Nonlinear Signal Processing Methods for Automatic Emotion Recognition Using Electrodermal Activity
Detection of emotional states plays a prominent role in affective computing, decision-making, and healthcare. Physiological signals are an ideal target for continuous and objective assessment of emotional states. Electrodermal activity (EDA) is considered one of the most effective and widely used ma...
Saved in:
Published in | IEEE sensors journal Vol. 24; no. 6; pp. 8079 - 8093 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
15.03.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Detection of emotional states plays a prominent role in affective computing, decision-making, and healthcare. Physiological signals are an ideal target for continuous and objective assessment of emotional states. Electrodermal activity (EDA) is considered one of the most effective and widely used markers of sympathetic activation. However, emotional state assessment using EDA is challenging. We hypothesize that this is caused by the impossibility of current EDA analysis tools to capture the nonlinear variations of the signal. Selecting an appropriate nonlinear signal processing method will allow more effective emotion recognition using EDA signals. In this study, we have compared the performance of four nonlinear signal processing methods-improved symbolic aggregate approximation (isaxEDA), complexity analysis (comEDA), topological analysis (topEDA), and network theory-based analysis (netEDA)-for classifying emotional states using EDA signals. For this, EDA signals were obtained from the publicly available continuously annotated signals of emotion (CASE) dataset. Features are extracted from each of the nonlinear signal processing methods, encompassing aspects related to the dynamics, complexity, structure, and network properties of EDA. Subsequently, the extracted features from each method were employed as input for four machine learning classifiers: naïve Bayes, random forest, <inline-formula> <tex-math notation="LaTeX">{k} </tex-math></inline-formula>-nearest neighbors, and support vector machine, which were validated using leave-one-subject-out cross validation. The results demonstrate that isaxEDA achieved the highest performance, with an F1-score of 65% using an SVM classifier. The study supports the suitability of nonlinear EDA signal processing to improve emotion recognition, which could be used to detect mental health conditions such as anxiety and depression. |
---|---|
AbstractList | Detection of emotional states plays a prominent role in affective computing, decision-making, and healthcare. Physiological signals are an ideal target for continuous and objective assessment of emotional states. Electrodermal activity (EDA) is considered one of the most effective and widely used markers of sympathetic activation. However, emotional state assessment using EDA is challenging. We hypothesize that this is caused by the impossibility of current EDA analysis tools to capture the nonlinear variations of the signal. Selecting an appropriate nonlinear signal processing method will allow more effective emotion recognition using EDA signals. In this study, we