Stress Detection via Multimodal Multitemporal-Scale Fusion: A Hybrid of Deep Learning and Handcrafted Feature Approach

Stress has significant effects on an individual's daily life in modern society, making its detection a topic of great interest over the decade. While numerous studies have delved into this field, the accuracy and reliability of stress detection methods still have room for improvement. In this s...

Full description

Saved in:
Bibliographic Details
Published inIEEE sensors journal Vol. 23; no. 22; pp. 27817 - 27827
Main Authors Zhao, Liang, Niu, Xiaojing, Wang, Lincong, Niu, Jiale, Zhu, Xiaoliang, Dai, Zhicheng
Format Journal Article
LanguageEnglish
Published New York IEEE 15.11.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Stress has significant effects on an individual's daily life in modern society, making its detection a topic of great interest over the decade. While numerous studies have delved into this field, the accuracy and reliability of stress detection methods still have room for improvement. In this study, we propose a multimodal multitemporal-scale fusion-based stress detection system. First, a hybrid feature extraction module is proposed, which generates a feature set from the perspective of handcrafted and deep learning (DL) analysis across multiple temporal scales. Second, a stress detection module is proposed based on multisource feature fusion of electrocardiogram (ECG) and electrodermal activity (EDA) signals, which classifies a subject's state into baseline(/normal), stress, and amusement. In addition, the proposed system is tested on an open-access dataset WESAD using leave-one-out cross validation to verify its performance. The experimental results demonstrate that the proposed system succeeds in learning person-independent features for stress detection with high accuracy.
AbstractList Stress has significant effects on an individual's daily life in modern society, making its detection a topic of great interest over the decade. While numerous studies have delved into this field, the accuracy and reliability of stress detection methods still have room for improvement. In this study, we propose a multimodal multitemporal-scale fusion-based stress detection system. First, a hybrid feature extraction module is proposed, which generates a feature set from the perspective of handcrafted and deep learning (DL) analysis across multiple temporal scales. Second, a stress detection module is proposed based on multisource feature fusion of electrocardiogram (ECG) and electrodermal activity (EDA) signals, which classifies a subject's state into baseline(/normal), stress, and amusement. In addition, the proposed system is tested on an open-access dataset WESAD using leave-one-out cross validation to verify its performance. The experimental results demonstrate that the proposed system succeeds in learning person-independent features for stress detection with high accuracy.
Author Niu, Xiaojing
Niu, Jiale
Wang, Lincong
Dai, Zhicheng
Zhao, Liang
Zhu, Xiaoliang
Author_xml – sequence: 1
  givenname: Liang
  orcidid: 0000-0003-0678-489X
  surname: Zhao
  fullname: Zhao, Liang
  email: liang.zhao@ccnu.edu.cn
