammIyLI192ML2AJ4-4B88gN3YAv3r3Qu4XYSqEXGGXcjOasXtt1qE-tzrlaeJhlLdgcnqKlkQtiimPV-2fRQTMbvj0i-xamgCvBGRtvWLqFsvZvRya-5G7gWbnP0axSRymR_C5fT88-ksiU0ZEndidJfoAmsjUWnSV2tqVCeupMfmxpFpyOyBVspaYZMroxvvc-Nza0tsEEvlyCB6CTvtqsVXIMgHrgkU9IV2JCqttuMaM0myBRY5jiDboFS5yFjOjTOuquC5ZKZiYCsGtorAjuD9_ZCbga7jX8KHDNQDwQGjERxt1kIVNfpHxQFZcp_JYHr9l2Fv4AnPzoWKMj-CnW7d41uyWDr7LqzUX6qr56M |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3BbtQwELWgHAoHCqWIhRZ84ISUENd2Nua2Kl2F0u5lW2lvUWxPCqJkqyWpVL6eGcdbFVARUhTlMHYsPY899sy8YewtGGmdp6AwQ6TauOAlha5lUihjhQXfeEv3HSezvDxTRwu9iMnqIRcGAELwGaT0GXz5ful6uipDDSdCrTy_zx7gxq_FkK514zQw40DsiTqcJUqOF9GJKTLz_mh-OEupUngqpaD1-LdtKNRV-WsxDjvMdIvN1mMbAku-pX1nU_fzD9rG_x78E_Y42pp8MkyOp-wetNvs0S0Gwm22GYugf7l-xq7mIW-Ef4QuxGe1_OprzUOG7velx46GZN2By-oimSO6wKc9Xbd94BNeXlPyF1822AFc8kjces7r1vMSX25F9cg9J6OzXwGfRDbzHXY2PTw9KJNYliFx-0Z1icqhNgKkQo21pga57wp8rDYOjUPiD7RC1BIaLY1qvNfGa2sLaAAK6dAkes422mULLxjHU3CNoIDPlUNRYZUd15AJlM0h1zBi2RqlykXOciqdcVGFs0tmKgK2ImCrCOyIvbtpcjkQdvxLeIeAuiU4YDRiu-u5UEWd_lGRSxYP0Ggyvbyj2Ru2WZ6eHFfHn2afX7GH9CdKWxR6l210qx720H7p7Oswa38B5efq7A |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Stress+Detection+via+Multimodal+Multitemporal-Scale+Fusion%3A+A+Hybrid+of+Deep+Learning+and+Handcrafted+Feature+Approach&rft.jtitle=IEEE+sensors+journal&rft.au=Zhao%2C+Liang&rft.au=Niu%2C+Xiaojing&rft.au=Wang%2C+Lincong&rft.au=Niu%2C+Jiale&rft.date=2023-11-15&rft.pub=IEEE&rft.issn=1530-437X&rft.volume=23&rft.issue=22&rft.spage=27817&rft.epage=27827&rft_id=info:doi/10.1109%2FJSEN.2023.3314718&rft.externalDocID=10254466 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-437X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-437X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-437X&client=summon |