OA-Cache: Oracle Approximation based Cache Replacement at the Network Edge
With the explosive increase in mobile data traffic generated by various application services like video-on-demand and stringent quality of experience requirements of users, mobile edge caching is a promising paradigm to reduce delivery latency and network congestions by serving content requests loca...
Saved in:
Published in | IEEE eTransactions on network and service management Vol. 20; no. 3; p. 1 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.09.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 1932-4537 1932-4537 |
DOI | 10.1109/TNSM.2023.3239664 |
Cover
Loading…
Abstract | With the explosive increase in mobile data traffic generated by various application services like video-on-demand and stringent quality of experience requirements of users, mobile edge caching is a promising paradigm to reduce delivery latency and network congestions by serving content requests locally. However, how to conduct cache replacement when the cache is full is a challenging issue when faced with enormous content volume and limited cache capacity at the network edge while the future request pattern is unknown ahead. In this paper, we propose a cache replacement algorithm based on the oracle approximation named OA-Cache in an end-to-end manner to maximize the cache hit rate. Specifically, we construct a complex model that uses a temporal convolutional network to capture the long and short dependencies between content requests. Then, an attention mechanism is adopted to find out the correlations between requests in the sliding window and cached contents. Instead of training a policy to mimic Belady that evicts the content with the longest reuse distance, we cast the learning task into a classification model to distinguish unpopular contents from popular ones. Finally, we apply the knowledge distillation approach to assist in transferring knowledge from a large pre-trained complex network to a lightweight network to readily accommodate to the network edge scenario. To validate the effectiveness of OA-Cache, we conduct extensive experiments on real-world datasets. The evaluation results demonstrate that OA-Cache can achieve better performance compared to candidate algorithms. |
---|---|
AbstractList | With the explosive increase in mobile data traffic and stringent quality-of-experience requirements of users, mobile edge caching is a promising paradigm to reduce delivery latency and network congestions by serving content requests locally. However, it is extremely challenging to conduct cache replacement when the cache is full and the future request pattern is unknown subject to enormous content volume but limited cache capacity at the network edge. In this paper, we propose a cache replacement algorithm based on the oracle approximation named OA-Cache in an end-to-end manner to maximize the cache hit rate. Specifically, we construct a complex model that uses a temporal convolutional network to capture the long and short dependencies between content requests. Then, an attention mechanism is adopted to find out the correlations between the requests in the sliding window and cached contents. Instead of training a policy to mimic Belady that evicts the content with the longest reuse distance, we cast the learning task into a classification model to distinguish unpopular contents from popular ones. Finally, we apply the knowledge distillation approach to assist in transferring knowledge from a large pre-trained complex network to a lightweight network to readily accommodate to the network edge scenario. To validate the effectiveness of OA-Cache, we conduct extensive experiments on real-world datasets. The evaluation results demonstrate that OA-Cache can achieve the superior performance compared to candidate algorithms. With the explosive increase in mobile data traffic generated by various application services like video-on-demand and stringent quality of experience requirements of users, mobile edge caching is a promising paradigm to reduce delivery latency and network congestions by serving content requests locally. However, how