Nonlinear Signal Processing Methods for Automatic Emotion Recognition Using Electrodermal Activity

Detection of emotional states plays a prominent role in affective computing, decision-making, and healthcare. Physiological signals are an ideal target for continuous and objective assessment of emotional states. Electrodermal activity (EDA) is considered one of the most effective and widely used ma...

Full description

Saved in:
Bibliographic Details
Published inIEEE sensors journal Vol. 24; no. 6; pp. 8079 - 8093
Main Authors Veeranki, Yedukondala Rao, Diaz, Luis Roberto Mercado, Swaminathan, Ramakrishnan, Posada-Quintero, Hugo F.
Format Journal Article
LanguageEnglish
Published New York IEEE 15.03.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Detection of emotional states plays a prominent role in affective computing, decision-making, and healthcare. Physiological signals are an ideal target for continuous and objective assessment of emotional states. Electrodermal activity (EDA) is considered one of the most effective and widely used markers of sympathetic activation. However, emotional state assessment using EDA is challenging. We hypothesize that this is caused by the impossibility of current EDA analysis tools to capture the nonlinear variations of the signal. Selecting an appropriate nonlinear signal processing method will allow more effective emotion recognition using EDA signals. In this study, we have compared the performance of four nonlinear signal processing methods-improved symbolic aggregate approximation (isaxEDA), complexity analysis (comEDA), topological analysis (topEDA), and network theory-based analysis (netEDA)-for classifying emotional states using EDA signals. For this, EDA signals were obtained from the publicly available continuously annotated signals of emotion (CASE) dataset. Features are extracted from each of the nonlinear signal processing methods, encompassing aspects related to the dynamics, complexity, structure, and network properties of EDA. Subsequently, the extracted features from each method were employed as input for four machine learning classifiers: naïve Bayes, random forest, <inline-formula> <tex-math notation="LaTeX">{k} </tex-math></inline-formula>-nearest neighbors, and support vector machine, which were validated using leave-one-subject-out cross validation. The results demonstrate that isaxEDA achieved the highest performance, with an F1-score of 65% using an SVM classifier. The study supports the suitability of nonlinear EDA signal processing to improve emotion recognition, which could be used to detect mental health conditions such as anxiety and depression.
AbstractList Detection of emotional states plays a prominent role in affective computing, decision-making, and healthcare. Physiological signals are an ideal target for continuous and objective assessment of emotional states. Electrodermal activity (EDA) is considered one of the most effective and widely used markers of sympathetic activation. However, emotional state assessment using EDA is challenging. We hypothesize that this is caused by the impossibility of current EDA analysis tools to capture the nonlinear variations of the signal. Selecting an appropriate nonlinear signal processing method will allow more effective emotion recognition using EDA signals. In this study, we have compared the performance of four nonlinear signal processing methods—improved symbolic aggregate approximation (isaxEDA), complexity analysis (comEDA), topological analysis (topEDA), and network theory-based analysis (netEDA)—for classifying emotional states using EDA signals. For this, EDA signals were obtained from the publicly available continuously annotated signals of emotion (CASE) dataset. Features are extracted from each of the nonlinear signal processing methods, encompassing aspects related to the dynamics, complexity, structure, and network properties of EDA. Subsequently, the extracted features from each method were employed as input for four machine learning classifiers: naïve Bayes, random forest, [Formula Omitted]-nearest neighbors, and support vector machine, which were validated using leave-one-subject-out cross validation. The results demonstrate that isaxEDA achieved the highest performance, with an F1-score of 65% using an SVM classifier. The study supports the suitability of nonlinear EDA signal processing to improve emotion recognition, which could be used to detect mental health conditions such as anxiety and depression.
