The production of soluble regenerated silk fibroin powder with high molecular weight and silk protein-based materials

The aqueous solution of regenerated silk fibroin (RSF) is considered as the raw material to produce various silk protein-based materials, including hydrogel, film, rod and fiber, etc. with significant mechanical properties. However, the aqueous solution of RSF is usually unstable within a few days o...

Full description

Saved in:
Bibliographic Details
Published inGiant (Oxford, England) Vol. 19; p. 100313
Main Authors Gu, Kai, Tong, Yixuan, Mi, Ruixin, Leng, Siyan, Huang, Hanwen, Yao, Jingrong, Chen, Xin, Shao, Zhengzhong
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.08.2024
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The aqueous solution of regenerated silk fibroin (RSF) is considered as the raw material to produce various silk protein-based materials, including hydrogel, film, rod and fiber, etc. with significant mechanical properties. However, the aqueous solution of RSF is usually unstable within a few days or even hours in terms of its essential properties, because the conformation of the RSF chain would spontaneously transfer from random coil to β-sheet in water. In this work, we developed a way to harvest the RSF powder through an optimized spray drying method via rapid drying at a relatively low temperature. It was demonstrated that no severe degradation and conformational transition of the RSF chain occurred during powder preparation, and the RSF powder exhibited remarkable solubility in water and long stability at room temperature. Importantly, there are no obvious differences in the mechanical properties of the silk protein-based materials made from the aqueous solution from the spray-dried RSF powder (Sp-RSF) and from fresh RSF solution. Indeed, such amorphous Sp-RSF powder, in which the protein chain was dominated by random coil conformation, not only promised as the raw material for large-scale silk protein-based products in various applications but also provided the basis for fabricating bulk silk protein materials via the untraditional processing of silk fibroin, such as molding with the help of heat and moisture. Regenerated silk fibroin (RSF) aqueous solution is usually harvested via the procedures of degumming, dissolving and dialyzing. Although RSF-based materials have aroused great interest, the storage of RSF aqueous solution remains to be a challenge. A promising strategy by using the spray drying method to harvest RSF powder with little degradation and conformational transition was developed, showing great potential as the raw material in the mass production of silk protein-based products with various applications. [Display omitted]
AbstractList The aqueous solution of regenerated silk fibroin (RSF) is considered as the raw material to produce various silk protein-based materials, including hydrogel, film, rod and fiber, etc. with significant mechanical properties. However, the aqueous solution of RSF is usually unstable within a few days or even hours in terms of its essential properties, because the conformation of the RSF chain would spontaneously transfer from random coil to β-sheet in water. In this work, we developed a way to harvest the RSF powder through an optimized spray drying method via rapid drying at a relatively low temperature. It was demonstrated that no severe degradation and conformational transition of the RSF chain occurred during powder preparation, and the RSF powder exhibited remarkable solubility in water and long stability at room temperature. Importantly, there are no obvious differences in the mechanical properties of the silk protein-based materials made from the aqueous solution from the spray-dried RSF powder (Sp-RSF) and from fresh RSF solution. Indeed, such amorphous Sp-RSF powder, in which the protein chain was dominated by random coil conformation, not only promised as the raw material for large-scale silk protein-based products in various applications but also provided the basis for fabricating bulk silk protein materials via the untraditional processing of silk fibroin, such as molding with the help of heat and moisture.