to conduct cache replacement when the cache is full is a challenging issue when faced with enormous content volume and limited cache capacity at the network edge while the future request pattern is unknown ahead. In this paper, we propose a cache replacement algorithm based on the oracle approximation named OA-Cache in an end-to-end manner to maximize the cache hit rate. Specifically, we construct a complex model that uses a temporal convolutional network to capture the long and short dependencies between content requests. Then, an attention mechanism is adopted to find out the correlations between requests in the sliding window and cached contents. Instead of training a policy to mimic Belady that evicts the content with the longest reuse distance, we cast the learning task into a classification model to distinguish unpopular contents from popular ones. Finally, we apply the knowledge distillation approach to assist in transferring knowledge from a large pre-trained complex network to a lightweight network to readily accommodate to the network edge scenario. To validate the effectiveness of OA-Cache, we conduct extensive experiments on real-world datasets. The evaluation results demonstrate that OA-Cache can achieve better performance compared to candidate algorithms. |
Author | Li, Xiuhua Fan, Qilin Qiu, Shuting Lyu, Yongqiang Zhang, Xu Min, Geyong |
Author_xml | – sequence: 1 givenname: Shuting surname: Qiu fullname: Qiu, Shuting organization: School of Big Data and Software Engineering, Chongqing University, Chongqing, China – sequence: 2 givenname: Qilin orcidid: 0000-0003-0856-3695 surname: Fan fullname: Fan, Qilin organization: School of Big Data and Software Engineering, Chongqing University, Chongqing, China – sequence: 3 givenname: Xiuhua orcidid: 0000-0001-9041-0297 surname: Li fullname: Li, Xiuhua organization: School of Big Data and Software Engineering, Chongqing University, Chongqing, China – sequence: 4 givenname: Xu orcidid: 0000-0002-1882-736X surname: Zhang fullname: Zhang, Xu organization: Department of Computer Science, University of Exeter, Exeter, U.K – sequence: 5 givenname: Geyong orcidid: 0000-0003-1395-7314 surname: Min fullname: Min, Geyong organization: Department of Computer Science, University of Exeter, Exeter, U.K – sequence: 6 givenname: Yongqiang orcidid: 0000-0003-2573-963X surname: Lyu fullname: Lyu, Yongqiang organization: Beijing National Research Centre for Information Science and Technology (BNRist), Tsinghua University, Beijing, China |
BookMark | eNp9kMtOwzAQRS1UJNrCByCxsMQ6xY84idlVVXmptBKUteXYY0hJk-C4Av6etGVRsWA1o9G9M3fOAPWqugKEzikZUUrk1XL-_DhihPERZ1wmSXyE-lRyFsWCp72D_gQN2nZFiMioZH30sBhHE23e4BovvDYl4HHT-PqrWOtQ1BXOdQsW7xT4CZpSG1hDFbAOOHSjOYTP2r_jqX2FU3TsdNnC2W8dopeb6XJyF80Wt_eT8SwyTMYhYpmUOeRxF1KAjJPMQZIQx2wOThprueFSxxlxVCRE2lzE1HEH3BKbSWc4H6LL_d4u58cG2qBW9cZX3UnFslSIlEghOxXdq4yv29aDU43vnvLfihK1Raa2yNQWmfpF1nnSPx5ThB2H4HVR_uu82DsLADi4RJjIWMp_AEYQemk |
CODEN | ITNSC4 |
CitedBy_id | crossref_primary_10_1109_TNSM_2023_3324300 crossref_primary_10_1016_j_comnet_2024_110761 crossref_primary_10_1109_TNSM_2023_3334559 crossref_primary_10_3390_fi16100379 |
Cites_doi | 10.1109/TNSM.2021.3053645 10.1109/JSAC.2017.2680958 10.1109/INFOCOM42981.2021.9488694 10.1109/TNSM.2022.3145619 10.1016/j.comnet.2021.107822 10.1147/sj.52.0078 10.1109/TNSM.2021.3136439 10.1109/ICWS53863.2021.00088 10.1109/MCI.2019.2937608 10.1109/TNSM.2021.3118946 10.1109/INFOCOM41043.2020.9155467 10.1609/icaps.v32i1.19840 10.1145/2517349.2522722 10.1109/TCCN.2019.2936193 10.1109/IWQoS.2018.8624176 10.1145/1816038.1815971 10.1109/FiCloud.2019.00012 10.1016/j.ipl.2006.11.009 10.1109/CISS.2018.8362276 10.1109/TMM.2015.2447277 10.1109/LCOMM.2019.2931688 10.1145/3308897.3308958 10.1145/3007787.3001146 10.1145/3343031.3350890 10.1109/JSAC.2020.3000415 10.1007/s00224-015-9626-4 10.1109/TNSE.2020.3010939 10.1109/TNSM.2020.3037147 10.1145/2827872 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
DBID | 97E RIA RIE AAYXX CITATION |
DOI | 10.1109/TNSM.2023.3239664 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE/IET Electronic Library url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1932-4537 |