Detection of emotional states plays a prominent role in affective computing, decision-making, and healthcare. Physiological signals are an ideal target for continuous and objective assessment of emotional states. Electrodermal activity (EDA) is considered one of the most effective and widely used markers of sympathetic activation. However, emotional state assessment using EDA is challenging. We hypothesize that this is caused by the impossibility of current EDA analysis tools to capture the nonlinear variations of the signal. Selecting an appropriate nonlinear signal processing method will allow more effective emotion recognition using EDA signals. In this study, we have compared the performance of four nonlinear signal processing methods-improved symbolic aggregate approximation (isaxEDA), complexity analysis (comEDA), topological analysis (topEDA), and network theory-based analysis (netEDA)-for classifying emotional states using EDA signals. For this, EDA signals were obtained from the publicly available continuously annotated signals of emotion (CASE) dataset. Features are extracted from each of the nonlinear signal processing methods, encompassing aspects related to the dynamics, complexity, structure, and network properties of EDA. Subsequently, the extracted features from each method were employed as input for four machine learning classifiers: naïve Bayes, random forest, <inline-formula> <tex-math notation="LaTeX">{k} </tex-math></inline-formula>-nearest neighbors, and support vector machine, which were validated using leave-one-subject-out cross validation. The results demonstrate that isaxEDA achieved the highest performance, with an F1-score of 65% using an SVM classifier. The study supports the suitability of nonlinear EDA signal processing to improve emotion recognition, which could be used to detect mental health conditions such as anxiety and depression.
Author Diaz, Luis Roberto Mercado
Posada-Quintero, Hugo F.
Veeranki, Yedukondala Rao
Swaminathan, Ramakrishnan
Author_xml – sequence: 1
  givenname: Yedukondala Rao
  orcidid: 0000-0002-7904-7543
  surname: Veeranki
  fullname: Veeranki, Yedukondala Rao
  email: yedukondala_rao.veeranki@uconn.edu
  organization: Department of Biomedical Engineering, University of Connecticut, Storrs, CT, USA
– sequence: 2
  givenname: Luis Roberto Mercado
  orcidid: 0000-0003-3543-3677
  surname: Diaz
  fullname: Diaz, Luis Roberto Mercado
  email: luis.mercado_diaz@uconn.edu
  organization: Department of Biomedical Engineering, University of Connecticut, Storrs, CT, USA
– sequence: 3
  givenname: Ramakrishnan
  orcidid: 0000-0002-4471-9629
  surname: Swaminathan
  fullname: Swaminathan, Ramakrishnan
  email: sramki@iitm.ac.in
  organization: Department of Applied Mechanics and Biomedical Engineering, Indian Institute of Technology Madras, Chennai, India
– sequence: 4
  givenname: Hugo F.
  orcidid: 0000-0003-4514-4772
  surname: Posada-Quintero
  fullname: Posada-Quintero, Hugo F.