The aqueous solution of regenerated silk fibroin (RSF) is considered as the raw material to produce various silk protein-based materials, including hydrogel, film, rod and fiber, etc. with significant mechanical properties. However, the aqueous solution of RSF is usually unstable within a few days or even hours in terms of its essential properties, because the conformation of the RSF chain would spontaneously transfer from random coil to β-sheet in water. In this work, we developed a way to harvest the RSF powder through an optimized spray drying method via rapid drying at a relatively low temperature. It was demonstrated that no severe degradation and conformational transition of the RSF chain occurred during powder preparation, and the RSF powder exhibited remarkable solubility in water and long stability at room temperature. Importantly, there are no obvious differences in the mechanical properties of the silk protein-based materials made from the aqueous solution from the spray-dried RSF powder (Sp-RSF) and from fresh RSF solution. Indeed, such amorphous Sp-RSF powder, in which the protein chain was dominated by random coil conformation, not only promised as the raw material for large-scale silk protein-based products in various applications but also provided the basis for fabricating bulk silk protein materials via the untraditional processing of silk fibroin, such as molding with the help of heat and moisture. Regenerated silk fibroin (RSF) aqueous solution is usually harvested via the procedures of degumming, dissolving and dialyzing. Although RSF-based materials have aroused great interest, the storage of RSF aqueous solution remains to be a challenge. A promising strategy by using the spray drying method to harvest RSF powder with little degradation and conformational transition was developed, showing great potential as the raw material in the mass production of silk protein-based products with various applications. [Display omitted]
ArticleNumber 100313
Author Huang, Hanwen
Chen, Xin
Mi, Ruixin
Leng, Siyan
Shao, Zhengzhong
Yao, Jingrong
Tong, Yixuan
Gu, Kai
Author_xml – sequence: 1
  givenname: Kai
  surname: Gu
  fullname: Gu, Kai
– sequence: 2
  givenname: Yixuan
  surname: Tong
  fullname: Tong, Yixuan
– sequence: 3
  givenname: Ruixin
  surname: Mi
  fullname: Mi, Ruixin
– sequence: 4
  givenname: Siyan
  surname: Leng
  fullname: Leng, Siyan
– sequence: 5
  givenname: Hanwen
  surname: Huang
  fullname: Huang, Hanwen
– sequence: 6
  givenname: Jingrong
  surname: Yao
  fullname: Yao, Jingrong
– sequence: 7
  givenname: Xin
  surname: Chen
  fullname: Chen, Xin
– sequence: 8
  givenname: Zhengzhong
  orcidid: 0000-0001-5334-4008
  surname: Shao
  fullname: Shao, Zhengzhong
  email: zzshao@fudan.edu.cn
BookMark eNp9kctOIzEQRa0RIw2vL5iNf6CDX-3uLGaB0PCQkNjA2irb1YkzHTuyHdD8PYYgxIpVVV3pHtXVPSFHMUUk5DdnC864vtgsVgFiXQgmVFOY5PIHORZa665Xoj_6sv8i56VsGGNi5Gzk4pjsH9dIdzn5vashRZomWtK8tzPSjCuMmKGipyXM_-gUbE4h0l168ZjpS6hrug6rNd2mGd1-hqZhuyuF-GFp5IohdhZKo2wbKweYyxn5ObWB5x_zlDxd_328uu3uH27uri7vOyeWqnZS62EaRzZaryz0nE9gAaVW1vmhX7p-KcEvFXrgtgcve5hafA2WWT0qN8lTcnfg-gQbs8thC_m_SRDMu5DyykCuwc1oRomC98PoB6bUwAQgBwlu4I4NDp1rLHlguZxKyTh98jgzb0WYjXkvwrwVYQ5FNNefgwtbzOeA2RQXMDr0IaOr7Y_wrf8VWfWWow
Cites_doi 10.1021/bm0345460
10.1021/bm201731e
10.1002/adhm.201200097
10.1021/bm301741q
10.1016/j.actbio.2015.09.005
10.1002/adma.201504276
10.1002/marc.202170006
10.1038/srep37418
10.1021/bm401013k
10.1002/jbm.a.33021
10.1016/j.jconrel.2015.03.020
10.1039/D0TB01543A
10.1063/1.5091442
10.1039/C7SM01631J
10.1016/S0021-9797(03)00584-8
10.1002/adfm.201901134
10.1039/D1TB01006A
10.1038/s41578-019-0150-z
10.1016/j.progpolymsci.2015.02.001
10.1016/j.biomaterials.2008.07.041
10.1038/nprot.2011.379
10.1021/acsbiomaterials.5b00556
10.1038/s41563-019-0560-8
10.1021/jp056350v
10.1021/acsami.7b04623
10.1021/acsbiomaterials.9b01781
10.1002/admt.202000430
10.1016/j.cej.2021.130091
10.1038/s41598-019-51589-9
10.1517/17425247.2011.568936
10.1038/s41378-021-00261-2
10.1038/418741a
10.1038/ncomms4385
ContentType Journal Article
Copyright 2024 The Author(s)
Copyright_xml – notice: 2024 The Author(s)
DBID 6I.
AAFTH
AAYXX
CITATION
DOA
DOI 10.1016/j.giant.2024.100313
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
EISSN 2666-5425
ExternalDocumentID oai_doaj_org_article_83e21578d7044702ae1a3ac71c07cecc
10_1016_j_giant_2024_100313
S2666542524000778
GroupedDBID 0R~
0SF
6I.
AAEDW
AAFTH
AALRI
AAXUO
ADVLN
AEXQZ
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