  organization: National Engineering Research Center of Educational Big Data (NERC-EBD), Central China Normal University (CCNU), Wuhan, China
– sequence: 2
  givenname: Xiaojing
  surname: Niu
  fullname: Niu, Xiaojing
  email: xjniu@mails.ccnu.edu.cn
  organization: National Engineering Research Center for E-Learning (NERCEL), Central China Normal University (CCNU), Wuhan, China
– sequence: 3
  givenname: Lincong
  surname: Wang
  fullname: Wang, Lincong
  email: wanglc@mails.ccnu.edu.cn
  organization: Faculty of Artificial Intelligence in Education, Central China Normal University (CCNU), Wuhan, China
– sequence: 4
  givenname: Jiale
  orcidid: 0000-0002-3792-9628
  surname: Niu
  fullname: Niu, Jiale
  email: niujiale@mails.ccnu.edu.cn
  organization: Faculty of Artificial Intelligence in Education, Central China Normal University (CCNU), Wuhan, China
– sequence: 5
  givenname: Xiaoliang
  orcidid: 0000-0002-8493-1931
  surname: Zhu
  fullname: Zhu, Xiaoliang
  email: zhuxl@ccnu.edu.cn
  organization: National Engineering Research Center of Educational Big Data (NERC-EBD), Central China Normal University (CCNU), Wuhan, China
– sequence: 6
  givenname: Zhicheng
  orcidid: 0000-0002-3558-9690
  surname: Dai
  fullname: Dai, Zhicheng
  email: dzc@ccnu.edu.cn
  organization: National Engineering Research Center of Educational Big Data (NERC-EBD), Central China Normal University (CCNU), Wuhan, China
BookMark eNp9kMFLwzAUxoNMcJv-AYKHgOfOpEnaxtuYm1OmHqbgraTpq2Z0bU3Swf57W-pBPAiP977D970PfhM0quoKELqkZEYpkTeP2-XzLCQhmzFGeUyTEzSmQiQBjXky6jUjAWfx-xmaOLcjhMpYxGN02HoLzuE78KC9qSt8MAo_taU3-zpX5SA97JvaqjLYalUCXrWuc97iOV4fM2tyXBfdA2jwBpStTPWBVZXjdbe0VYWHHK9A-dYCnjeNrZX-PEenhSodXPzcKXpbLV8X62Dzcv-wmG8CHUruAx6BkhQYzwjJpAIW6qSbTEgdiYjHQmaUKgaFYJIXeS5kLrIsgQIgYZpEbIquh79d7VcLzqe7urVVV5mGiSSURElIOlc8uLStnbNQpNp41dPwVpkypSTtIac95LSHnP5A7pL0T7KxZq_s8d_M1ZAxAPDLHwrOo4h9A7mfivk
CODEN ISJEAZ
CitedBy_id crossref_primary_10_3390_electronics13163217
crossref_primary_10_3390_s24185949
crossref_primary_10_1016_j_compeleceng_2024_109551
crossref_primary_10_3390_electronics13071238
Cites_doi 10.1111/j.2044-8260.1992.tb00997.x
10.1016/j.bspc.2019.101736
10.1007/978-3-642-29336-8_16
10.1002/1097-4679(199311)49:6<815::AID-JCLP2270490609>3.0.CO;2-#
10.3390/s19173693
10.1159/000119004
10.7748/nr.13.2.42.s6
10.1016/j.bbe.2019.01.004
10.1109/EMBC46164.2021.9630615
10.1109/TPAMI.2008.26
10.1109/ACCESS.2021.3057578
10.1016/j.metabol.2011.10.005
10.1016/j.biopsych.2011.10.025
10.1016/j.compbiomed.2019.02.015
10.1007/978-3-642-29305-4_126
10.1159/000258725
10.1109/EMBC.2019.8856596
10.1109/TAFFC.2020.3014842
10.1109/TBME.2017.2764507
10.5755/j01.eee.19.7.2232
10.1016/j.bspc.2016.06.020
10.1016/j.psyneuen.2010.09.012
10.1109/TRIBES52498.2021.9751622
10.1007/978-3-319-92007-8_22
10.1109/LSP.2016.2542881
10.1145/3242969.3242985
10.1016/j.compbiomed.2021.104664
10.1523/JNEUROSCI.0979-09.2009
10.1109/JSEN.2023.3266322
10.1109/ACCESS.2019.2907076
10.3390/app12168052
10.1109/CCNC49033.2022.9700682
10.3390/s21227498
10.1016/j.measurement.2022.111648
10.1109/JSEN.2022.3186486
10.1109/FG.2015.7284844
10.1109/JIOT.2021.3122015
10.1109/AICCSA.2018.8612825
10.1080/02673843.2019.1596823
10.1016/j.jbi.2020.103610
10.1109/JSEN.2022.3157795