  email: hugo.posada-quintero@uconn.edu
  organization: Department of Biomedical Engineering, University of Connecticut, Storrs, CT, USA
BookMark eNp9kEtrwzAQhEVJoUnaH1DowdCzU8mS_DiG4L5IHzQN9Gbs9TpVsK1UUgr597WTHEoPPe2wzOwy34gMWt0iIZeMThijyc3jIn2eBDQQE86lkJKfkCGTMvZZJOJBrzn1BY8-zsjI2jWlLIlkNCTFs25r1WJuvIVatXntvRoNaK1qV94Tuk9dWq_SxptunW5yp8BLG-2Ubr03BL1q1V4v9_60RnBGl2ia7tAUnPpWbndOTqu8tnhxnGOyvE3fZ_f-_OXuYTad-xAkwvlBhSihYiKkcQkhZRWCjCCSBQAHKYIQaYkiLsKExd26CmVZQCLLsoICKPIxuT7c3Rj9tUXrsrXemq6SzYJEhjyOmJCdix1cYLS1BqtsY1STm13GaNajzHqUWY8yO6LsMtGfDCiX98WdyVX9b_LqkFSI-OuTYDxIAv4DjUeF3g
CODEN ISJEAZ
CitedBy_id crossref_primary_10_3390_bios14090422
crossref_primary_10_3390_s24248130
crossref_primary_10_1007_s13369_024_09927_1
crossref_primary_10_3390_brainsci14040344
crossref_primary_10_3390_brainsci14040364
crossref_primary_10_1016_j_irbm_2024_100849
crossref_primary_10_1016_j_bspc_2024_106679
crossref_primary_10_1016_j_heliyon_2024_e41558
crossref_primary_10_1016_j_trf_2024_12_031
crossref_primary_10_3390_brainsci14070637
crossref_primary_10_1109_JBHI_2024_3405491
crossref_primary_10_3390_brainsci14080800
crossref_primary_10_3390_brainsci14050498
crossref_primary_10_3390_electronics13142767
crossref_primary_10_1109_JSEN_2025_3525674
crossref_primary_10_3390_neurosci5040031
crossref_primary_10_1109_ACCESS_2024_3413136
crossref_primary_10_3390_signals5020018
crossref_primary_10_3389_fnins_2024_1519970
Cites_doi 10.23919/mipro55190.2022.9803498
10.1109/tim.2023.3330180
10.1038/s41598-017-08245-x
10.1016/s0167-8760(96)00713-1
10.1016/s0167-2789(98)00240-1
10.1515/cdbme-2021-2220
10.1515/cdbme-2023-1139
10.15171/icnj.2018.05
10.1007/bfb0091924
10.1007/s10286-015-0282-1
10.1007/978-0-387-84858-7
10.1109/titb.2009.2036164
10.1088/1361-6579/ac5007
10.1080/01621459.1926.10502161
10.1016/j.bspc.2022.103483
10.1016/j.compbiomed.2022.106144
10.1016/j.compbiomed.2016.10.014
10.1080/01621459.1987.10478517
10.1016/j.measurement.2018.10.045
10.1109/tim.2023.3269125
10.1038/s41597-019-0209-0
10.1016/b978-0-12-815739-8.00006-7
10.3390/s20020479
10.1109/tbme.2017.2723933
10.2307/3680316
10.1023/a:1010933404324
10.1109/taffc.2019.2901673
10.14708/wm.v48i2.316
10.1109/icpr.2008.4761904
10.1109/access.2021.3110773
10.3390/bs7040066
10.3906/elk-1708-59
10.1016/s0165-1838(96)00095-1
10.1371/journal.pone.0259735
10.1080/01621459.1961.10482090
10.3993/jfbi03201406
10.1142/s0219477522500134
10.1007/s11517-014-1216-0
10.24425/bpasts.2019.130190
10.1007/978-1-4614-1126-0
10.3233/shti230418
10.1109/tie.2023.3250766
10.1109/ssci47803.2020.9308497
10.1037/h0077714
10.3390/s18072074
10.1109/jbhi.2022.3140427
10.1080/09720510.2012.10701623
10.1126/science.1076358
10.1109/EMBC.2018.8512389
10.3233/shti210141
10.1145/3364138.3364164
10.1111/bjd.15808
10.1007/978-3-319-33383-0_5
10.3390/app12094236
10.1109/tpami.2008.26
10.2114/jpa2.27.173
10.1142/s0219519423400444
10.3390/s17102324
10.3325/cmj.2020.61.279
10.1007/978-1-4612-0763-4
10.1016/j.ijpsycho.2016.10.013