EBS
FDB
GROUPED_DOAJ
M41
NCXOZ
OK1
ROL
AAYXX
AFJKZ
CITATION
ID FETCH-LOGICAL-c294t-3667f8808bd4ba511fabae364bcd759c593ad94eda1b5ad35af0036ab0b684cf3
IEDL.DBID DOA
ISSN 2666-5425
IngestDate Tue Oct 22 14:50:26 EDT 2024
Thu Sep 26 20:36:44 EDT 2024
Sat Aug 24 15:40:56 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Powder fusion
Regenerated silk fibroin
Spray-dried powder
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c294t-3667f8808bd4ba511fabae364bcd759c593ad94eda1b5ad35af0036ab0b684cf3
ORCID 0000-0001-5334-4008
OpenAccessLink https://doaj.org/article/83e21578d7044702ae1a3ac71c07cecc
ParticipantIDs doaj_primary_oai_doaj_org_article_83e21578d7044702ae1a3ac71c07cecc
crossref_primary_10_1016_j_giant_2024_100313
elsevier_sciencedirect_doi_10_1016_j_giant_2024_100313
PublicationCentury 2000
PublicationDate August 2024
2024-08-00
2024-08-01
PublicationDateYYYYMMDD 2024-08-01
PublicationDate_xml – month: 08
  year: 2024
  text: August 2024
PublicationDecade 2020
PublicationTitle Giant (Oxford, England)
PublicationYear 2024
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Melke, Midha, Ghosh, Ito, Hofmann (bib0007) 2016; 31
Crivelli, Perteghella, Bari, Sorrenti, Tripodo, Chlapanidas, Torre (bib0009) 2018; 14
Shao, Vollrath (bib0017) 2002; 418
Zainuddin, Park, Chirila, Halley, Whittaker (bib0022) 2008; 29
Umuhoza, Yang, Long, Hao, Dai, Zhao (bib0006) 2020; 6
Shi, Pu, Zheng, Feng, Yang, Zhang, Zhang, Yin, Xia (bib0033) 2016; 6
Li, Guo, Fitzpatrick, Ibrahim, Zwierstra, Hanna, Lechtig, Nazarian, Lin, Kaplan (bib0030) 2020; 5
Liu, Chen, Liu, Zhao, Ling, Yao, Shao, Chen (bib0015) 2020; 5
Kluge, Kahn, Brown, Omenetto, Kaplan (bib0025) 2016; 2
Perrone, Leisk, Lo, Moreau, Haas, Papenburg, Golden, Partlow, Fox, Ibrahim, Lin, Kaplan (bib0035) 2014; 5
Bucciarelli, Chiera, Quaranta, Yadavalli, Motta, Maniglio (bib0037) 2019; 29
Kasoju, Bora (bib0008) 2012; 1
Guo, Li, Mu, Kaplan (bib0005) 2020; 7
Yan, Chen, Jin, Sun, Gu, Mi, Chen, Chen, Shao (bib0031) 2021
Koh, Cheng, Teng, Khin, Loh, Tee, Low, Ye, Yu, Zhang, Han (bib0002) 2015; 46
Wang, Mi, Zhao, Shi, Chen, Liu, Shao, Xia (bib0032) 2020; 8
Wang, Chen, Yang, Shao (bib0021) 2013; 14
Su, Yao, Liu, Zhong, Chen, Shao (bib0028) 2017; 9
Wen, Sun, Huang, Huang, Su, Wang, Han, Kim, Brugger, Zhang, Zhang (bib0013) 2021; 7
Kim, Park, Li, Jin, Valluzzi, Kaplan (bib0024) 2004; 5
Yang, Gu, Shao (bib0004) 2021; 52
Hino, Tanimoto, Shimabayashi (bib0026) 2003; 266
Pritchard, Kaplan (bib0011) 2011; 8
Lu, Zhu, Zhang, Zhang, Zhang, Kaplan (bib0019) 2012; 13
Rockwood, Preda, Yucel, Wang, Lovett, Kaplan (bib0003) 2011; 6
Mottaghitalab, Farokhi, Shokrgozar, Atyabi, Hosseinkhani (bib0010) 2015; 206
Li, Wu, Shi, Xia, Sahoo, Yeo, Kaplan (bib0001) 2021
Chen, Tang, Liu, Wang, Sun, Yao, Shao, Chen (bib0014) 2021; 422
Mortimer, Holland, Vollrath (bib0018) 2013; 14
Xiao, Liu, Zhang, Qi, Ren, Pei, Ling (bib0020) 2021; 42
Yan, Chen, Jin, Sun, Cai, Gu, Mi, Chen, Chen, Shao (bib0029) 2021; 9
Liu, Shi, Zhang, Zhou, Sun, Xu, Zhang, Zhang, Li, Chen, Mao, Tao (bib0034) 2018; 7
Rajkhowa, Levin, Redmond, Li, Wang, Kanwar, Atlas, Wang (bib0027) 2011; 97A
Guo, Li, Vu, Hanna, Lechtig, Qiu, Mu, Ling, Nazarian, Lin, Kaplan (bib0036) 2020; 19
Zhu, Wang, Leow, Cai, Loh, Han, Chen (bib0012) 2016; 28
Frydrych, Greenhalgh, Vollrath (bib0016) 2019; 9
Matsumoto, Chen, Collette, Kim, Altman, Cebe, Kaplan (bib0023) 2006; 110
Melke (10.1016/j.giant.2024.100313_bib0007) 2016; 31
Guo (10.1016/j.giant.2024.100313_bib0036) 2020; 19
Lu (10.1016/j.giant.2024.100313_bib0019) 2012; 13
Zainuddin (10.1016/j.giant.2024.100313_bib0022) 2008; 29
Yan (10.1016/j.giant.2024.100313_bib0031) 2021
Xiao (10.1016/j.giant.2024.100313_bib0020) 2021; 42
Perrone (10.1016/j.giant.2024.100313_bib0035) 2014; 5
Li (10.1016/j.giant.2024.100313_bib0030) 2020; 5
Umuhoza (10.1016/j.giant.2024.100313_bib0006) 2020; 6
Crivelli (10.1016/j.giant.2024.100313_bib0009) 2018; 14
Liu (10.1016/j.giant.2024.100313_bib0015) 2020; 5
Wang (10.1016/j.giant.2024.100313_bib0021) 2013; 14
Wen (10.1016/j.giant.2024.100313_bib0013) 2021; 7
Shao (10.1016/j.giant.2024.100313_bib0017) 2002; 418
Kluge (10.1016/j.giant.2024.100313_bib0025) 2016; 2
Su (10.1016/j.giant.2024.100313_bib0028) 2017; 9
Guo (10.1016/j.giant.2024.100313_bib0005) 2020; 7
Pritchard (10.1016/j.giant.2024.100313_bib0011) 2011; 8
Kim (10.1016/j.giant.2024.100313_bib0024) 2004; 5