10.1109/EMBC48229.2022.9871842
10.1145/3397482.3450732
10.1006/frne.1993.1010
10.1145/2494091.2497346
10.1016/j.neuropharm.2011.07.014
10.4028/www.scientific.net/AMR.709.827
10.2307/2136404
10.1109/JBHI.2015.2446195
10.1109/JBHI.2019.2893222
10.1109/MSP.2021.3106285
10.1109/TBME.2017.2679136
10.1016/j.bspc.2021.103235
10.1016/j.comnet.2019.01.026
10.1109/ACCESS.2021.3085502
10.1186/1475-925X-10-96
10.1016/j.eswa.2021.115326
10.1109/INFOTEH.2019.8717754
10.3390/s20195552
10.1016/j.neubiorev.2009.11.005
10.1016/j.jbi.2015.11.007
10.1016/j.cmpb.2020.105482
10.1109/CVPRW.2018.00096
10.1016/j.nlm.2008.02.002
10.1016/j.bjoms.2013.01.004
10.1109/TITB.2011.2169804
10.1038/377530a0
10.3390/electronics10131550
10.1111/j.1744-6570.2008.00113.x
10.1145/3505688.3505694
10.1088/1361-6579/aae13e
10.1109/TITS.2005.848368
10.1371/journal.pone.0043571
10.1016/j.cmpb.2012.07.003
10.1109/IECBES.2018.8626634
10.1109/ACCESS.2021.3060441
10.1109/CBMI.2018.8516497
10.1109/ACCESS.2021.3055551
10.1016/j.neubiorev.2016.10.011
10.1186/1687-5281-2014-28
10.3758/s13428-020-01516-y
10.1146/annurev.psych.48.1.191
10.1109/EMBC.2016.7591557
10.1016/j.cmpb.2021.106207
10.1109/MAES.2021.3115198
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
7U5
8FD
L7M
DOI 10.1109/JSEN.2023.3314718
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore
CrossRef
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList
Solid State and Superconductivity Abstracts
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Engineering
EISSN 1558-1748
EndPage 27827
ExternalDocumentID 10_1109_JSEN_2023_3314718
10254466
Genre orig-research
GrantInformation_xml – fundername: AI and Faculty Empowerment Pilot Project
  grantid: CCNUAI&FE2022-02
– fundername: Ministry of Education of Humanities and Social Science Project
  grantid: 22YJC880117
– fundername: Fundamental Research Funds for the Central Universities
  grantid: CCNU22LJ005
  funderid: 10.13039/501100012226
– fundername: Hubei Provincial Natural Science Foundation of China
  grantid: 2021CFB157; 2023AFA020
  funderid: 10.13039/501100003819
– fundername: National Natural Science Foundation of China
  grantid: 61937001; 62207018; 62277026
  funderid: 10.13039/501100001809
– fundername: National Key Research and Development Program of China
  grantid: 2020AAA0108804
  funderid: 10.13039/501100012166
GroupedDBID -~X
0R~
29I
4.4
5GY
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AGQYO
AHBIQ
AJQPL
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
EBS
F5P
HZ~
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
TWZ
AAYXX
CITATION
7SP
7U5
8FD
L7M
ID FETCH-LOGICAL-c294t-46ea91e34b00b9ae32c82c8b59c6564759b11a3ef5394fdd59d5bb8efee83c063
IEDL.DBID RIE
ISSN 1530-437X
IngestDate Mon Jun 30 10:23:20 EDT 2025
Tue Jul 01 04:27:17 EDT 2025
Thu Apr 24 22:52:03 EDT 2025
Wed Aug 27 02:37:25 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 22
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c294t-46ea91e34b00b9ae32c82c8b59c6564759b11a3ef5394fdd59d5bb8efee83c063
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-8493-1931
0000-0003-0678-489X
0000-0002-3792-9628
0000-0002-3558-9690
PQID 2890106820
PQPubID 75733
PageCount 11
ParticipantIDs crossref_citationtrail_10_1109_JSEN_2023_3314718