10.1016/j.bbe.2021.01.004
10.1109/bhi.2019.8834567
10.1109/tit.1967.1053964
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
7U5
8FD
L7M
DOI 10.1109/JSEN.2024.3354553
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Solid State and Superconductivity Abstracts

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Engineering
EISSN 1558-1748
EndPage 8093
ExternalDocumentID 10_1109_JSEN_2024_3354553
10413292
Genre orig-research
GroupedDBID -~X
0R~
29I
4.4
5GY
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AGQYO
AHBIQ
AJQPL
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
EBS
F5P
HZ~
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
TWZ
AAYXX
CITATION
7SP
7U5
8FD
L7M
ID FETCH-LOGICAL-c294t-2fee5cf14608dc601fec57c75bcc3c5426e0de48b6918c75f65dbc95ddfcbc0e3
IEDL.DBID RIE
ISSN 1530-437X
IngestDate Mon Jun 30 08:26:52 EDT 2025
Tue Jul 01 04:27:26 EDT 2025
Thu Apr 24 22:53:58 EDT 2025
Wed Aug 27 02:11:34 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c294t-2fee5cf14608dc601fec57c75bcc3c5426e0de48b6918c75f65dbc95ddfcbc0e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-3543-3677
0000-0003-4514-4772
0000-0002-7904-7543
0000-0002-4471-9629
PQID 2956387145
PQPubID 75733
PageCount 15
ParticipantIDs crossref_primary_10_1109_JSEN_2024_3354553
proquest_journals_2956387145
crossref_citationtrail_10_1109_JSEN_2024_3354553
ieee_primary_10413292
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-03-15
PublicationDateYYYYMMDD 2024-03-15
PublicationDate_xml – month: 03
  year: 2024
  text: 2024-03-15
  day: 15
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE sensors journal
PublicationTitleAbbrev JSEN
PublicationYear 2024
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref57
ref12
ref56
ref15
ref14
ref58
ref53
ref52
Duda (ref59) 2012
ref11
ref55
ref10
ref54
ref17
ref16
ref19
ref18
ref51
ref50
Vu (ref68) 2023
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
ref8
ref7
ref9
ref3
ref6
ref5
ref40
ref35
ref34
ref37
(ref4) 2022
ref36
ref31
ref30
ref33
ref32
ref1
ref39
ref38
ref24
ref23
ref67
ref26
ref25
ref69
ref20
ref64
ref63
ref22
ref66
ref21
ref65
ref28
ref27
ref29
Bhattacharyya (ref2) 2022; 238
ref60
ref62
ref61
Rényi (ref49); 4
References_xml – ident: ref8
  doi: 10.23919/mipro55190.2022.9803498
– ident: ref62
  doi: 10.1109/tim.2023.3330180
– ident: ref31
  doi: 10.1038/s41598-017-08245-x
– ident: ref18
  doi: 10.1016/s0167-8760(96)00713-1
– ident: ref45
  doi: 10.1016/s0167-2789(98)00240-1
– ident: ref22
  doi: 10.1515/cdbme-2021-2220
– ident: ref69
  doi: 10.1515/cdbme-2023-1139
– ident: ref37
  doi: 10.15171/icnj.2018.05
– ident: ref43
  doi: 10.1007/bfb0091924
– ident: ref16
  doi: 10.1007/s10286-015-0282-1
– ident: ref65
  doi: 10.1007/978-0-387-84858-7
– ident: ref35
  doi: 10.1109/titb.2009.2036164
– ident: ref33
  doi: 10.1088/1361-6579/ac5007
– ident: ref48
  doi: 10.1080/01621459.1926.10502161
– ident: ref28
  doi: 10.1016/j.bspc.2022.103483
– ident: ref6
  doi: 10.1016/j.compbiomed.2022.106144