Wang (10.1016/j.giant.2024.100313_bib0032) 2020; 8
Hino (10.1016/j.giant.2024.100313_bib0026) 2003; 266
Mortimer (10.1016/j.giant.2024.100313_bib0018) 2013; 14
Rockwood (10.1016/j.giant.2024.100313_bib0003) 2011; 6
Chen (10.1016/j.giant.2024.100313_bib0014) 2021; 422
Shi (10.1016/j.giant.2024.100313_bib0033) 2016; 6
Rajkhowa (10.1016/j.giant.2024.100313_bib0027) 2011; 97A
Kasoju (10.1016/j.giant.2024.100313_bib0008) 2012; 1
Matsumoto (10.1016/j.giant.2024.100313_bib0023) 2006; 110
Yan (10.1016/j.giant.2024.100313_bib0029) 2021; 9
Koh (10.1016/j.giant.2024.100313_bib0002) 2015; 46
Li (10.1016/j.giant.2024.100313_bib0001) 2021
Frydrych (10.1016/j.giant.2024.100313_bib0016) 2019; 9
Yang (10.1016/j.giant.2024.100313_bib0004) 2021; 52
Mottaghitalab (10.1016/j.giant.2024.100313_bib0010) 2015; 206
Liu (10.1016/j.giant.2024.100313_bib0034) 2018; 7
Zhu (10.1016/j.giant.2024.100313_bib0012) 2016; 28
Bucciarelli (10.1016/j.giant.2024.100313_bib0037) 2019; 29
References_xml – volume: 19
  start-page: 102
  year: 2020
  end-page: 108
  ident: bib0036
  article-title: Thermoplastic moulding of regenerated silk
  publication-title: Nat. Mater.
  contributor:
    fullname: Kaplan
– volume: 206
  start-page: 161
  year: 2015
  end-page: 176
  ident: bib0010
  article-title: Silk fibroin nanoparticle as a novel drug delivery system
  publication-title: J. Control. Rel
  contributor:
    fullname: Hosseinkhani
– volume: 5
  start-page: 786
  year: 2004
  end-page: 792
  ident: bib0024
  article-title: Structure and properties of silk hydrogels
  publication-title: Biomacromolecules.
  contributor:
    fullname: Kaplan
– volume: 9
  start-page: 17490
  year: 2017
  end-page: 17499
  ident: bib0028
  article-title: Enhancing Mechanical Properties of Silk Fibroin Hydrogel through Restricting the Growth of beta-Sheet Domains
  publication-title: ACS. Appl. Mater. Interf.
  contributor:
    fullname: Shao
– volume: 5
  start-page: 61
  year: 2020
  end-page: 81
  ident: bib0030
  article-title: Design of biodegradable, implantable devices towards clinical translation
  publication-title: Nature Rev. Mater
  contributor:
    fullname: Kaplan
– volume: 7
  year: 2021
  ident: bib0013
  article-title: Recent progress in silk fibroin-based flexible electronics
  publication-title: Microsyst. Nanoeng.
  contributor:
    fullname: Zhang
– volume: 2
  start-page: 595
  year: 2016
  end-page: 605
  ident: bib0025
  article-title: Optimizing molecular weight of Lyophilized silk as a shelf-stable source material
  publication-title: ACS. Biomater. Sci. Eng.
  contributor:
    fullname: Kaplan
– volume: 14
  start-page: 546
  year: 2018
  end-page: 557
  ident: bib0009
  article-title: Silk nanoparticles: from inert supports to bioactive natural carriers for drug delivery
  publication-title: Soft. Matter.
  contributor:
    fullname: Torre
– volume: 9
  start-page: 5352
  year: 2021
  end-page: 5364
  ident: bib0029
  article-title: An interference screw made using a silk fibroin-based bulk material with high content of hydroxyapatite for anterior cruciate ligament reconstruction in a rabbit model
  publication-title: J. Mater. Chem. B
  contributor:
    fullname: Shao
– volume: 29
  year: 2019
  ident: bib0037
  article-title: A thermal-reflow-based low-temperature, high-pressure sintering of Lyophilized silk fibroin for the fast fabrication of biosubstrates
  publication-title: Adv. Funct. Mater.
  contributor:
    fullname: Maniglio
– volume: 1
  start-page: 393
  year: 2012
  end-page: 412
  ident: bib0008
  article-title: Silk fibroin in tissue engineering
  publication-title: Adv. Healthc. Mater.
  contributor:
    fullname: Bora
– volume: 97A
  start-page: 37
  year: 2011
  end-page: 45
  ident: bib0027
  article-title: Structure and properties of biomedical films prepared from aqueous and acidic silk fibroin solutions
  publication-title: J. Biomed. Mater. Res. Part A
  contributor:
    fullname: Wang
– volume: 418
  start-page: 741
  year: 2002
  ident: bib0017
  article-title: Materials: surprising strength of silkworm silk
  publication-title: Nature
  contributor:
    fullname: Vollrath
– volume: 14
  year: 2013
  ident: bib0021
  article-title: Effect of various dissolution systems on the molecular weight of regenerated silk fibroin
  publication-title: Biomacromolecules.