proquest_journals_2890106820
ieee_primary_10254466
crossref_primary_10_1109_JSEN_2023_3314718
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-11-15
PublicationDateYYYYMMDD 2023-11-15
PublicationDate_xml – month: 11
  year: 2023
  text: 2023-11-15
  day: 15
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE sensors journal
PublicationTitleAbbrev JSEN
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref57
ref12
ref56
ref15
ref59
ref14
ref58
ref53
ref52
ref11
ref55
ref10
ref54
ref17
ref16
ref19
ref18
ref51
ref50
Thakur (ref90) 2023
ref91
Maes (ref21) 2008; 29
ref46
ref45
ref89
ref48
ref47
ref42
ref86
ref41
ref85
ref44
ref88
ref43
ref87
Sapolsky (ref22) 2004
ref49
ref7
ref9
ref4
ref3
ref6
ref5
ref82
ref81
ref40
ref84
ref83
(ref8) 2017
ref80
Shi (ref28)
ref35
ref79
ref34
ref78
ref37
ref36
ref31
ref30
ref74
ref33
ref77
ref32
ref76
ref2
ref1
ref39
ref38
Baevsky (ref75) 2009
ref71
ref70
ref73
ref72
ref24
ref68
ref23
ref67
ref26
ref25
ref69
ref20
ref64
ref63
ref66
ref65
ref27
ref29
ref60
ref62
ref61
References_xml – ident: ref40
  doi: 10.1111/j.2044-8260.1992.tb00997.x
– ident: ref53
  doi: 10.1016/j.bspc.2019.101736
– ident: ref24
  doi: 10.1007/978-3-642-29336-8_16
– ident: ref39
  doi: 10.1002/1097-4679(199311)49:6<815::AID-JCLP2270490609>3.0.CO;2-#
– ident: ref44
  doi: 10.3390/s19173693
– ident: ref91
  doi: 10.1159/000119004
– ident: ref48
  doi: 10.7748/nr.13.2.42.s6
– ident: ref60
  doi: 10.1016/j.bbe.2019.01.004
– volume-title: Methodical Recommendations Use KARDiVAR System for Determination of the Stress Level and Estimation of the Body Adaptability Standards of Measurements and Physiological Interpretation
  year: 2009
  ident: ref75
– ident: ref73
  doi: 10.1109/EMBC46164.2021.9630615
– ident: ref82
  doi: 10.1109/TPAMI.2008.26
– ident: ref69
  doi: 10.1109/ACCESS.2021.3057578
– ident: ref13
  doi: 10.1016/j.metabol.2011.10.005
– start-page: 1
  volume-title: Proc. Int. Symp. Quality Life Technol.
  ident: ref28
  article-title: Personalized stress detection from physiological measurements
– volume-title: PISA 2015 Results (Volume III): Students’ Well-Being
  year: 2017
  ident: ref8
– ident: ref19
  doi: 10.1016/j.biopsych.2011.10.025
– ident: ref56
  doi: 10.1016/j.compbiomed.2019.02.015
– ident: ref3
  doi: 10.1007/978-3-642-29305-4_126
– ident: ref26
  doi: 10.1159/000258725
– ident: ref52
  doi: 10.1109/EMBC.2019.8856596
– ident: ref65
  doi: 10.1109/TAFFC.2020.3014842
– volume: 29
  start-page: 287
  year: 2008
  ident: ref21
  article-title: The cytokine hypothesis of depression: Inflammation, oxidative & nitrosative stress (IO&NS) and leaky gut as new targets for adjunctive treatments in depression
  publication-title: Neuro Endocrinology Lett.
– ident: ref7
  doi: 10.1109/TBME.2017.2764507
– ident: ref36
  doi: 10.5755/j01.eee.19.7.2232
– ident: ref41
  doi: 10.1016/j.bspc.2016.06.020
– ident: ref20
  doi: 10.1016/j.psyneuen.2010.09.012
– ident: ref72
  doi: 10.1109/TRIBES52498.2021.9751622
– ident: ref76
  doi: 10.1007/978-3-319-92007-8_22
– ident: ref79
  doi: 10.1109/LSP.2016.2542881
– ident: ref37
  doi: 10.1145/3242969.3242985
– ident: ref87
  doi: 10.1016/j.compbiomed.2021.104664
– ident: ref32
  doi: 10.1523/JNEUROSCI.0979-09.2009
