Rolling Bearing Fault Diagnosis Based on MFDFA-SPS and ELM

Rolling bearings, as important parts on supporting rotating shafts, frequently suffer from fatigue failures. If these rolling bearing failures are not found in time, it will have a huge impact on the whole mechanical system’s operating safety and operating life. To improve the diagnosis of different...

Full description

Saved in:
Bibliographic Details
Published inMathematical problems in engineering Vol. 2022; pp. 1 - 17
Main Authors Yang, Yunfan, Xi, Caiping
Format Journal Article
LanguageEnglish
Published New York Hindawi 18.07.2022
Hindawi Limited
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Rolling bearings, as important parts on supporting rotating shafts, frequently suffer from fatigue failures. If these rolling bearing failures are not found in time, it will have a huge impact on the whole mechanical system’s operating safety and operating life. To improve the diagnosis of different faults as well as different degrees of faults, a fault diagnosis method based on the multifractal detrended fluctuation analysis (MFDFA) method-singularity power spectrum (SPS) with extreme learning machine (ELM) is proposed. First, MFDFA and SPS analyses are performed on vibration acceleration signals with different faults and different degrees of damage under the same operating conditions, the spectral parameters of stability and quantitative description of differentiation are selected for feature extraction, and then the selected six feature parameters are put into the extreme learning machine for fault classification. The effectiveness of the MFDFA-SPS feature extraction method is demonstrated by analyzing and testing the measured bearing signals. The fault diagnosis accuracy of the bearing fault signals can reach 99.2% based on the MFDFA-SPS with ELM method by using the Case Western Reserve database. The improvements are 6.79% and 18.42% compared to the fault diagnosis methods based on MFDFA with ELM and SPS with ELM. Compared with the methods based on MFDFA-SPS with LSSVM classifier and SVM classifier, the accuracy improvements are 3.54% and 4.25%, respectively. The results show that the method proposed in this paper can achieve the diagnosis of bearing faults and the method based on MFDFA-SPS with ELM is more efficient than the methods based on MFDFA-SPS with LSSVM and SVM classifiers, which is suitable for practical engineering problem-solving.
AbstractList Rolling bearings, as important parts on supporting rotating shafts, frequently suffer from fatigue failures. If these rolling bearing failures are not found in time, it will have a huge impact on the whole mechanical system’s operating safety and operating life. To improve the diagnosis of different faults as well as different degrees of faults, a fault diagnosis method based on the multifractal detrended fluctuation analysis (MFDFA) method-singularity power spectrum (SPS) with extreme learning machine (ELM) is proposed. First, MFDFA and SPS analyses are performed on vibration acceleration signals with different faults and different degrees of damage under the same operating conditions, the spectral parameters of stability and quantitative description of differentiation are selected for feature extraction, and then the selected six feature parameters are put into the extreme learning machine for fault classification. The effectiveness of the MFDFA-SPS feature extraction method is demonstrated by analyzing and testing the measured bearing signals. The fault diagnosis accuracy of the bearing fault signals can reach 99.2% based on the MFDFA-SPS with ELM method by using the Case Western Reserve database. The improvements are 6.79% and 18.42% compared to the fault diagnosis methods based on MFDFA with ELM and SPS with ELM. Compared with the methods based on MFDFA-SPS with LSSVM classifier and SVM classifier, the accuracy improvements are 3.54% and 4.25%, respectively. The results show that the method proposed in this paper can achieve the diagnosis of bearing faults and the method based on MFDFA-SPS with ELM is more efficient than the methods based on MFDFA-SPS with LSSVM and SVM classifiers, which is suitable for practical engineering problem-solving.