  contributor:
    fullname: Shao
– volume: 7
  year: 2020
  ident: bib0005
  article-title: Engineering silk materials: from natural spinning to artificial processing
  publication-title: Appl. Phys. Rev.
  contributor:
    fullname: Kaplan
– volume: 5
  year: 2020
  ident: bib0015
  article-title: Intelligent silk fibroin Ionotronic skin for temperature sensing
  publication-title: Adv. Mater. Technol.
  contributor:
    fullname: Chen
– volume: 9
  year: 2019
  ident: bib0016
  article-title: Artificial spinning of natural silk threads
  publication-title: Sci. Rep.
  contributor:
    fullname: Vollrath
– volume: 6
  start-page: 1612
  year: 2011
  end-page: 1631
  ident: bib0003
  article-title: Materials fabrication from Bombyx mori silk fibroin
  publication-title: Nat. Protoc.
  contributor:
    fullname: Kaplan
– volume: 8
  start-page: 9734
  year: 2020
  end-page: 9743
  ident: bib0032
  article-title: A silk-based high impact composite for the core decompression of the femoral head
  publication-title: J. Mater. Chem. B
  contributor:
    fullname: Xia
– volume: 7
  year: 2018
  ident: bib0034
  article-title: A silk cranial fixation system for Neurosurgery
  publication-title: Adv. Healthc. Mater.
  contributor:
    fullname: Tao
– volume: 110
  start-page: 21630
  year: 2006
  end-page: 21638
  ident: bib0023
  article-title: Mechanisms of silk fibroin sol-gel transitions
  publication-title: J. Phy. Chem. B
  contributor:
    fullname: Kaplan
– year: 2021
  ident: bib0001
  article-title: Fiber-based biopolymer processing as a route toward sustainability
  publication-title: Adv. Mater.
  contributor:
    fullname: Kaplan
– volume: 46
  start-page: 86
  year: 2015
  end-page: 110
  ident: bib0002
  article-title: Structures, mechanical properties and applications of silk fibroin materials
  publication-title: Prog. Polym. Sci.
  contributor:
    fullname: Han
– volume: 266
  start-page: 68
  year: 2003
  end-page: 73
  ident: bib0026
  article-title: Change in secondary structure of silk fibroin during preparation of its microspheres by spray-drying and exposure to humid atmosphere
  publication-title: J. Colloid Interf. Sci
  contributor:
    fullname: Shimabayashi
– volume: 5
  start-page: 3385
  year: 2014
  ident: bib0035
  article-title: The use of silk-based devices for fracture fixation
  publication-title: Nat. Commun.
  contributor:
    fullname: Kaplan
– year: 2021
  ident: bib0031
  article-title: An interference screw made by silk fibroin-based bulk material with high content of hydroxyapatite for anterior cruciate ligament reconstruction in a rabbit model
  publication-title: J. Mater. Chem. B
  contributor:
    fullname: Shao
– volume: 422
  year: 2021
  ident: bib0014
  article-title: Silk-based pressure/temperature sensing bimodal ionotronic skin with stimulus discriminability and low temperature workability
  publication-title: Chem. Engineer. J
  contributor:
    fullname: Chen
– volume: 6
  start-page: 1290
  year: 2020
  end-page: 1310
  ident: bib0006
  article-title: Strategies for tuning the biodegradation of silk fibroin-based materials for tissue engineering applications
  publication-title: ACS. Biomater. Sci. Eng.
  contributor:
    fullname: Zhao
– volume: 14
  start-page: 3653
  year: 2013
  end-page: 3659
  ident: bib0018
  article-title: Forced reeling of Bombyx mori Silk: separating behavior and processing conditions
  publication-title: Biomacromolecules.
  contributor:
    fullname: Vollrath
– volume: 31
  start-page: 1
  year: 2016
  end-page: 16
  ident: bib0007
  article-title: Silk fibroin as biomaterial for bone tissue engineering
  publication-title: Acta Biomater.
  contributor:
    fullname: Hofmann
– volume: 28
  start-page: 4250
  year: 2016
  end-page: 4265
  ident: bib0012
  article-title: Silk Fibroin for flexible electronic devices
  publication-title: Adv. Mater
  contributor:
    fullname: Chen
– volume: 6
  start-page: 37418
  year: 2016
  ident: bib0033
  article-title: An antibacterial and absorbable silk-based fixation material with impressive mechanical properties and biocompatibility
  publication-title: Sci. Rep.
  contributor:
    fullname: Xia
– volume: 13
  start-page: 826
  year: 2012
  end-page: 832
  ident: bib0019
  article-title: Silk self-assembly mechanisms and control from thermodynamics to kinetics
  publication-title: Biomacromolecules.
  contributor:
    fullname: Kaplan
– volume: 29
  start-page: 4268
  year: 2008
  end-page: 4274
  ident: bib0022
  article-title: The behavior of aged regenerated Bombyx mori silk fibroin solutions studied by H-1 NMR and rheology
  publication-title: Biomaterials
  contributor:
    fullname: Whittaker
– volume: 42
  year: 2021
  ident: bib0020
  article-title: Formation, structure, and mechanical performance of silk nanofibrils produced by heat-induced self-assembly
  publication-title: Macromol. Rapid. Commun.