have compared the performance of four nonlinear signal processing methods—improved symbolic aggregate approximation (isaxEDA), complexity analysis (comEDA), topological analysis (topEDA), and network theory-based analysis (netEDA)—for classifying emotional states using EDA signals. For this, EDA signals were obtained from the publicly available continuously annotated signals of emotion (CASE) dataset. Features are extracted from each of the nonlinear signal processing methods, encompassing aspects related to the dynamics, complexity, structure, and network properties of EDA. Subsequently, the extracted features from each method were employed as input for four machine learning classifiers: naïve Bayes, random forest, [Formula Omitted]-nearest neighbors, and support vector machine, which were validated using leave-one-subject-out cross validation. The results demonstrate that isaxEDA achieved the highest performance, with an F1-score of 65% using an SVM classifier. The study supports the suitability of nonlinear EDA signal processing to improve emotion recognition, which could be used to detect mental health conditions such as anxiety and depression. Detection of emotional states plays a prominent role in affective computing, decision-making, and healthcare. Physiological signals are an ideal target for continuous and objective assessment of emotional states. Electrodermal activity (EDA) is considered one of the most effective and widely used markers of sympathetic activation. However, emotional state assessment using EDA is challenging. We hypothesize that this is caused by the impossibility of current EDA analysis tools to capture the nonlinear variations of the signal. Selecting an appropriate nonlinear signal processing method will allow more effective emotion recognition using EDA signals. In this study, we have compared the performance of four nonlinear signal processing methods-improved symbolic aggregate approximation (isaxEDA), complexity analysis (comEDA), topological analysis (topEDA), and network theory-based analysis (netEDA)-for classifying emotional states using EDA signals. For this, EDA signals were obtained from the publicly available continuously annotated signals of emotion (CASE) dataset. Features are extracted from each of the nonlinear signal processing methods, encompassing aspects related to the dynamics, complexity, structure, and network properties of EDA. Subsequently, the extracted features from each method were employed as input for four machine learning classifiers: naïve Bayes, random forest, <inline-formula> <tex-math notation="LaTeX">{k} </tex-math></inline-formula>-nearest neighbors, and support vector machine, which were validated using leave-one-subject-out cross validation. The results demonstrate that isaxEDA achieved the highest performance, with an F1-score of 65% using an SVM classifier. The study supports the suitability of nonlinear EDA signal processing to improve emotion recognition, which could be used to detect mental health conditions such as anxiety and depression. |
Author | Diaz, Luis Roberto Mercado Posada-Quintero, Hugo F. Veeranki, Yedukondala Rao Swaminathan, Ramakrishnan |