Author Xi, Caiping
Yang, Yunfan
Author_xml – sequence: 1
  givenname: Yunfan
  orcidid: 0000-0002-0238-5210
  surname: Yang
  fullname: Yang, Yunfan
  organization: Ocean CollegeJiangsu University of Science and TechnologyZhenjiang 212003Chinajust.edu.cn
– sequence: 2
  givenname: Caiping
  orcidid: 0000-0002-1932-6137
  surname: Xi
  fullname: Xi, Caiping
  organization: School of AutomationJiangsu University of Science and TechnologyZhenjiang 212003Chinajust.edu.cn
BookMark eNp9kEtLAzEYRYNUsK3u_AEDLnVsvjwmE3d9jQotilVwF5KZTJ0yJjVpEf-9U-ra1b2Lw71wBqjnvLMIXQK-BeB8RDAhI4YpY0KcoD7wjKYcmOh1HROWAqHvZ2gQ4wZjAhzyPrp78W3buHUysTocstD7dpfMGr12PjYxmehoq8S7ZFnMinG6el4l2lXJfLE8R6e1bqO9-Msheivmr9OHdPF0_zgdL9KSSLZLGdaUY2oNSEuNrAzJQMgacmp4XYvc4ApqLmiuJQULMmelqYmErDSGCqvpEF0dd7fBf-1t3KmN3wfXXSqSyUzQLKeso26OVBl8jMHWahuaTx1-FGB1sKMOdtSfnQ6_PuIfjav0d_M__QtKsWJD
Cites_doi 10.1016/j.ymssp.2015.02.002
10.1016/j.neucom.2005.12.126
10.1016/j.physa.2015.02.025
10.1016/s0888-3270(03)00052-9
10.1137/1010093
10.1016/j.ymssp.2012.12.014
10.1126/science.156.3775.636
10.2307/2286682
10.1016/j.ymssp.2010.07.017
10.1109/tii.2022.3169465
10.1016/j.ymssp.2004.09.002
10.1109/URAI.2017.7992827
10.1155/2016/1232893
10.3389/fphys.2012.00141
10.1201/9781420006582
10.5772/20790
ContentType Journal Article
Copyright Copyright © 2022 Yunfan Yang and Caiping Xi.
Copyright © 2022 Yunfan Yang and Caiping Xi. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0
Copyright_xml – notice: Copyright © 2022 Yunfan Yang and Caiping Xi.
– notice: Copyright © 2022 Yunfan Yang and Caiping Xi. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0
DBID RHU
RHW
RHX
AAYXX
CITATION
7TB
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
CWDGH
DWQXO
FR3
GNUQQ
HCIFZ
JQ2
K7-
KR7
L6V
M7S
P5Z
P62
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
PTHSS
DOI 10.1155/2022/4034477
DatabaseName Hindawi Publishing Complete
Hindawi Publishing Subscription Journals
Open Access: Hindawi Publishing
CrossRef
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
AUTh Library subscriptions: ProQuest Central
Technology Collection
ProQuest One Community College
Middle East & Africa Database
ProQuest Central
Engineering Research Database
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Civil Engineering Abstracts
ProQuest Engineering Collection
ProQuest Engineering Database
ProQuest Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Publicly Available Content Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DatabaseTitle CrossRef
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Mechanical & Transportation Engineering Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest Engineering Collection
Middle East & Africa Database
ProQuest Central Korea
Engineering Collection
Advanced Technologies & Aerospace Collection
Civil Engineering Abstracts
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
DatabaseTitleList CrossRef

Publicly Available Content Database
Database_xml – sequence: 1
  dbid: RHX
  name: Open Access: Hindawi Publishing
  url: http://www.hindawi.com/journals/
  sourceTypes: Publisher
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISSN 1563-5147
Editor Feng, Ke
Editor_xml – sequence: 1
  givenname: Ke
  surname: Feng
  fullname: Feng, Ke
– fullname: Ke Feng
EndPage 17
ExternalDocumentID 10_1155_2022_4034477
GrantInformation_xml – fundername: School Research Start-Up Foundation for on-the-job doctoral training
  grantid: 1032931804
– fundername: National Natural Science Foundation of China
  grantid: 61901195
GroupedDBID 29M
2WC
3V.