  contributor:
    fullname: Ling
– volume: 52
  start-page: 16
  year: 2021
  end-page: 28
  ident: bib0004
  article-title: The investigation from animal silks to silk protein-based materials
  publication-title: Acta Polymerica Sinica
  contributor:
    fullname: Shao
– volume: 8
  start-page: 797
  year: 2011
  end-page: 811
  ident: bib0011
  article-title: Silk fibroin biomaterials for controlled release drug delivery
  publication-title: Exp. Opin. Drug Deliv.
  contributor:
    fullname: Kaplan
– volume: 5
  start-page: 786
  issue: 3
  year: 2004
  ident: 10.1016/j.giant.2024.100313_bib0024
  article-title: Structure and properties of silk hydrogels
  publication-title: Biomacromolecules.
  doi: 10.1021/bm0345460
  contributor:
    fullname: Kim
– volume: 13
  start-page: 826
  issue: 3
  year: 2012
  ident: 10.1016/j.giant.2024.100313_bib0019
  article-title: Silk self-assembly mechanisms and control from thermodynamics to kinetics
  publication-title: Biomacromolecules.
  doi: 10.1021/bm201731e
  contributor:
    fullname: Lu
– volume: 1
  start-page: 393
  issue: 4
  year: 2012
  ident: 10.1016/j.giant.2024.100313_bib0008
  article-title: Silk fibroin in tissue engineering
  publication-title: Adv. Healthc. Mater.
  doi: 10.1002/adhm.201200097
  contributor:
    fullname: Kasoju
– volume: 14
  issue: 1
  year: 2013
  ident: 10.1016/j.giant.2024.100313_bib0021
  article-title: Effect of various dissolution systems on the molecular weight of regenerated silk fibroin
  publication-title: Biomacromolecules.
  doi: 10.1021/bm301741q
  contributor:
    fullname: Wang
– volume: 31
  start-page: 1
  year: 2016
  ident: 10.1016/j.giant.2024.100313_bib0007
  article-title: Silk fibroin as biomaterial for bone tissue engineering
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2015.09.005
  contributor:
    fullname: Melke
– volume: 28
  start-page: 4250
  issue: 22
  year: 2016
  ident: 10.1016/j.giant.2024.100313_bib0012
  article-title: Silk Fibroin for flexible electronic devices
  publication-title: Adv. Mater
  doi: 10.1002/adma.201504276
  contributor:
    fullname: Zhu
– volume: 42
  issue: 3
  year: 2021
  ident: 10.1016/j.giant.2024.100313_bib0020
  article-title: Formation, structure, and mechanical performance of silk nanofibrils produced by heat-induced self-assembly
  publication-title: Macromol. Rapid. Commun.
  doi: 10.1002/marc.202170006
  contributor:
    fullname: Xiao
– volume: 6
  start-page: 37418
  year: 2016
  ident: 10.1016/j.giant.2024.100313_bib0033
  article-title: An antibacterial and absorbable silk-based fixation material with impressive mechanical properties and biocompatibility
  publication-title: Sci. Rep.
  doi: 10.1038/srep37418
  contributor:
    fullname: Shi
– volume: 14
  start-page: 3653
  issue: 10
  year: 2013
  ident: 10.1016/j.giant.2024.100313_bib0018
  article-title: Forced reeling of Bombyx mori Silk: separating behavior and processing conditions
  publication-title: Biomacromolecules.
  doi: 10.1021/bm401013k
  contributor:
    fullname: Mortimer
– volume: 97A
  start-page: 37
  issue: 1
  year: 2011
  ident: 10.1016/j.giant.2024.100313_bib0027
  article-title: Structure and properties of biomedical films prepared from aqueous and acidic silk fibroin solutions
  publication-title: J. Biomed. Mater. Res. Part A
  doi: 10.1002/jbm.a.33021
  contributor:
    fullname: Rajkhowa
– volume: 206
  start-page: 161
  year: 2015
  ident: 10.1016/j.giant.2024.100313_bib0010
  article-title: Silk fibroin nanoparticle as a novel drug delivery system
  publication-title: J. Control. Rel
  doi: 10.1016/j.jconrel.2015.03.020
  contributor:
    fullname: Mottaghitalab
– volume: 8
  start-page: 9734
  issue: 42
  year: 2020
  ident: 10.1016/j.giant.2024.100313_bib0032
  article-title: A silk-based high impact composite for the core decompression of the femoral head
  publication-title: J. Mater. Chem. B
  doi: 10.1039/D0TB01543A
  contributor:
    fullname: Wang
– volume: 7
  issue: 1
  year: 2020
  ident: 10.1016/j.giant.2024.100313_bib0005
  article-title: Engineering silk materials: from natural spinning to artificial processing
  publication-title: Appl. Phys. Rev.
  doi: 10.1063/1.5091442
  contributor:
    fullname: Guo
– volume: 14
  start-page: 546
  issue: 4
  year: 2018
  ident: 10.1016/j.giant.2024.100313_bib0009
  article-title: Silk nanoparticles: from inert supports to bioactive natural carriers for drug delivery
  publication-title: Soft. Matter.
