Design of English Translation Mobile Information System Based on Recurrent Neural Network

To solve the problem of translating lines of difference in length into English, this article presents a model of neural network recovery (RNN) English translator-based models of end-to-end encoder-decoder. This method promotes machine autonomous learning of features and transforms corpus data into w...

Full description

Saved in:
Bibliographic Details
Published inMobile information systems Vol. 2022; pp. 1 - 7
Main Author Gao, Yue
Format Journal Article
LanguageEnglish
Published Amsterdam Hindawi 10.08.2022
John Wiley & Sons, Inc
Subjects
Online AccessGet full text
ISSN1574-017X
1875-905X
DOI10.1155/2022/8053285

Cover

Loading…
Abstract To solve the problem of translating lines of difference in length into English, this article presents a model of neural network recovery (RNN) English translator-based models of end-to-end encoder-decoder. This method promotes machine autonomous learning of features and transforms corpus data into word vectors by constructing end-to-end. By mapping the source language and target language directly through the recurrent neural network and selecting semantic error to construct objective function during training, the influence of each part in semantic can be well balanced, and the alignment information is fully considered, which provides powerful guidance for deep recurrent neural network training. The results of the neural network test define the standard BLEU score by 1.51–11.86. Our test scores and BLEU scores at all levels show that data in equivalence play an important role in modeling. Summary. the English translation model based on the neural repetitive fusion is efficient and stable.
AbstractList To solve the problem of translating lines of difference in length into English, this article presents a model of neural network recovery (RNN) English translator-based models of end-to-end encoder-decoder. This method promotes machine autonomous learning of features and transforms corpus data into word vectors by constructing end-to-end. By mapping the source language and target language directly through the recurrent neural network and selecting semantic error to construct objective function during training, the influence of each part in semantic can be well balanced, and the alignment information is fully considered, which provides powerful guidance for deep recurrent neural network training. The results of the neural network test define the standard BLEU score by 1.51–11.86. Our test scores and BLEU scores at all levels show that data in equivalence play an important role in modeling. Summary. the English translation model based on the neural repetitive fusion is efficient and stable.
Author Gao, Yue
Author_xml – sequence: 1
  givenname: Yue
  orcidid: 0000-0002-4325-6415
  surname: Gao
  fullname: Gao, Yue
  organization: Suqian CollegeSuqianJiangsu 223800Chinasqc.edu.cn
BookMark eNp9kNFOwjAUhhuDiYDe-QBNvNTJWdeu3aUiKglqopjg1dJuHQxHC-0Wwts7Mq69-s_58-Wc5BugnrFGI3Qdwn0YMjYiQMhIAIuIYGeoHwrOggTYotfOjNMAQr64QAPv1wAxRIz30c-T9uXSYFvgiVlWpV_huZPGV7IurcFvVpWVxlNTWLfpqq-Dr_UGP0qvc9zunzprnNOmxu-6cbJqo95b93uJzgtZeX11yiH6fp7Mx6_B7ONlOn6YBRlJaB1EPM9BCpWIWGSCUlqEihSKEk2pZDFQqqiMVZHJDGKlRJTkTPJcUaVlogCiIbrp7m6d3TXa1-naNs60L1PCgXJGo-hI3XVU5qz3Thfp1pUb6Q5pCOlRXnqUl57ktfhth69Kk8t9-T_9B5ORcNU
Cites_doi 10.1007/s11063-021-10678-5
10.1155/2021/5526082
10.1017/s1351324920000467
10.1007/s12083-022-01301-y
10.1109/tii.2019.2947174
10.1007/s00607-019-00752-1
10.1155/2021/8670739
10.3303/CET2183060
10.1007/s12559-020-09731-7
10.1016/j.procs.2022.01.182
10.1155/2021/8829403
10.1021/acs.jpcc.0c01944
10.1515/jisys-2020-0060
10.1109/access.2021.3083509
10.1145/3495018.3495104
10.1111/cgf.13921
10.1007/s10772-021-09809-z
10.1016/j.future.2020.02.028
10.1007/s12559-021-09860-7
10.1109/tla.2021.9448537
10.1016/j.procs.2021.05.065
10.1109/jsyst.2020.3040287
ContentType Journal Article
Copyright Copyright © 2022 Yue Gao.
Copyright © 2022 Yue Gao. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0
Copyright_xml – notice: Copyright © 2022 Yue Gao.
– notice: Copyright © 2022 Yue Gao. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0
DBID RHU
RHW
RHX
AAYXX
CITATION
7SC
7SP
7T9
8FD
JQ2
L7M
L~C
L~D
DOI 10.1155/2022/8053285
DatabaseName Hindawi Publishing Complete
Hindawi Publishing Subscription Journals
Hindawi Publishing Open Access
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Linguistics and Language Behavior Abstracts (LLBA)
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Linguistics and Language Behavior Abstracts (LLBA)
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