Author_xml | – sequence: 1 givenname: Yedukondala Rao orcidid: 0000-0002-7904-7543 surname: Veeranki fullname: Veeranki, Yedukondala Rao email: yedukondala_rao.veeranki@uconn.edu organization: Department of Biomedical Engineering, University of Connecticut, Storrs, CT, USA – sequence: 2 givenname: Luis Roberto Mercado orcidid: 0000-0003-3543-3677 surname: Diaz fullname: Diaz, Luis Roberto Mercado email: luis.mercado_diaz@uconn.edu organization: Department of Biomedical Engineering, University of Connecticut, Storrs, CT, USA – sequence: 3 givenname: Ramakrishnan orcidid: 0000-0002-4471-9629 surname: Swaminathan fullname: Swaminathan, Ramakrishnan email: sramki@iitm.ac.in organization: Department of Applied Mechanics and Biomedical Engineering, Indian Institute of Technology Madras, Chennai, India – sequence: 4 givenname: Hugo F. orcidid: 0000-0003-4514-4772 surname: Posada-Quintero fullname: Posada-Quintero, Hugo F. email: hugo.posada-quintero@uconn.edu organization: Department of Biomedical Engineering, University of Connecticut, Storrs, CT, USA |
BookMark | eNp9kEtrwzAQhEVJoUnaH1DowdCzU8mS_DiG4L5IHzQN9Gbs9TpVsK1UUgr597WTHEoPPe2wzOwy34gMWt0iIZeMThijyc3jIn2eBDQQE86lkJKfkCGTMvZZJOJBrzn1BY8-zsjI2jWlLIlkNCTFs25r1WJuvIVatXntvRoNaK1qV94Tuk9dWq_SxptunW5yp8BLG-2Ubr03BL1q1V4v9_60RnBGl2ia7tAUnPpWbndOTqu8tnhxnGOyvE3fZ_f-_OXuYTad-xAkwvlBhSihYiKkcQkhZRWCjCCSBQAHKYIQaYkiLsKExd26CmVZQCLLsoICKPIxuT7c3Rj9tUXrsrXemq6SzYJEhjyOmJCdix1cYLS1BqtsY1STm13GaNajzHqUWY8yO6LsMtGfDCiX98WdyVX9b_LqkFSI-OuTYDxIAv4DjUeF3g |
CODEN | ISJEAZ |
CitedBy_id | crossref_primary_10_3390_bios14090422 crossref_primary_10_3390_s24248130 crossref_primary_10_1007_s13369_024_09927_1 crossref_primary_10_3390_brainsci14040344 crossref_primary_10_3390_brainsci14040364 crossref_primary_10_1016_j_irbm_2024_100849 crossref_primary_10_1016_j_bspc_2024_106679 crossref_primary_10_1016_j_heliyon_2024_e41558 crossref_primary_10_1016_j_trf_2024_12_031 crossref_primary_10_3390_brainsci14070637 crossref_primary_10_1109_JBHI_2024_3405491 crossref_primary_10_3390_brainsci14080800 crossref_primary_10_3390_brainsci14050498 crossref_primary_10_3390_electronics13142767 crossref_primary_10_1109_JSEN_2025_3525674 crossref_primary_10_3390_neurosci5040031 crossref_primary_10_1109_ACCESS_2024_3413136 crossref_primary_10_3390_signals5020018 crossref_primary_10_3389_fnins_2024_1519970 |
Cites_doi | 10.23919/mipro55190.2022.9803498 10.1109/tim.2023.3330180 10.1038/s41598-017-08245-x 10.1016/s0167-8760(96)00713-1 10.1016/s0167-2789(98)00240-1 10.1515/cdbme-2021-2220 10.1515/cdbme-2023-1139 10.15171/icnj.2018.05 10.1007/bfb0091924 10.1007/s10286-015-0282-1 10.1007/978-0-387-84858-7 10.1109/titb.2009.2036164 10.1088/1361-6579/ac5007 10.1080/01621459.1926.10502161 10.1016/j.bspc.2022.103483 10.1016/j.compbiomed.2022.106144 10.1016/j.compbiomed.2016.10.014 10.1080/01621459.1987.10478517 10.1016/j.measurement.2018.10.045 10.1109/tim.2023.3269125 10.1038/s41597-019-0209-0 10.1016/b978-0-12-815739-8.00006-7 10.3390/s20020479 10.1109/tbme.2017.2723933 10.2307/3680316 10.1023/a:1010933404324 10.1109/taffc.2019.2901673 10.14708/wm.v48i2.316 10.1109/icpr.2008.4761904 10.1109/access.2021.3110773 10.3390/bs7040066 10.3906/elk-1708-59 