  doi: 10.1039/C7SM01631J
  contributor:
    fullname: Crivelli
– volume: 266
  start-page: 68
  issue: 1
  year: 2003
  ident: 10.1016/j.giant.2024.100313_bib0026
  article-title: Change in secondary structure of silk fibroin during preparation of its microspheres by spray-drying and exposure to humid atmosphere
  publication-title: J. Colloid Interf. Sci
  doi: 10.1016/S0021-9797(03)00584-8
  contributor:
    fullname: Hino
– volume: 29
  issue: 42
  year: 2019
  ident: 10.1016/j.giant.2024.100313_bib0037
  article-title: A thermal-reflow-based low-temperature, high-pressure sintering of Lyophilized silk fibroin for the fast fabrication of biosubstrates
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201901134
  contributor:
    fullname: Bucciarelli
– year: 2021
  ident: 10.1016/j.giant.2024.100313_bib0031
  article-title: An interference screw made by silk fibroin-based bulk material with high content of hydroxyapatite for anterior cruciate ligament reconstruction in a rabbit model
  publication-title: J. Mater. Chem. B
  doi: 10.1039/D1TB01006A
  contributor:
    fullname: Yan
– volume: 5
  start-page: 61
  issue: 1
  year: 2020
  ident: 10.1016/j.giant.2024.100313_bib0030
  article-title: Design of biodegradable, implantable devices towards clinical translation
  publication-title: Nature Rev. Mater
  doi: 10.1038/s41578-019-0150-z
  contributor:
    fullname: Li
– volume: 46
  start-page: 86
  year: 2015
  ident: 10.1016/j.giant.2024.100313_bib0002
  article-title: Structures, mechanical properties and applications of silk fibroin materials
  publication-title: Prog. Polym. Sci.
  doi: 10.1016/j.progpolymsci.2015.02.001
  contributor:
    fullname: Koh
– volume: 29
  start-page: 4268
  issue: 32
  year: 2008
  ident: 10.1016/j.giant.2024.100313_bib0022
  article-title: The behavior of aged regenerated Bombyx mori silk fibroin solutions studied by H-1 NMR and rheology
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2008.07.041
  contributor:
    fullname: Zainuddin
– volume: 6
  start-page: 1612
  issue: 10
  year: 2011
  ident: 10.1016/j.giant.2024.100313_bib0003
  article-title: Materials fabrication from Bombyx mori silk fibroin
  publication-title: Nat. Protoc.
  doi: 10.1038/nprot.2011.379
  contributor:
    fullname: Rockwood
– volume: 2
  start-page: 595
  issue: 4
  year: 2016
  ident: 10.1016/j.giant.2024.100313_bib0025
  article-title: Optimizing molecular weight of Lyophilized silk as a shelf-stable source material
  publication-title: ACS. Biomater. Sci. Eng.
  doi: 10.1021/acsbiomaterials.5b00556
  contributor:
    fullname: Kluge
– volume: 19
  start-page: 102
  issue: 1
  year: 2020
  ident: 10.1016/j.giant.2024.100313_bib0036
  article-title: Thermoplastic moulding of regenerated silk
  publication-title: Nat. Mater.
  doi: 10.1038/s41563-019-0560-8
  contributor:
    fullname: Guo
– volume: 9
  start-page: 5352
  issue: 26
  year: 2021
  ident: 10.1016/j.giant.2024.100313_bib0029
  article-title: An interference screw made using a silk fibroin-based bulk material with high content of hydroxyapatite for anterior cruciate ligament reconstruction in a rabbit model
  publication-title: J. Mater. Chem. B
  doi: 10.1039/D1TB01006A
  contributor:
    fullname: Yan
– volume: 110
  start-page: 21630
  issue: 43
  year: 2006
  ident: 10.1016/j.giant.2024.100313_bib0023
  article-title: Mechanisms of silk fibroin sol-gel transitions
  publication-title: J. Phy. Chem. B
  doi: 10.1021/jp056350v
  contributor:
    fullname: Matsumoto
– volume: 9
  start-page: 17490
  issue: 20
  year: 2017
  ident: 10.1016/j.giant.2024.100313_bib0028
  article-title: Enhancing Mechanical Properties of Silk Fibroin Hydrogel through Restricting the Growth of beta-Sheet Domains
  publication-title: ACS. Appl. Mater. Interf.
  doi: 10.1021/acsami.7b04623
  contributor:
    fullname: Su
– year: 2021
  ident: 10.1016/j.giant.2024.100313_bib0001
  article-title: Fiber-based biopolymer processing as a route toward sustainability
  publication-title: Adv. Mater.
  contributor:
    fullname: Li
– volume: 6
  start-page: 1290
  issue: 3
  year: 2020
  ident: 10.1016/j.giant.2024.100313_bib0006
  article-title: Strategies for tuning the biodegradation of silk fibroin-based materials for tissue engineering applications
  publication-title: ACS. Biomater. Sci. Eng.
  doi: 10.1021/acsbiomaterials.9b01781
  contributor:
    fullname: Umuhoza
– volume: 7
  issue: 6
  year: 2018
  ident: 10.1016/j.giant.2024.100313_bib0034
  article-title: A silk cranial fixation system for Neurosurgery
  publication-title: Adv. Healthc. Mater.