– ident: ref84
  doi: 10.1109/JSEN.2023.3266322
– ident: ref6
  doi: 10.1109/ACCESS.2019.2907076
– ident: ref85
  doi: 10.3390/app12168052
– ident: ref63
  doi: 10.1109/CCNC49033.2022.9700682
– ident: ref49
  doi: 10.3390/s21227498
– ident: ref59
  doi: 10.1016/j.measurement.2022.111648
– ident: ref74
  doi: 10.1109/JSEN.2022.3186486
– ident: ref45
  doi: 10.1109/FG.2015.7284844
– ident: ref83
  doi: 10.1109/JIOT.2021.3122015
– ident: ref10
  doi: 10.1109/AICCSA.2018.8612825
– ident: ref1
  doi: 10.1080/02673843.2019.1596823
– ident: ref57
  doi: 10.1016/j.jbi.2020.103610
– ident: ref64
  doi: 10.1109/JSEN.2022.3157795
– ident: ref67
  doi: 10.1109/EMBC48229.2022.9871842
– ident: ref71
  doi: 10.1145/3397482.3450732
– ident: ref11
  doi: 10.1006/frne.1993.1010
– ident: ref29
  doi: 10.1145/2494091.2497346
– ident: ref18
  doi: 10.1016/j.neuropharm.2011.07.014
– ident: ref34
  doi: 10.4028/www.scientific.net/AMR.709.827
– ident: ref38
  doi: 10.2307/2136404
– ident: ref47
  doi: 10.1109/JBHI.2015.2446195
– ident: ref30
  doi: 10.1109/JBHI.2019.2893222
– ident: ref61
  doi: 10.1109/MSP.2021.3106285
– ident: ref78
  doi: 10.1109/TBME.2017.2679136
– ident: ref81
  doi: 10.1016/j.bspc.2021.103235
– ident: ref88
  doi: 10.1016/j.comnet.2019.01.026
– ident: ref25
  doi: 10.1109/ACCESS.2021.3085502
– volume-title: Why Zebras Don’t Get Ulcers: The Acclaimed Guide to Stress, Stress-Related Diseases, and Coping
  year: 2004
  ident: ref22
– ident: ref4
  doi: 10.1186/1475-925X-10-96
– ident: ref68
  doi: 10.1016/j.eswa.2021.115326
– ident: ref58
  doi: 10.1109/INFOTEH.2019.8717754
– ident: ref42
  doi: 10.3390/s20195552
– ident: ref5
  doi: 10.1016/j.neubiorev.2009.11.005
– ident: ref62
  doi: 10.1016/j.jbi.2015.11.007
– ident: ref16
  doi: 10.1016/j.cmpb.2020.105482
– ident: ref50
  doi: 10.1109/CVPRW.2018.00096
– volume-title: Approaching (Almost) any Machine Learning Problem
  year: 2023
  ident: ref90
– ident: ref9
  doi: 10.1016/j.nlm.2008.02.002
– ident: ref31
  doi: 10.1016/j.bjoms.2013.01.004
– ident: ref55
  doi: 10.1109/TITB.2011.2169804
– ident: ref12
  doi: 10.1038/377530a0
– ident: ref66
  doi: 10.3390/electronics10131550
– ident: ref2
  doi: 10.1111/j.1744-6570.2008.00113.x
– ident: ref51
  doi: 10.1145/3505688.3505694
– ident: ref89
  doi: 10.1088/1361-6579/aae13e
– ident: ref33
  doi: 10.1109/TITS.2005.848368
– ident: ref46
  doi: 10.1371/journal.pone.0043571
– ident: ref23
  doi: 10.1016/j.cmpb.2012.07.003
– ident: ref77
  doi: 10.1109/IECBES.2018.8626634
– ident: ref54
  doi: 10.1109/ACCESS.2021.3060441
– ident: ref43
  doi: 10.1109/CBMI.2018.8516497
– ident: ref86
  doi: 10.1109/ACCESS.2021.3055551
– ident: ref14
  doi: 10.1016/j.neubiorev.2016.10.011
– ident: ref35
  doi: 10.1186/1687-5281-2014-28
– ident: ref80
  doi: 10.3758/s13428-020-01516-y
– ident: ref17
  doi: 10.1146/annurev.psych.48.1.191
– ident: ref15
  doi: 10.1109/EMBC.2016.7591557
– ident: ref27
  doi: 10.1016/j.cmpb.2021.106207
– ident: ref70
  doi: 10.1109/MAES.2021.3115198
SSID ssj0019757
Score 2.4365776
Snippet Stress has significant effects on an individual's daily life in modern society, making its detection a topic of great interest over the decade. While numerous...