– year: 2023
  ident: ref68
  article-title: Multi-scale transformer-based network for emotion recognition from multi physiological signals
  publication-title: arXiv:2305.00769
– ident: ref34
  doi: 10.1016/j.compbiomed.2016.10.014
– ident: ref54
  doi: 10.1080/01621459.1987.10478517
– ident: ref36
  doi: 10.1016/j.measurement.2018.10.045
– volume-title: Pattern Classification
  year: 2012
  ident: ref59
– ident: ref64
  doi: 10.1109/tim.2023.3269125
– ident: ref39
  doi: 10.1038/s41597-019-0209-0
– ident: ref58
  doi: 10.1016/b978-0-12-815739-8.00006-7
– ident: ref7
  doi: 10.3390/s20020479
– ident: ref46
  doi: 10.1109/tbme.2017.2723933
– ident: ref51
  doi: 10.2307/3680316
– ident: ref61
  doi: 10.1023/a:1010933404324
– ident: ref23
  doi: 10.1109/taffc.2019.2901673
– ident: ref52
  doi: 10.14708/wm.v48i2.316
– ident: ref21
  doi: 10.1109/icpr.2008.4761904
– ident: ref3
  doi: 10.1109/access.2021.3110773
– ident: ref10
  doi: 10.3390/bs7040066
– ident: ref40
  doi: 10.3906/elk-1708-59
– ident: ref17
  doi: 10.1016/s0165-1838(96)00095-1
– ident: ref53
  doi: 10.1371/journal.pone.0259735
– ident: ref56
  doi: 10.1080/01621459.1961.10482090
– ident: ref41
  doi: 10.3993/jfbi03201406
– ident: ref26
  doi: 10.1142/s0219477522500134
– ident: ref47
  doi: 10.1007/s11517-014-1216-0
– ident: ref13
  doi: 10.24425/bpasts.2019.130190
– ident: ref14
  doi: 10.1007/978-1-4614-1126-0
– ident: ref67
  doi: 10.3233/shti230418
– ident: ref63
  doi: 10.1109/tie.2023.3250766
– ident: ref42
  doi: 10.1109/ssci47803.2020.9308497
– ident: ref9
  doi: 10.1037/h0077714
– ident: ref11
  doi: 10.3390/s18072074
– ident: ref38
  doi: 10.1109/jbhi.2022.3140427
– ident: ref55
  doi: 10.1080/09720510.2012.10701623
– ident: ref1
  doi: 10.1126/science.1076358
– ident: ref27
  doi: 10.1109/EMBC.2018.8512389
– ident: ref29
  doi: 10.3233/shti210141
– ident: ref12
  doi: 10.1145/3364138.3364164
– ident: ref15
  doi: 10.1111/bjd.15808
– ident: ref57
  doi: 10.1007/978-3-319-33383-0_5
– ident: ref24
  doi: 10.3390/app12094236
– ident: ref20
  doi: 10.1109/tpami.2008.26
– ident: ref32
  doi: 10.2114/jpa2.27.173
– ident: ref66
  doi: 10.1142/s0219519423400444
– volume-title: Mental Health and COVID-19: Early Evidence of the Pandemic’s Impact: Scientific Brief, 2 March 2022
  year: 2022
  ident: ref4
– ident: ref25
  doi: 10.3390/s17102324
– ident: ref5
  doi: 10.3325/cmj.2020.61.279
– ident: ref44
  doi: 10.1007/978-1-4612-0763-4
– ident: ref30
  doi: 10.1016/j.ijpsycho.2016.10.013
– ident: ref50
  doi: 10.1016/j.bbe.2021.01.004
– ident: ref19
  doi: 10.1109/bhi.2019.8834567
– volume: 4
  start-page: 547
  volume-title: Proc. 4th Berkeley Symp. Math. Statist. Probab., Contrib. Theory Statist.
  ident: ref49
  article-title: On measures of entropy and information
– volume: 238
  year: 2022
  ident: ref2
  article-title: Human emotion recognition based on time–frequency analysis of multivariate EEG signal
  publication-title: Knowl.-Based Syst.