  contributor:
    fullname: Liu
– volume: 5
  issue: 7
  year: 2020
  ident: 10.1016/j.giant.2024.100313_bib0015
  article-title: Intelligent silk fibroin Ionotronic skin for temperature sensing
  publication-title: Adv. Mater. Technol.
  doi: 10.1002/admt.202000430
  contributor:
    fullname: Liu
– volume: 422
  year: 2021
  ident: 10.1016/j.giant.2024.100313_bib0014
  article-title: Silk-based pressure/temperature sensing bimodal ionotronic skin with stimulus discriminability and low temperature workability
  publication-title: Chem. Engineer. J
  doi: 10.1016/j.cej.2021.130091
  contributor:
    fullname: Chen
– volume: 9
  year: 2019
  ident: 10.1016/j.giant.2024.100313_bib0016
  article-title: Artificial spinning of natural silk threads
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-019-51589-9
  contributor:
    fullname: Frydrych
– volume: 8
  start-page: 797
  issue: 6
  year: 2011
  ident: 10.1016/j.giant.2024.100313_bib0011
  article-title: Silk fibroin biomaterials for controlled release drug delivery
  publication-title: Exp. Opin. Drug Deliv.
  doi: 10.1517/17425247.2011.568936
  contributor:
    fullname: Pritchard
– volume: 7
  issue: 1
  year: 2021
  ident: 10.1016/j.giant.2024.100313_bib0013
  article-title: Recent progress in silk fibroin-based flexible electronics
  publication-title: Microsyst. Nanoeng.
  doi: 10.1038/s41378-021-00261-2
  contributor:
    fullname: Wen
– volume: 52
  start-page: 16
  issue: 1
  year: 2021
  ident: 10.1016/j.giant.2024.100313_bib0004
  article-title: The investigation from animal silks to silk protein-based materials
  publication-title: Acta Polymerica Sinica
  contributor:
    fullname: Yang
– volume: 418
  start-page: 741
  issue: 6899
  year: 2002
  ident: 10.1016/j.giant.2024.100313_bib0017
  article-title: Materials: surprising strength of silkworm silk
  publication-title: Nature
  doi: 10.1038/418741a
  contributor:
    fullname: Shao
– volume: 5
  start-page: 3385
  year: 2014
  ident: 10.1016/j.giant.2024.100313_bib0035
  article-title: The use of silk-based devices for fracture fixation
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms4385
  contributor:
    fullname: Perrone
SSID ssj0002810812
Score 2.310445
Snippet The aqueous solution of regenerated silk fibroin (RSF) is considered as the raw material to produce various silk protein-based materials, including hydrogel,...
SourceID doaj
crossref
elsevier
SourceType Open Website
Aggregation Database
Publisher
StartPage 100313
SubjectTerms Powder fusion
Regenerated silk fibroin
Spray-dried powder
Title The production of soluble regenerated silk fibroin powder with high molecular weight and silk protein-based materials
URI https://dx.doi.org/10.1016/j.giant.2024.100313
https://doaj.org/article/83e21578d7044702ae1a3ac71c07cecc
Volume 19
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09T8MwELUQEwsCAaJ8yQMjEU7s2MkIiKpCgolK3SzbsVFKSarSqn-fs52gsMDCGiXn6J2dd3e6vEPoumSGKZc6OEjcJSw1LNHg9kRQxwquICsS_m_k5xc-mbKnWT4bjPryPWFRHjgCd1tQC6wkikoQxgTJlE0VVUakhggD64evLykHydQ8lIxS4LqslxkKDV1vgLfvnsyYbw2gKf1BRUGxf8BIA5YZH6D9LjzEd_G1DtGObY7QBnyJl1GaFWDErcN-x-iFxStI-r1uNMSN-LNevGMH6W9bN3jZbiu7wr7Mir0kMf7o5-DibaiGYtV0jwSphrpJPKFVGCLYuCmP0XT8-PowSbpxCYnJSrZOKOfCwXEsdMW0gkDKKa0s5UybSuSlyUuqqpLZSqU6VxXNlfNqNEoTzQtmHD1Bu03b2FOEU5qXCpJjy70EGhh1JCsJLawrMk0oG6GbHjm5jKoYsm8Xm8sAtPRAywj0CN17dL9v9ZLW4QI4WnaOln85eoR47xvZRQeR9cFU_dvqZ_-x-jna8yZj698F2l2vNvYSwpG1vgo77wvJrd7s
link.rule.ids 315,783,787,867,2109,27937,27938
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+production+of+soluble+regenerated+silk+fibroin+powder+with+high+molecular+weight+and+silk+protein-based+materials&rft.jtitle=Giant+%28Oxford%2C+England%29&rft.au=Gu%2C+Kai&rft.au=Tong%2C+Yixuan&rft.au=Mi%2C+Ruixin&rft.au=Leng%2C+Siyan&rft.date=2024-08-01&rft.issn=2666-5425&rft.eissn=2666-5425&rft.volume=19&rft.spage=100313&rft_id=info:doi/10.1016%2Fj.giant.2024.100313&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_giant_2024_100313
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2666-5425&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2666-5425&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2666-5425&client=summon