OA-Cache: Oracle Approximation based Cache Replacement at the Network Edge

With the explosive increase in mobile data traffic generated by various application services like video-on-demand and stringent quality of experience requirements of users, mobile edge caching is a promising paradigm to reduce delivery latency and network congestions by serving content requests loca...

Full description

Saved in:
Bibliographic Details
Published inIEEE eTransactions on network and service management Vol. 20; no. 3; p. 1
Main Authors Qiu, Shuting, Fan, Qilin, Li, Xiuhua, Zhang, Xu, Min, Geyong, Lyu, Yongqiang
Format Journal Article
LanguageEnglish
Published New York IEEE 01.09.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1932-4537
1932-4537
DOI10.1109/TNSM.2023.3239664

Cover

Loading…
Abstract With the explosive increase in mobile data traffic generated by various application services like video-on-demand and stringent quality of experience requirements of users, mobile edge caching is a promising paradigm to reduce delivery latency and network congestions by serving content requests locally. However, how to conduct cache replacement when the cache is full is a challenging issue when faced with enormous content volume and limited cache capacity at the network edge while the future request pattern is unknown ahead. In this paper, we propose a cache replacement algorithm based on the oracle approximation named OA-Cache in an end-to-end manner to maximize the cache hit rate. Specifically, we construct a complex model that uses a temporal convolutional network to capture the long and short dependencies between content requests. Then, an attention mechanism is adopted to find out the correlations between requests in the sliding window and cached contents. Instead of training a policy to mimic Belady that evicts the content with the longest reuse distance, we cast the learning task into a classification model to distinguish unpopular contents from popular ones. Finally, we apply the knowledge distillation approach to assist in transferring knowledge from a large pre-trained complex network to a lightweight network to readily accommodate to the network edge scenario. To validate the effectiveness of OA-Cache, we conduct extensive experiments on real-world datasets. The evaluation results demonstrate that OA-Cache can achieve better performance compared to candidate algorithms.
AbstractList With the explosive increase in mobile data traffic and stringent quality-of-experience requirements of users, mobile edge caching is a promising paradigm to reduce delivery latency and network congestions by serving content requests locally. However, it is extremely challenging to conduct cache replacement when the cache is full and the future request pattern is unknown subject to enormous content volume but limited cache capacity at the network edge. In this paper, we propose a cache replacement algorithm based on the oracle approximation named OA-Cache in an end-to-end manner to maximize the cache hit rate. Specifically, we construct a complex model that uses a temporal convolutional network to capture the long and short dependencies between content requests. Then, an attention mechanism is adopted to find out the correlations between the requests in the sliding window and cached contents. Instead of training a policy to mimic Belady that evicts the content with the longest reuse distance, we cast the learning task into a classification model to distinguish unpopular contents from popular ones. Finally, we apply the knowledge distillation approach to assist in transferring knowledge from a large pre-trained complex network to a lightweight network to readily accommodate to the network edge scenario. To validate the effectiveness of OA-Cache, we conduct extensive experiments on real-world datasets. The evaluation results demonstrate that OA-Cache can achieve the superior performance compared to candidate algorithms.