CrossRef
Database_xml – sequence: 1
  dbid: RHX
  name: Hindawi Publishing Open Access
  url: http://www.hindawi.com/journals/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1875-905X
Editor Zhang, Wen
Editor_xml – sequence: 1
  givenname: Wen
  surname: Zhang
  fullname: Zhang, Wen
EndPage 7
ExternalDocumentID 10_1155_2022_8053285
GroupedDBID -CS
-CY
.4S
.DC
0R~
4.4
5VS
AAFWJ
AAJEY
ABHFT
ABJNI
ACGFO
ACGFS
ADBBV
AEGXH
AENEX
AIAGR
ALMA_UNASSIGNED_HOLDINGS
ARCSS
ASPBG
AVWKF
BCNDV
EBS
EDO
GROUPED_DOAJ
HZ~
I-F
IAO
IHR
IOS
KQ8
KZ1
LMP
MIO
MV1
NGNOM
O9-
OK1
P2P
RHU
RHW
RHX
TUS
24P
AAYXX
ACCMX
CITATION
H13
7SC
7SP
7T9
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c294t-37dd0a8b9868c8444f1b2fb42e44a56044b4a6bfcac06bb839d5a7db4bea9b003
IEDL.DBID RHX
ISSN 1574-017X
IngestDate Fri Jul 25 09:32:27 EDT 2025
Tue Jul 01 01:14:42 EDT 2025
Sun Jun 02 19:22:32 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c294t-37dd0a8b9868c8444f1b2fb42e44a56044b4a6bfcac06bb839d5a7db4bea9b003
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-4325-6415
OpenAccessLink https://dx.doi.org/10.1155/2022/8053285
PQID 2704754330
PQPubID 2048814
PageCount 7
ParticipantIDs proquest_journals_2704754330
crossref_primary_10_1155_2022_8053285
hindawi_primary_10_1155_2022_8053285
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-08-10
PublicationDateYYYYMMDD 2022-08-10
PublicationDate_xml – month: 08
  year: 2022
  text: 2022-08-10
  day: 10
PublicationDecade 2020
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Mobile information systems
PublicationYear 2022
Publisher Hindawi
John Wiley & Sons, Inc
Publisher_xml – name: Hindawi
– name: John Wiley & Sons, Inc
References 11
22
12
13
14
15
16
17
18
19
1
2
3
4
5
6
7
8
9
20
10
21
References_xml – ident: 11
  doi: 10.1007/s11063-021-10678-5
– ident: 18
  doi: 10.1155/2021/5526082
– ident: 6
  doi: 10.1017/s1351324920000467
– ident: 10
  doi: 10.1007/s12083-022-01301-y
– ident: 1
  doi: 10.1109/tii.2019.2947174
– ident: 2
  doi: 10.1007/s00607-019-00752-1
– ident: 5
  doi: 10.1155/2021/8670739
– ident: 16
  doi: 10.3303/CET2183060
– ident: 8
  doi: 10.1007/s12559-020-09731-7
– ident: 3
  doi: 10.1016/j.procs.2022.01.182
– ident: 19
  doi: 10.1155/2021/8829403
– ident: 13
  doi: 10.1021/acs.jpcc.0c01944
– ident: 12
  doi: 10.1515/jisys-2020-0060
– ident: 14
  doi: 10.1109/access.2021.3083509
– ident: 17
  doi: 10.1145/3495018.3495104
– ident: 22
  doi: 10.1111/cgf.13921
– ident: 20
  doi: 10.1007/s10772-021-09809-z
– ident: 4
  doi: 10.1016/j.future.2020.02.028
– ident: 7
  doi: 10.1007/s12559-021-09860-7
– ident: 15
  doi: 10.1109/tla.2021.9448537
– ident: 9
  doi: 10.1016/j.procs.2021.05.065
– ident: 21
  doi: 10.1109/jsyst.2020.3040287
SSID ssj0060357
ssib050733852
Score 2.2493482
Snippet To solve the problem of translating lines of difference in length into English, this article presents a model of neural network recovery (RNN) English...
SourceID proquest
crossref
hindawi
SourceType Aggregation Database
Index Database
Publisher
StartPage 1
SubjectTerms Brain research
Coders
Encoders-Decoders
English language
Interdisciplinary subjects
Interpreters
Machine translation
Native languages
Natural language processing
Neural networks
Recurrent neural networks
Research methodology
Semantics
Training
Translating
Translation
Translations
Translators
Title Design of English Translation Mobile Information System Based on Recurrent Neural Network
URI https://dx.doi.org/10.1155/2022/8053285
https://www.proquest.com/docview/2704754330
Volume 2022
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDI7YJCQuvBGDMeUwjhVp66Tpkdc0gTYJxKRyquKkFVy2iQ3x90nS9AA7wDFVlUqO7c9O7c-EDFXKFNNoIoMpRIAJj3Je8yjVxsJHpiwmu6uByVSMZ_BQ8CKQJK02f-FbtHPpeXIl3QQDyTukYxXMJeXjolUb7uYO-hbgxgELlnqCz5hnrsAiK9p69197_UCi7TeXAn-9b7hkjzOjfbIbAkR63ZzoAdmq5odkrx2-QIMtHpHXO197QRc1Da241ONOU9tGJwu09k5Dt5F_1JCT0xuLW4ba9bO7anfkTNQxdNhvTpuS8GMyG92_3I6jMCch0kkOa-sjjGFKYi6F1BIA6hiTGiGpAJSNaAAQlMBaK80EohW_4SozCFgpR4mYnpDufDGvTgkVTNdK5pkWOgcbK-T2yJTNVeMYJVQCeuSylVm5bOgwSp9GcF462ZZBtj0yDAL947V-K-0y2M6qTDIGGYc0ZWf_2-Wc7Lhl5Ilq-6S7_visLmyosMYB6Tw-yYFXl29Q1bUv
linkProvider Hindawi Publishing
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Design+of+English+Translation+Mobile+Information+System+Based+on+Recurrent+Neural+Network&rft.jtitle=Mobile+information+systems&rft.au=Gao%2C+Yue&rft.date=2022-08-10&rft.issn=1574-017X&rft.eissn=1875-905X&rft.volume=2022&rft.spage=1&rft.epage=7&rft_id=info:doi/10.1155%2F2022%2F8053285&rft.externalDBID=n%2Fa&rft.externalDocID=10_1155_2022_8053285
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1574-017X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1574-017X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1574-017X&client=summon