10.1016/s0165-1838(96)00095-1 10.1371/journal.pone.0259735 10.1080/01621459.1961.10482090 10.3993/jfbi03201406 10.1142/s0219477522500134 10.1007/s11517-014-1216-0 10.24425/bpasts.2019.130190 10.1007/978-1-4614-1126-0 10.3233/shti230418 10.1109/tie.2023.3250766 10.1109/ssci47803.2020.9308497 10.1037/h0077714 10.3390/s18072074 10.1109/jbhi.2022.3140427 10.1080/09720510.2012.10701623 10.1126/science.1076358 10.1109/EMBC.2018.8512389 10.3233/shti210141 10.1145/3364138.3364164 10.1111/bjd.15808 10.1007/978-3-319-33383-0_5 10.3390/app12094236 10.1109/tpami.2008.26 10.2114/jpa2.27.173 10.1142/s0219519423400444 10.3390/s17102324 10.3325/cmj.2020.61.279 10.1007/978-1-4612-0763-4 10.1016/j.ijpsycho.2016.10.013 10.1016/j.bbe.2021.01.004 10.1109/bhi.2019.8834567 10.1109/tit.1967.1053964 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
DBID | 97E RIA RIE AAYXX CITATION 7SP 7U5 8FD L7M |
DOI | 10.1109/JSEN.2024.3354553 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
DatabaseTitleList | Solid State and Superconductivity Abstracts |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography Engineering |
EISSN | 1558-1748 |
EndPage | 8093 |
ExternalDocumentID | 10_1109_JSEN_2024_3354553 10413292 |
Genre | orig-research |
GroupedDBID | -~X 0R~ 29I 4.4 5GY 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AGQYO AHBIQ AJQPL AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 EBS F5P HZ~ IFIPE IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS TWZ AAYXX CITATION 7SP 7U5 8FD L7M |
ID | FETCH-LOGICAL-c294t-2fee5cf14608dc601fec57c75bcc3c5426e0de48b6918c75f65dbc95ddfcbc0e3 |
IEDL.DBID | RIE |
ISSN | 1530-437X |
IngestDate | Mon Jun 30 08:26:52 EDT 2025 Tue Jul 01 04:27:26 EDT 2025 Thu Apr 24 22:53:58 EDT 2025 Wed Aug 27 02:11:34 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c294t-2fee5cf14608dc601fec57c75bcc3c5426e0de48b6918c75f65dbc95ddfcbc0e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-3543-3677 0000-0003-4514-4772 0000-0002-7904-7543 0000-0002-4471-9629 |
PQID | 2956387145 |
PQPubID | 75733 |
PageCount | 15 |
ParticipantIDs | crossref_primary_10_1109_JSEN_2024_3354553 proquest_journals_2956387145 crossref_citationtrail_10_1109_JSEN_2024_3354553 ieee_primary_10413292 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-03-15 |
PublicationDateYYYYMMDD | 2024-03-15 |
PublicationDate_xml | – month: 03 year: 2024 text: 2024-03-15 day: 15 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE sensors journal |
PublicationTitleAbbrev | JSEN |
PublicationYear | 2024 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref57 ref12 ref56 ref15 ref14 ref58 ref53 ref52 Duda (ref59) 2012 ref11 ref55 ref10 ref54 ref17 ref16 ref19 ref18 ref51 ref50 Vu (ref68) 2023 ref46 ref45 ref48 ref47 ref42 ref41 ref44 ref43 ref8 ref7 ref9 ref3 ref6 ref5 ref40 ref35 ref34 ref37 (ref4) 2022 ref36 ref31 ref30 ref33 ref32 ref1 ref39 ref38 ref24 ref23 ref67 ref26 ref25 ref69 ref20 ref64 ref63 ref22 ref66 ref21 ref65 ref28 ref27 ref29 Bhattacharyya (ref2) 2022; 238 ref60 ref62 ref61 Rényi (ref49); 4 |