EndPage | 1 |
ExternalDocumentID | 10_1109_TNSM_2023_3239664 10025827 |
Genre | orig-research |
GrantInformation_xml | – fundername: the National Key R & D Program of China grantid: 2022YFE0125400 – fundername: the National NSFC grantid: 62072060; 62102053 – fundername: the Natural Science Foundation of Chongqing, China grantid: CSTB2022NSCQ-MSX1104 – fundername: the EU Horizon 2020 research and innovation programme under the Marie Skodowska-Curie grantid: 898588 – fundername: Key Research Program of Chongqing Science & Technology Commission grantid: cstc2019jscx-zdztzxX0031; cstc2021jscx-dxwtBX0019 – fundername: the Chongqing Key Laboratory of Digital Cinema Art Theory and Technology grantid: 2021KF01 |
GroupedDBID | 0R~ 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABJNI ABQJQ ABVLG ACGFO ACIWK AENEX AGQYO AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 EBS HZ~ IES IFIPE IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE 4.4 AAYXX AETIX AGSQL AIBXA CITATION EJD RIG |
ID | FETCH-LOGICAL-c294t-2899beb49665e9468fe660f2dbef9cdd3c39a480f15609db541f3fe3d0d89fc33 |
IEDL.DBID | RIE |
ISSN | 1932-4537 |
IngestDate | Mon Jun 30 09:10:09 EDT 2025 Thu Apr 24 23:11:47 EDT 2025 Tue Jul 01 01:55:20 EDT 2025 Mon Aug 04 05:48:52 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c294t-2899beb49665e9468fe660f2dbef9cdd3c39a480f15609db541f3fe3d0d89fc33 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-0856-3695 0000-0002-1882-736X 0000-0001-9041-0297 0000-0003-1395-7314 0000-0003-2573-963X |
PQID | 2875570959 |
PQPubID | 85504 |
PageCount | 1 |
ParticipantIDs | crossref_primary_10_1109_TNSM_2023_3239664 ieee_primary_10025827 crossref_citationtrail_10_1109_TNSM_2023_3239664 proquest_journals_2875570959 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-09-01 |
PublicationDateYYYYMMDD | 2023-09-01 |
PublicationDate_xml | – month: 09 year: 2023 text: 2023-09-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE eTransactions on network and service management |
PublicationTitleAbbrev | T-NSM |
PublicationYear | 2023 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref35 ref12 ref15 vaswani (ref37) 2017; 30 ref31 megiddo (ref20) 2003 ref11 ref33 bai (ref36) 2018 ref10 ref32 yan (ref16) 2020 ref2 barnett (ref1) 2018 ref17 ref39 ref19 ref18 hinton (ref38) 2015 ref24 ref26 ref25 ref22 song (ref30) 2020 liu (ref34) 2020 ref28 ref27 cao (ref23) 1997 ref29 ref8 ref7 vietri (ref21) 2018 ref9 ref4 ref3 ref6 ref5 ref40 ahmed (ref14) 2013 |
References_xml | – year: 2015 ident: ref38 article-title: Distilling the knowledge in a neural network publication-title: ArXiv 1503 02531 – ident: ref11 doi: 10.1109/TNSM.2021.3053645 – year: 2013 ident: ref14 article-title: Analyzing the performance of LRU caches under non-stationary traffic patterns publication-title: arXiv 1301 4909 – ident: ref39 doi: 10.1109/JSAC.2017.2680958 – ident: ref28 doi: 10.1109/INFOCOM42981.2021.9488694 – start-page: 1 year: 2018 ident: ref21 article-title: Driving cache replacement with ML-based LeCaR publication-title: Proc HotStorage – ident: ref2 doi: 10.1109/TNSM.2022.3145619 – start-page: 1 year: 1997 ident: ref23 article-title: Cost-aware WWW proxy caching algorithms publication-title: Proc USITS – ident: ref9 doi: 10.1016/j.comnet.2021.107822 – ident: ref32 doi: 10.1147/sj.52.0078 – ident: ref4 doi: 10.1109/TNSM.2021.3136439 – ident: ref10 doi: 10.1109/ICWS53863.2021.00088 – start-page: 6237 year: 2020 ident: ref34 article-title: An imitation learning approach for cache replacement publication-title: Proc ICML – ident: ref25 doi: 10.1109/MCI.2019.2937608 – ident: ref5 doi: 10.1109/TNSM.2021.3118946 – start-page: 1009 year: 2020 ident: ref16 article-title: RL-Bélády: A unified learning framework for content caching publication-title: Proc ACM MM – ident: ref3 doi: 10.1109/INFOCOM41043.2020.9155467 – start-page: 1 year: 2003 ident: ref20 article-title: ARC: A self-tuning, low overhead replacement cache publication-title: Proc FAST – ident: ref27 doi: 10.1609/icaps.v32i1.19840 – ident: ref19 doi: 10.1145/2517349.2522722 – ident: ref29 doi: 10.1109/TCCN.2019.2936193 – ident: ref12 doi: 