Stress has significant effects on an individual’s daily life in modern society, making its detection a topic of great interest over the decade. While numerous...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 27817
SubjectTerms Anxiety disorders
Deep learning
Deep learning (DL)
Electrocardiography
Feature extraction
Human factors
Hybrid systems
Modules
multimodal fusion
multitemporal-scale
physiological signal
Physiology
Signal classification
Stress
stress detection
Stress measurement
Title Stress Detection via Multimodal Multitemporal-Scale Fusion: A Hybrid of Deep Learning and Handcrafted Feature Approach
URI https://ieeexplore.ieee.org/document/10254466
https://www.proquest.com/docview/2890106820
Volume 23
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Rb9QwDLa2vQweGBtDHAyUhz0htTRL2mt4O207nSZxL8eke6uaxAXE1puOdtL49dhpbhpMIKSq6oMTVfrixI7tzwDHaJR1npPCDJNq04aXlHmtklIbKy36xlu-7_g0L2aX-mKZL2OxeqiFQcSQfIYpf4ZYvl-5nq_KSMOZUKsotmGbPLehWOs-ZGDGgdaTNDhLtBovYwhTZubDxeJ8nnKf8FQpybvxb4dQ6KryaCsO58t0D-abPxvSSr6nfWdT9_MP0sb__vXn8CxammIyLI192ML2AJ4-4B88gN3YAv3r3Qu4XYSqEXGGXcjOasXtt1qE-tzrlaeJhlLdgcnqKlkQtiimPV-2fRQTMbvj0i-xamgCvBGRtvWLqFsvZvRya-5G7gWbnP0axSRymR_C5fT88-ksiU0ZEndidJfoAmsjUWnSV2tqVCeupMfmxpFpyOyBVspaYZMroxvvc-Nza0tsEEvlyCB6CTvtqsVXIMgHrgkU9IV2JCqttuMaM0myBRY5jiDboFS5yFjOjTOuquC5ZKZiYCsGtorAjuD9_ZCbga7jX8KHDNQDwQGjERxt1kIVNfpHxQFZcp_JYHr9l2Fv4AnPzoWKMj-CnW7d41uyWDr7LqzUX6qr56M
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3BbtQwELWgHAoHCqWIhRZ84ISUENd2Nua2Kl2F0u5lW2lvUWxPCqJkqyWpVL6eGcdbFVARUhTlMHYsPY899sy8YewtGGmdp6AwQ6TauOAlha5lUihjhQXfeEv3HSezvDxTRwu9iMnqIRcGAELwGaT0GXz5ful6uipDDSdCrTy_zx7gxq_FkK514zQw40DsiTqcJUqOF9GJKTLz_mh-OEupUngqpaD1-LdtKNRV-WsxDjvMdIvN1mMbAku-pX1nU_fzD9rG_x78E_Y42pp8MkyOp-wetNvs0S0Gwm22GYugf7l-xq7mIW-Ef4QuxGe1_OprzUOG7velx46GZN2By-oimSO6wKc9Xbd94BNeXlPyF1822AFc8kjces7r1vMSX25F9cg9J6OzXwGfRDbzHXY2PTw9KJNYliFx-0Z1icqhNgKkQo21pga57wp8rDYOjUPiD7RC1BIaLY1qvNfGa2sLaAAK6dAkes422mULLxjHU3CNoIDPlUNRYZUd15AJlM0h1zBi2RqlykXOciqdcVGFs0tmKgK2ImCrCOyIvbtpcjkQdvxLeIeAuiU4YDRiu-u5UEWd_lGRSxYP0Ggyvbyj2Ru2WZ6eHFfHn2afX7GH9CdKWxR6l210qx720H7p7Oswa38B5efq7A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Stress+Detection+via+Multimodal+Multitemporal-Scale+Fusion%3A+A+Hybrid+of+Deep+Learning+and+Handcrafted+Feature+Approach&rft.jtitle=IEEE+sensors+journal&rft.au=Zhao%2C+Liang&rft.au=Niu%2C+Xiaojing&rft.au=Wang%2C+Lincong&rft.au=Niu%2C+Jiale&rft.date=2023-11-15&rft.pub=IEEE&rft.issn=1530-437X&rft.volume=23&rft.issue=22&rft.spage=27817&rft.epage=27827&rft_id=info:doi/10.1109%2FJSEN.2023.3314718&rft.externalDocID=10254466
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-437X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-437X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-437X&client=summon