4.4
5GY
5VS
8FE
8FG
8R4
8R5
AAFWJ
AAJEY
ABDBF
ABJCF
ABUWG
ACIPV
ACIWK
ADBBV
AENEX
AFKRA
AINHJ
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BCNDV
BENPR
BGLVJ
BPHCQ
CCPQU
CS3
CWDGH
E3Z
EBS
ESX
GROUPED_DOAJ
HCIFZ
I-F
IAO
IEA
IOF
ISR
ITC
K6V
K7-
KQ8
L6V
M7S
MK~
M~E
OK1
P2P
P62
PIMPY
PQQKQ
PROAC
PTHSS
Q2X
REM
RHU
RHW
RHX
RNS
TR2
TUS
XSB
YQT
~8M
24P
AAYXX
CITATION
H13
7TB
8FD
AZQEC
DWQXO
FR3
GNUQQ
JQ2
KR7
PQEST
PQUKI
PRINS
ID FETCH-LOGICAL-c294t-40a3503eb19e3b9db26179f183b5ff78b0d1f5738a931e1984cbf2916cbb37ea3
IEDL.DBID BENPR
ISSN 1024-123X
IngestDate Thu Oct 10 22:19:04 EDT 2024
Thu Sep 26 17:56:20 EDT 2024
Sun Jun 02 18:50:29 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c294t-40a3503eb19e3b9db26179f183b5ff78b0d1f5738a931e1984cbf2916cbb37ea3
ORCID 0000-0002-0238-5210
0000-0002-1932-6137
OpenAccessLink https://www.proquest.com/docview/2696736834?pq-origsite=%requestingapplication%
PQID 2696736834
PQPubID 237775
PageCount 17
ParticipantIDs proquest_journals_2696736834
crossref_primary_10_1155_2022_4034477
hindawi_primary_10_1155_2022_4034477
PublicationCentury 2000
PublicationDate 2022-07-18
PublicationDateYYYYMMDD 2022-07-18
PublicationDate_xml – month: 07
  year: 2022
  text: 2022-07-18
  day: 18
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Mathematical problems in engineering
PublicationYear 2022
Publisher Hindawi
Hindawi Limited
Publisher_xml – name: Hindawi
– name: Hindawi Limited
References 11
12
Y. Zhao (15) 2021; 70
14
Cwru Dataset (21) 2022
16
17
18
Q. Chen (13) 2014; 4
19
J. Gegner (1) 2011
2
3
J. Antonia (7) 2004; 20
5
8
K. Feng (9) 2020; 150
B. B. Mandelbrot (4) 2013
T. Harris (6) 2006
20
10
References_xml – volume-title: Multifractals and 1/ƒ Noise: Wild Self-Affinity in Physics (1963–1976)
  year: 2013
  ident: 4
  contributor:
    fullname: B. B. Mandelbrot
– ident: 11
  doi: 10.1016/j.ymssp.2015.02.002
– ident: 18
  doi: 10.1016/j.neucom.2005.12.126
– ident: 17
  doi: 10.1016/j.physa.2015.02.025
– ident: 20
  doi: 10.1016/s0888-3270(03)00052-9
– ident: 5
  doi: 10.1137/1010093
– ident: 12
  doi: 10.1016/j.ymssp.2012.12.014
– volume: 150
  start-page: 1
  year: 2020
  ident: 9
  article-title: Use of cyclostationary properties of vibration signals to identify gear wear mechanisms and track wear evolution
  publication-title: Mechanical Systems and Signal Processing
  contributor:
    fullname: K. Feng
– ident: 3
  doi: 10.1126/science.156.3775.636
– ident: 19
  doi: 10.2307/2286682
– ident: 2
  doi: 10.1016/j.ymssp.2010.07.017
– volume: 70
  year: 2021
  ident: 15
  article-title: Joint domain alignment and class Alignment method for cross-domain fault diagnosis of rotating machinery