References_xml | – ident: ref8 doi: 10.23919/mipro55190.2022.9803498 – ident: ref62 doi: 10.1109/tim.2023.3330180 – ident: ref31 doi: 10.1038/s41598-017-08245-x – ident: ref18 doi: 10.1016/s0167-8760(96)00713-1 – ident: ref45 doi: 10.1016/s0167-2789(98)00240-1 – ident: ref22 doi: 10.1515/cdbme-2021-2220 – ident: ref69 doi: 10.1515/cdbme-2023-1139 – ident: ref37 doi: 10.15171/icnj.2018.05 – ident: ref43 doi: 10.1007/bfb0091924 – ident: ref16 doi: 10.1007/s10286-015-0282-1 – ident: ref65 doi: 10.1007/978-0-387-84858-7 – ident: ref35 doi: 10.1109/titb.2009.2036164 – ident: ref33 doi: 10.1088/1361-6579/ac5007 – ident: ref48 doi: 10.1080/01621459.1926.10502161 – ident: ref28 doi: 10.1016/j.bspc.2022.103483 – ident: ref6 doi: 10.1016/j.compbiomed.2022.106144 – year: 2023 ident: ref68 article-title: Multi-scale transformer-based network for emotion recognition from multi physiological signals publication-title: arXiv:2305.00769 – ident: ref34 doi: 10.1016/j.compbiomed.2016.10.014 – ident: ref54 doi: 10.1080/01621459.1987.10478517 – ident: ref36 doi: 10.1016/j.measurement.2018.10.045 – volume-title: Pattern Classification year: 2012 ident: ref59 – ident: ref64 doi: 10.1109/tim.2023.3269125 – ident: ref39 doi: 10.1038/s41597-019-0209-0 – ident: ref58 doi: 10.1016/b978-0-12-815739-8.00006-7 – ident: ref7 doi: 10.3390/s20020479 – ident: ref46 doi: 10.1109/tbme.2017.2723933 – ident: ref51 doi: 10.2307/3680316 – ident: ref61 doi: 10.1023/a:1010933404324 – ident: ref23 doi: 10.1109/taffc.2019.2901673 – ident: ref52 doi: 10.14708/wm.v48i2.316 – ident: ref21 doi: 10.1109/icpr.2008.4761904 – ident: ref3 doi: 10.1109/access.2021.3110773 – ident: ref10 doi: 10.3390/bs7040066 – ident: ref40 doi: 10.3906/elk-1708-59 – ident: ref17 doi: 10.1016/s0165-1838(96)00095-1 – ident: ref53 doi: 10.1371/journal.pone.0259735 – ident: ref56 doi: 10.1080/01621459.1961.10482090 – ident: ref41 doi: 10.3993/jfbi03201406 – ident: ref26 doi: 10.1142/s0219477522500134 – ident: ref47 doi: 10.1007/s11517-014-1216-0 – ident: ref13 doi: 10.24425/bpasts.2019.130190 – ident: ref14 doi: 10.1007/978-1-4614-1126-0 – ident: ref67 doi: 10.3233/shti230418 – ident: ref63 doi: 10.1109/tie.2023.3250766 – ident: ref42 doi: 10.1109/ssci47803.2020.9308497 – ident: ref9 doi: 10.1037/h0077714 – ident: ref11 doi: 10.3390/s18072074 – ident: ref38 doi: 10.1109/jbhi.2022.3140427 – ident: ref55 doi: 10.1080/09720510.2012.10701623 – ident: ref1 doi: 10.1126/science.1076358 – ident: ref27 doi: 10.1109/EMBC.2018.8512389 – ident: ref29 doi: 10.3233/shti210141 – ident: ref12 doi: 10.1145/3364138.3364164 – ident: ref15 doi: 10.1111/bjd.15808 – ident: ref57 doi: 10.1007/978-3-319-33383-0_5 – ident: ref24 doi: 10.3390/app12094236 – ident: ref20 doi: 10.1109/tpami.2008.26 – ident: ref32 doi: 10.2114/jpa2.27.173 – ident: ref66 doi: 10.1142/s0219519423400444 – volume-title: Mental Health and COVID-19: Early Evidence of the Pandemic’s Impact: Scientific Brief, 2 March 2022 year: 2022 ident: ref4 – ident: ref25 doi: 10.3390/s17102324 – ident: ref5 doi: 10.3325/cmj.2020.61.279 – ident: ref44 doi: 10.1007/978-1-4612-0763-4 – ident: ref30 doi: 10.1016/j.ijpsycho.2016.10.013 – ident: ref50 doi: 10.1016/j.bbe.2021.01.004 – ident: ref19 doi: 10.1109/bhi.2019.8834567 – volume: 4 start-page: 547 volume-title: Proc. 4th Berkeley Symp. Math. Statist. Probab., Contrib. Theory Statist. ident: ref49 article-title: On measures of entropy and information – volume: 238 year: 2022 ident: ref2 article-title: Human emotion recognition based on time–frequency analysis of multivariate EEG signal publication-title: Knowl.-Based Syst. – ident: ref60 doi: 10.1109/tit.1967.1053964 |