With the explosive increase in mobile data traffic generated by various application services like video-on-demand and stringent quality of experience requirements of users, mobile edge caching is a promising paradigm to reduce delivery latency and network congestions by serving content requests locally. However, how to conduct cache replacement when the cache is full is a challenging issue when faced with enormous content volume and limited cache capacity at the network edge while the future request pattern is unknown ahead. In this paper, we propose a cache replacement algorithm based on the oracle approximation named OA-Cache in an end-to-end manner to maximize the cache hit rate. Specifically, we construct a complex model that uses a temporal convolutional network to capture the long and short dependencies between content requests. Then, an attention mechanism is adopted to find out the correlations between requests in the sliding window and cached contents. Instead of training a policy to mimic Belady that evicts the content with the longest reuse distance, we cast the learning task into a classification model to distinguish unpopular contents from popular ones. Finally, we apply the knowledge distillation approach to assist in transferring knowledge from a large pre-trained complex network to a lightweight network to readily accommodate to the network edge scenario. To validate the effectiveness of OA-Cache, we conduct extensive experiments on real-world datasets. The evaluation results demonstrate that OA-Cache can achieve better performance compared to candidate algorithms.
Author Li, Xiuhua
Fan, Qilin
Qiu, Shuting
Lyu, Yongqiang
Zhang, Xu
Min, Geyong
Author_xml – sequence: 1
  givenname: Shuting
  surname: Qiu
  fullname: Qiu, Shuting
  organization: School of Big Data and Software Engineering, Chongqing University, Chongqing, China
– sequence: 2
  givenname: Qilin
  orcidid: 0000-0003-0856-3695
  surname: Fan
  fullname: Fan, Qilin
  organization: School of Big Data and Software Engineering, Chongqing University, Chongqing, China
– sequence: 3
  givenname: Xiuhua
  orcidid: 0000-0001-9041-0297
  surname: Li
  fullname: Li, Xiuhua
  organization: School of Big Data and Software Engineering, Chongqing University, Chongqing, China
– sequence: 4
  givenname: Xu
  orcidid: 0000-0002-1882-736X
  surname: Zhang
  fullname: Zhang, Xu
  organization: Department of Computer Science, University of Exeter, Exeter, U.K
– sequence: 5
  givenname: Geyong
  orcidid: 0000-0003-1395-7314
  surname: Min
  fullname: Min, Geyong
  organization: Department of Computer Science, University of Exeter, Exeter, U.K
– sequence: 6
  givenname: Yongqiang
  orcidid: 0000-0003-2573-963X
  surname: Lyu
  fullname: Lyu, Yongqiang
  organization: Beijing National Research Centre for Information Science and Technology (BNRist), Tsinghua University, Beijing, China
BookMark eNp9kMtOwzAQRS1UJNrCByCxsMQ6xY84idlVVXmptBKUteXYY0hJk-C4Av6etGVRsWA1o9G9M3fOAPWqugKEzikZUUrk1XL-_DhihPERZ1wmSXyE-lRyFsWCp72D_gQN2nZFiMioZH30sBhHE23e4BovvDYl4HHT-PqrWOtQ1BXOdQsW7xT4CZpSG1hDFbAOOHSjOYTP2r_jqX2FU3TsdNnC2W8dopeb6XJyF80Wt_eT8SwyTMYhYpmUOeRxF1KAjJPMQZIQx2wOThprueFSxxlxVCRE2lzE1HEH3BKbSWc4H6LL_d4u58cG2qBW9cZX3UnFslSIlEghOxXdq4yv29aDU43vnvLfihK1Raa2yNQWmfpF1nnSPx5ThB2H4HVR_uu82DsLADi4RJjIWMp_AEYQemk
CODEN ITNSC4
CitedBy_id crossref_primary_10_1109_TNSM_2023_3324300
crossref_primary_10_1016_j_comnet_2024_110761
crossref_primary_10_1109_TNSM_2023_3334559
crossref_primary_10_3390_fi16100379
Cites_doi 10.1109/TNSM.2021.3053645
10.1109/JSAC.2017.2680958
10.1109/INFOCOM42981.2021.9488694
10.1109/TNSM.2022.3145619
10.1016/j.comnet.2021.107822
10.1147/sj.52.0078
10.1109/TNSM.2021.3136439
10.1109/ICWS53863.2021.00088
10.1109/MCI.2019.2937608
10.1109/TNSM.2021.3118946
10.1109/INFOCOM41043.2020.9155467
10.1609/icaps.v32i1.19840
10.1145/2517349.2522722
10.1109/TCCN.2019.2936193
10.1109/IWQoS.2018.8624176
10.1145/1816038.1815971
10.1109/FiCloud.2019.00012
10.1016/j.ipl.2006.11.009
10.1109/CISS.2018.8362276
10.1109/TMM.2015.2447277
10.1109/LCOMM.2019.2931688
10.1145/3308897.3308958
10.1145/3007787.3001146
10.1145/3343031.3350890
10.1109/JSAC.2020.3000415
10.1007/s00224-015-9626-4
10.1109/TNSE.2020.3010939
10.1109/TNSM.2020.3037147
10.1145/2827872
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
RIA
RIE
AAYXX
CITATION
DOI 10.1109/TNSM.2023.3239664
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1932-4537
EndPage 1
ExternalDocumentID 10_1109_TNSM_2023_3239664
10025827
Genre orig-research
GrantInformation_xml – fundername: the National Key R & D Program of China
  grantid: 2022YFE0125400
– fundername: the National NSFC
  grantid: 62072060; 62102053
– fundername: the Natural Science Foundation of Chongqing, China
  grantid: CSTB2022NSCQ-MSX1104
– fundername: the EU Horizon 2020 research and innovation programme under the Marie Skodowska-Curie
  grantid: 898588