  publication-title: IEEE Transactions on Instrumentation and Measurement
  contributor:
    fullname: Y. Zhao
– ident: 8
  doi: 10.1109/tii.2022.3169465
– volume: 20
  start-page: 308
  year: 2004
  ident: 7
  article-title: The spectral kurtosis: application to the vibratory surveillance and diagnostics of rotating machines
  publication-title: Mechanical Systems and Signal Processing
  doi: 10.1016/j.ymssp.2004.09.002
  contributor:
    fullname: J. Antonia
– ident: 10
  doi: 10.1109/URAI.2017.7992827
– ident: 14
  doi: 10.1155/2016/1232893
– year: 2022
  ident: 21
  article-title: Case western Reserve university bearing data center
  contributor:
    fullname: Cwru Dataset
– ident: 16
  doi: 10.3389/fphys.2012.00141
– volume-title: Advanced Concepts of Bearing Technology
  year: 2006
  ident: 6
  doi: 10.1201/9781420006582
  contributor:
    fullname: T. Harris
– volume-title: Tribological Aspects of Rolling Bearing Failures
  year: 2011
  ident: 1
  doi: 10.5772/20790
  contributor:
    fullname: J. Gegner
– volume: 4
  start-page: 45
  year: 2014
  ident: 13
  article-title: Fault prediction for bearings based on morphological fractal dimension and improved ELM
  publication-title: Bearing
  contributor:
    fullname: Q. Chen
SSID ssj0021518
Score 2.3511338
Snippet Rolling bearings, as important parts on supporting rotating shafts, frequently suffer from fatigue failures. If these rolling bearing failures are not found in...
SourceID proquest
crossref
hindawi
SourceType Aggregation Database
Publisher
StartPage 1
SubjectTerms Algorithms
Artificial neural networks
Bearings
Classifiers
Deep learning
Fatigue failure
Fault diagnosis
Faults
Feature extraction
Fractals
Machine learning
Mechanical systems
Methods
Parameters
Roller bearings
Rotating shafts
Signal processing
Support vector machines
Time series
Vibration analysis
SummonAdditionalLinks – databaseName: Open Access: Hindawi Publishing
  dbid: RHX
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwGA06ELz4W5xOyWEeg2nStIm3za0McSLOQW8lSRscSCe2w3_fpM0E3UFPpdD28L58ed9Lvr4A0Cc4Ipa5BIo5VigMtUIqlhoJnvNIGMxy5YTi9DGazMP7lKXeJKna3MK3bOfkObkJG2u6eBtsc-4s8p8n6beusqTV_vFGnAUfTdf97b_e_cE8O69O8n4uNqbghleSA7DnC0I4aCN4CLaK8gjs--IQ-tSrjsGtt8-GQzs23TWRq7cajtpWuUUFh5aPcrgs4TQZJQM0e5pBWeZw_DA9AfNk_HI3Qf7gA6SJCGur6SRlmNppVBRUiVw523RhbPYpZkzMFc4Dw2LKpaBBEQhuITbEFnpaKRoXkp6CTrksizMAmeTGcE01ljikRnMubCwCrG0eaysHu-B6DUr23vpbZI0uYCxz4GUevC7oe8T-eKy3hjPzyVBlJBKue4zT8Px_X7kAu-7WLaEGvAc69cequLTcX6urJvJfTSOiJw
  priority: 102
  providerName: Hindawi Publishing
Title Rolling Bearing Fault Diagnosis Based on MFDFA-SPS and ELM