SSID | ssj0019757 |
Score | 2.505498 |
Snippet | Detection of emotional states plays a prominent role in affective computing, decision-making, and healthcare. Physiological signals are an ideal target for... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 8079 |
SubjectTerms | Affective computing Classification Classifiers Complexity Complexity theory Decision trees electrodermal activity (EDA) emotion analysis Emotion recognition Emotional factors Emotions Feature extraction Machine learning nonlinear signal processing Physiology Sensors Signal processing Support vector machines Time-frequency analysis |
Title | Nonlinear Signal Processing Methods for Automatic Emotion Recognition Using Electrodermal Activity |
URI | https://ieeexplore.ieee.org/document/10413292 https://www.proquest.com/docview/2956387145 |
Volume | 24 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1JS8QwFA7qRT24i-NGDp6Ejuk0SZujyIgIzsEF5laa5EVFmRHtHPTX-7KMuKB4KyUpgS95S_Pe9xFyoAopMUdrMlfqMkMPobMGQGboCbWqeAUmyL1dDOTZDT8fimFqVg-9MAAQis-g6x_DXb4dm4n_VYYnnHtddLS4s5i5xWatjysDVQZaTzzBLONFOUxXmDlTR-dX_QGmgj3eLQqMGETxxQkFVZUfpjj4l9NlMpiuLJaVPHQnre6at2-kjf9e-gpZSpEmPY5bY5XMwGiNLH7iH1wj80kC_e51nehBJM1onunV_a2fmXoIcCS9CDrTLxQjXHo8aceB55X2owQQvZwWIeFzKEGg_SiuY73ZxyWYKFGxQW5O-9cnZ1kSYMhMT_E26zkAYRwaU1ZZg6mbAyNKUwptTGEEOndgFnilpcorfO2ksNooYa0z2jAoNsncaDyCLUKlrKTj0HDp26CdUrpkNs-tp29rrGMdwqaI1Caxk3uRjMc6ZClM1R7E2oNYJxA75PBjylOk5vhr8IYH5dPAiEeH7E5xr9Ppfal7mDQWmElysf3LtB2y4L_ui9FysUvm2ucJ7GF00ur9sCvfAZsQ4Z0 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1LbxMxEB6VcigcCpQiAi34ABekDd5d27s-cKhoqvSRHGgr5basX4BACWo2qsp_4a_w2xg_EhUQ3Cpxs1aefdjjGc965vsAXshSCIzR2sxVqsrQQ6istVZk6AmVrFltdaB7G43F8JwdTfhkDb6vamGstSH5zPZ9M5zlm5le-F9luMKZ50UvUg7lsb26xAht_uZwH6fzZVEcDM7eDrNEIpDpQrIuK5y1XDs0CLQ2GsMPZzWvdMWV1qXm6KAsNZbVSsi8xstOcKO05MY4rTS1Jd73FtzGjQYvYnnY6pBCVgFIFG0GzVhZTdKhaU7l66PTwRiDz4L1y9KLlr-4vcDj8ofxDx7t4B78WI5FTGT53F90qq-__QYT-d8O1n3YTHtpsheV_wGs2ekW3L2GsLgFG4nk_ePVQ1DjCAvSXpDTTx-8ZKqSwJ5kFJi05wT38GRv0c0Cki0ZRJIj8m6ZZoXtkGRBBpE-yHjHhq-gIwnHNpzfyAc_gvXpbGofAxGiFo7Zlglf6O2kVBU1eW48QF1rHO0BXWpAoxP-uqcB-dKEOIzKxitN45WmSUrTg1crka8RfORfnbe9ElzrGOe_BztLPWuSfZo3BYbFJcbKjD_5i9hz2BiejU6ak8Px8VO445_kU-9yvgPr3cXC7uJerFPPwoog8P6mteonpsJC7g |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nonlinear+Signal+Processing+Methods+for+Automatic+Emotion+Recognition+Using+Electrodermal+Activity&rft.jtitle=IEEE+sensors+journal&rft.au=Veeranki%2C+Yedukondala+Rao&rft.au=Diaz%2C+Luis+Roberto+Mercado&rft.au=Swaminathan%2C+Ramakrishnan&rft.au=Posada-Quintero%2C+Hugo+F.&rft.date=2024-03-15&rft.pub=IEEE&rft.issn=1530-437X&rft.volume=24&rft.issue=6&rft.spage=8079&rft.epage=8093&rft_id=info:doi/10.1109%2FJSEN.2024.3354553&rft.externalDocID=10413292 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-437X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-437X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-437X&client=summon |