10.1109/IWQoS.2018.8624176 – ident: ref15 doi: 10.1145/1816038.1815971 – ident: ref8 doi: 10.1109/FiCloud.2019.00012 – start-page: 1 year: 2018 ident: ref1 article-title: Cisco visual networking index (VNI) complete forecast update, 2017-2022 publication-title: Proc Americas/EMEAR Cisco Knowl Netw (CKN) Present – ident: ref35 doi: 10.1016/j.ipl.2006.11.009 – ident: ref24 doi: 10.1109/CISS.2018.8362276 – ident: ref22 doi: 10.1109/TMM.2015.2447277 – ident: ref26 doi: 10.1109/LCOMM.2019.2931688 – ident: ref31 doi: 10.1145/3308897.3308958 – ident: ref33 doi: 10.1145/3007787.3001146 – start-page: 529 year: 2020 ident: ref30 article-title: Learning relaxed Belady for content distribution network caching publication-title: Proc NSDI – ident: ref13 doi: 10.1145/3343031.3350890 – volume: 30 start-page: 1 year: 2017 ident: ref37 article-title: Attention is all you need publication-title: Proc Adv Neural Inf Process Syst – ident: ref17 doi: 10.1109/JSAC.2020.3000415 – ident: ref18 doi: 10.1007/s00224-015-9626-4 – ident: ref7 doi: 10.1109/TNSE.2020.3010939 – year: 2018 ident: ref36 article-title: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling publication-title: arXiv 1803 01271 – ident: ref6 doi: 10.1109/TNSM.2020.3037147 – ident: ref40 doi: 10.1145/2827872 |
SSID | ssj0058192 |
Score | 2.3443139 |
Snippet | With the explosive increase in mobile data traffic generated by various application services like video-on-demand and stringent quality of experience... With the explosive increase in mobile data traffic and stringent quality-of-experience requirements of users, mobile edge caching is a promising paradigm to... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1 |
SubjectTerms | Adaptation models Algorithms Approximation Cache Replacement Cognitive tasks Distillation Edge Caching Heuristic algorithms Imitation Learning Knowledge Distillation Mathematical analysis Prediction algorithms Predictive models Quality of experience Task analysis Training User requirements |
Title | OA-Cache: Oracle Approximation based Cache Replacement at the Network Edge |
URI | https://ieeexplore.ieee.org/document/10025827 https://www.proquest.com/docview/2875570959 |
Volume | 20 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dS8MwEA9uT_rg58TplDz4JLRLm7Q2vo2xMQbrHtxgbyWfIsomswPxrzfXD5mK4luhlzbcXXJ3yd3vELomwvnQQZx4Ikqox5gUHrdEeYFw1tU4JUgkVCNP0ng0Z-NFtKiK1YtaGGNMkXxmfHgs7vL1Sm3gqKwLcKFREt42UMNFbmWxVr3tRoDsVV1bBoR3Z-n9xIfe4D4NqZsP-2J4ik4qP7bfwqYMD1Baz6ZMJXnyN7n01fs3oMZ_T_cQ7VfeJe6V6nCEdszyGO1tYQ6eoPG05_UBxfkOT9fCUeEewIq_PZY1jBjMmsYFBXbeOZyyw2-wyLHzFXFapo3jgX4wLTQfDmb9kVc1VPBUyFnuQXAljWSOHZHhLE6siWNiQy2N5UprqigXLCEWyqu5lhELLLWGaqITbhWlp6i5XC3NGcLCKK0iRbgNLXNvpOUJEzy0VjLANmwjUnM7UxXaODS9eM6KqIPwDASUgYCySkBtdPM55KWE2viLuAUM3yIsed1GnVqmWbUaXzMXFQLSGI_4-S_DLtAufL1MHuugZr7emEvnbeTyqtCyD6Ot0QQ |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT-QwDLZ4HIDD8lwxuwPkwAmpJW2S0uxthEDDY8qBQeJW5YnQohkEHQnx6zduO6sBBOJWqY5i2U7sJPZngH2qQgydZHmkRM4izrWKpKcmSlTwri4YQa6xGnlQZP0bfn4rbtti9boWxjlXJ5-5GD_rt3w7NhO8KjtEuFCRp0fzsBgcv0iacq3pxisQ26t9uEyoPBwW14MYu4PHLGWBI_7G9dS9VD5swLVXOV2FYspPk0zyN55UOjav76Aav83wGvxo40vSawxiHebcaANWZlAHN-H8qhcdI47zH3L1pAIV6SGw-Mt9U8VI0LFZUlOQEJ_jPTtOQ1RFQrRIiiZxnJzYO7cFN6cnw-N-1LZUiEwqeRXh8Uo7zYM4hJM8y73LMupTq52XxlpmmFQ8px4LrKXVgieeeccstbn0hrGfsDAaj9w2EOWMNcJQ6VPPwx_tZc6VTL3XHNENO0Cn0i5NizeObS8eyvrcQWWJCipRQWWroA4c_B_y2IBtfEW8hQKfIWxk3YHuVKdlux6fy3AuRKwxKeSvT4btwVJ_OLgsL8-Ki9-wjDM1qWRdWKieJm4nxB6V3q0t7h-1CNRN |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=OA-Cache%3A+Oracle+Approximation-Based+Cache+Replacement+at+the+Network+Edge&rft.jtitle=IEEE+eTransactions+on+network+and+service+management&rft.au=Qiu%2C+Shuting&rft.au=Fan%2C+Qilin&rft.au=Li%2C+Xiuhua&rft.au=Zhang%2C+Xu&rft.date=2023-09-01&rft.issn=1932-4537&rft.eissn=1932-4537&rft.volume=20&rft.issue=3&rft.spage=3177&rft.epage=3189&rft_id=info:doi/10.1109%2FTNSM.2023.3239664&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TNSM_2023_3239664 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-4537&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-4537&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-4537&client=summon |