URI https://dx.doi.org/10.1155/2022/4034477
https://www.proquest.com/docview/2696736834
Volume 2022
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3PS8MwFH7ohuDF3-J0jhzmsaxtmjbxIptbHcONsTmYp9KkDQ6km67Df9-kzRQR9FRoSw9f8n58ry_fA2i6tu-qyMWsgNrc8jzBLR7EwmI0oT6TNkm4JorDkd-feYM5mZuC29q0VW59YuGok6XQNfKW6zPdgkSxd7d6s_TUKP131YzQ2IWqq5WbKlDt9EbjyRflUvGsPAznanU-PN-2vhOiWb_b8grFu-BHUNp70Wz4Y_HLOxchJzyCA5Mrona5uMewk2YncGjyRmSscn0Kt0ZZG3XUttXXMN685qhbdtEt1qijQlWClhkaht2wbU3HUxRnCeo9Ds9gFvae7vuWmYlgCZd5uaJ7MSY2Vh6WpZizhGtFdSaVYXIiZUC5nTiSBJjGDDupw6hCX7oqBxSc4yCN8TlUsmWWXgAiMZWSCizs2PawFJQytUyOLZSJC8UUa3CzBSValdIXUUEZCIk0eJEBrwZNg9g_r9W3cEbGTtbR96pe_v34Cvb1x3RV1aF1qOTvm_RapQM5b8AuDR8aUG23B73nhtkB6u6kP_8E9Cyxag
link.rule.ids 315,786,790,869,884,12786,21409,27946,27947,33397,33768,43624,43829,74381,74648
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3PT4MwFG50xujF38bp1B7msRlQCq0Xs-lw6lhMtiW7EVpoXGLYFBb_fVsoGmOiJw4QDt_j_fger98DoO1YnqMyF0M-tThyXcER92OBGE2ox6RFEq6JYjjyBlP3cUZmpuGWm7HKOiaWgTpZCN0j7zge0yNIFLs3yzekt0bpv6tmhcY62HBVJNba-TS4_yJcKptVR-Ecrc2HZ_XgOyGa8zsdt9S783-kpM0XzYU_5r9ic5lwgj2wYypF2K1Muw_W0uwA7JqqERqfzA_BtdHVhj310eprEK9eC3hXzdDNc9hTiSqBiwyGwV3QRePnMYyzBPaH4RGYBv3J7QCZjQhIOMwtFNmLMbGwiq8sxZwlXOupM6nckhMpfcqtxJbExzRm2E5tRhX20lEVoOAc-2mMj0EjW2TpCYAkplJSgYUVWy6WglKmjGRbQjm4UDyxCa5qUKJlJXwRlYSBkEiDFxnwmqBtEPvnsVYNZ2S8JI--bXr69-1LsDWYhMNo-DB6OgPb-sW6v2rTFmgU76v0XBUGBb8orf8Jeo6vaQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3NS8MwHA06Ubz4LU6n5jCPYWnTrIkX2Zx16jYGc7BbadIGB9JN2-G_b9Kmigh66qGlh9_r7-OlLy8ANF3cdnXn4shnWCDPkwIJP5KIs5i1ucI0FoYoDkft_tR7nNGZ1T9lVlZZ1cSiUMcLadbIW26bGwkSI15LWVnEuBfcLN-QOUHK_Gm1x2msgw3f-FaZXePB_Rf50p2t3BbnGp8-MqtE8JQa_u-2vML7zv_RnjZfDC_-mP-q00XzCfbAjp0aYaeEeR-sJekB2LUTJLT5mR2Ca-uxDbv6AzbXIFq95rBX6unmGezqphXDRQqHQS_ooMl4AqM0hneD4RGYBnfPt31kT0dA0uVerolfRCgmutbyhAgeC-OtzpVOUUGV8pnAsaOoT1jEiZM4nGkclKunQSkE8ZOIHINaukiTEwBpxJRikkgcYY8oyRjXgDlY6mSXmjPWwVUVlHBZmmCEBXmgNDTBC23w6qBpI_bPY40qnKHNmCz8xvf079uXYEsDHw4eRk9nYNu81yy1OqwBavn7KjnXM0IuLgrwPwHVyLOe
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Rolling+Bearing+Fault+Diagnosis+Based+on+MFDFA-SPS+and+ELM&rft.jtitle=Mathematical+problems+in+engineering&rft.au=Yang%2C+Yunfan&rft.au=Xi%2C+Caiping&rft.date=2022-07-18&rft.issn=1024-123X&rft.eissn=1563-5147&rft.volume=2022&rft.spage=1&rft.epage=17&rft_id=info:doi/10.1155%2F2022%2F4034477&rft.externalDBID=n%2Fa&rft.externalDocID=10_1155_2022_4034477
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1024-123X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1024-123X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1024-123X&client=summon