– ident: ref60
  doi: 10.1109/tit.1967.1053964
SSID ssj0019757
Score 2.505498
Snippet Detection of emotional states plays a prominent role in affective computing, decision-making, and healthcare. Physiological signals are an ideal target for...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 8079
SubjectTerms Affective computing
Classification
Classifiers
Complexity
Complexity theory
Decision trees
electrodermal activity (EDA)
emotion analysis
Emotion recognition
Emotional factors
Emotions
Feature extraction
Machine learning
nonlinear signal processing
Physiology
Sensors
Signal processing
Support vector machines
Time-frequency analysis
Title Nonlinear Signal Processing Methods for Automatic Emotion Recognition Using Electrodermal Activity
URI https://ieeexplore.ieee.org/document/10413292
https://www.proquest.com/docview/2956387145
Volume 24
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1JS8QwFA7qRT24i-NGDp6Ejuk0SZujyIgIzsEF5laa5EVFmRHtHPTX-7KMuKB4KyUpgS95S_Pe9xFyoAopMUdrMlfqMkMPobMGQGboCbWqeAUmyL1dDOTZDT8fimFqVg-9MAAQis-g6x_DXb4dm4n_VYYnnHtddLS4s5i5xWatjysDVQZaTzzBLONFOUxXmDlTR-dX_QGmgj3eLQqMGETxxQkFVZUfpjj4l9NlMpiuLJaVPHQnre6at2-kjf9e-gpZSpEmPY5bY5XMwGiNLH7iH1wj80kC_e51nehBJM1onunV_a2fmXoIcCS9CDrTLxQjXHo8aceB55X2owQQvZwWIeFzKEGg_SiuY73ZxyWYKFGxQW5O-9cnZ1kSYMhMT_E26zkAYRwaU1ZZg6mbAyNKUwptTGEEOndgFnilpcorfO2ksNooYa0z2jAoNsncaDyCLUKlrKTj0HDp26CdUrpkNs-tp29rrGMdwqaI1Caxk3uRjMc6ZClM1R7E2oNYJxA75PBjylOk5vhr8IYH5dPAiEeH7E5xr9Ppfal7mDQWmElysf3LtB2y4L_ui9FysUvm2ucJ7GF00ur9sCvfAZsQ4Z0
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1LbxMxEB6VcigcCpQiAi34ABekDd5d27s-cKhoqvSRHGgr5basX4BACWo2qsp_4a_w2xg_EhUQ3Cpxs1aefdjjGc965vsAXshSCIzR2sxVqsrQQ6istVZk6AmVrFltdaB7G43F8JwdTfhkDb6vamGstSH5zPZ9M5zlm5le-F9luMKZ50UvUg7lsb26xAht_uZwH6fzZVEcDM7eDrNEIpDpQrIuK5y1XDs0CLQ2GsMPZzWvdMWV1qXm6KAsNZbVSsi8xstOcKO05MY4rTS1Jd73FtzGjQYvYnnY6pBCVgFIFG0GzVhZTdKhaU7l66PTwRiDz4L1y9KLlr-4vcDj8ofxDx7t4B78WI5FTGT53F90qq-__QYT-d8O1n3YTHtpsheV_wGs2ekW3L2GsLgFG4nk_ePVQ1DjCAvSXpDTTx-8ZKqSwJ5kFJi05wT38GRv0c0Cki0ZRJIj8m6ZZoXtkGRBBpE-yHjHhq-gIwnHNpzfyAc_gvXpbGofAxGiFo7Zlglf6O2kVBU1eW48QF1rHO0BXWpAoxP-uqcB-dKEOIzKxitN45WmSUrTg1crka8RfORfnbe9ElzrGOe_BztLPWuSfZo3BYbFJcbKjD_5i9hz2BiejU6ak8Px8VO445_kU-9yvgPr3cXC7uJerFPPwoog8P6mteonpsJC7g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nonlinear+Signal+Processing+Methods+for+Automatic+Emotion+Recognition+Using+Electrodermal+Activity&rft.jtitle=IEEE+sensors+journal&rft.au=Veeranki%2C+Yedukondala+Rao&rft.au=Diaz%2C+Luis+Roberto+Mercado&rft.au=Swaminathan%2C+Ramakrishnan&rft.au=Posada-Quintero%2C+Hugo+F.&rft.date=2024-03-15&rft.pub=IEEE&rft.issn=1530-437X&rft.volume=24&rft.issue=6&rft.spage=8079&rft.epage=8093&rft_id=info:doi/10.1109%2FJSEN.2024.3354553&rft.externalDocID=10413292
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-437X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-437X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-437X&client=summon