– fundername: Key Research Program of Chongqing Science & Technology Commission
  grantid: cstc2019jscx-zdztzxX0031; cstc2021jscx-dxwtBX0019
– fundername: the Chongqing Key Laboratory of Digital Cinema Art Theory and Technology
  grantid: 2021KF01
GroupedDBID 0R~
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
ACGFO
ACIWK
AENEX
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
EBS
HZ~
IES
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
4.4
AAYXX
AETIX
AGSQL
AIBXA
CITATION
EJD
RIG
ID FETCH-LOGICAL-c294t-2899beb49665e9468fe660f2dbef9cdd3c39a480f15609db541f3fe3d0d89fc33
IEDL.DBID RIE
ISSN 1932-4537
IngestDate Mon Jun 30 09:10:09 EDT 2025
Thu Apr 24 23:11:47 EDT 2025
Tue Jul 01 01:55:20 EDT 2025
Mon Aug 04 05:48:52 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c294t-2899beb49665e9468fe660f2dbef9cdd3c39a480f15609db541f3fe3d0d89fc33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-0856-3695
0000-0002-1882-736X
0000-0001-9041-0297
0000-0003-1395-7314
0000-0003-2573-963X
PQID 2875570959
PQPubID 85504
PageCount 1
ParticipantIDs crossref_primary_10_1109_TNSM_2023_3239664
ieee_primary_10025827
crossref_citationtrail_10_1109_TNSM_2023_3239664
proquest_journals_2875570959
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-09-01
PublicationDateYYYYMMDD 2023-09-01
PublicationDate_xml – month: 09
  year: 2023
  text: 2023-09-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE eTransactions on network and service management
PublicationTitleAbbrev T-NSM
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
ref12
ref15
vaswani (ref37) 2017; 30
ref31
megiddo (ref20) 2003
ref11
ref33
bai (ref36) 2018
ref10
ref32
yan (ref16) 2020
ref2
barnett (ref1) 2018
ref17
ref39
ref19
ref18
hinton (ref38) 2015
ref24
ref26
ref25
ref22
song (ref30) 2020
liu (ref34) 2020
ref28
ref27
cao (ref23) 1997
ref29
ref8
ref7
vietri (ref21) 2018
ref9
ref4
ref3
ref6
ref5
ref40
ahmed (ref14) 2013
References_xml – year: 2015
  ident: ref38
  article-title: Distilling the knowledge in a neural network
  publication-title: ArXiv 1503 02531
– ident: ref11
  doi: 10.1109/TNSM.2021.3053645
– year: 2013
  ident: ref14
  article-title: Analyzing the performance of LRU caches under non-stationary traffic patterns
  publication-title: arXiv 1301 4909
– ident: ref39
  doi: 10.1109/JSAC.2017.2680958
– ident: ref28
  doi: 10.1109/INFOCOM42981.2021.9488694
– start-page: 1
  year: 2018
  ident: ref21
  article-title: Driving cache replacement with ML-based LeCaR
  publication-title: Proc HotStorage
– ident: ref2
  doi: 10.1109/TNSM.2022.3145619
– start-page: 1
  year: 1997
  ident: ref23
  article-title: Cost-aware WWW proxy caching algorithms
  publication-title: Proc USITS
– ident: ref9
  doi: 10.1016/j.comnet.2021.107822
– ident: ref32
  doi: 10.1147/sj.52.0078
– ident: ref4
  doi: 10.1109/TNSM.2021.3136439
– ident: ref10
  doi: 10.1109/ICWS53863.2021.00088
– start-page: 6237
  year: 2020
  ident: ref34
  article-title: An imitation learning approach for cache replacement
  publication-title: Proc ICML
– ident: ref25
  doi: 10.1109/MCI.2019.2937608
– ident: ref5
  doi: 10.1109/TNSM.2021.3118946
– start-page: 1009
  year: 2020
  ident: ref16
  article-title: RL-Bélády: A unified learning framework for content caching
  publication-title: Proc ACM MM
– ident: ref3
  doi: 10.1109/INFOCOM41043.2020.9155467
– start-page: 1
  year: 2003
  ident: ref20
  article-title: ARC: A self-tuning, low overhead replacement cache
  publication-title: Proc FAST
– ident: ref27
  doi: 10.1609/icaps.v32i1.19840
– ident: ref19
  doi: 10.1145/2517349.2522722
– ident: ref29
  doi: 10.1109/TCCN.2019.2936193
– ident: ref12
  doi: 10.1109/IWQoS.2018.8624176
– ident: ref15
  doi: 10.1145/1816038.1815971
– ident: ref8
  doi: 10.1109/FiCloud.2019.00012
– start-page: 1
  year: 2018
  ident: ref1
  article-title: Cisco visual networking index (VNI) complete forecast update, 2017-2022
  publication-title: Proc Americas/EMEAR Cisco Knowl Netw (CKN) Present
– ident: ref35
  doi: 10.1016/j.ipl.2006.11.009
– ident: ref24
  doi: 10.1109/CISS.2018.8362276
– ident: ref22
  doi: 10.1109/TMM.2015.2447277
– ident: ref26
  doi: 10.1109/LCOMM.2019.2931688
– ident: ref31
  doi: 10.1145/3308897.3308958
– ident: ref33
  doi: 10.1145/3007787.3001146
– start-page: 529
  year: 2020
  ident: ref30
  article-title: Learning relaxed Belady for content distribution network caching
  publication-title: Proc NSDI
– ident: ref13
  doi: 10.1145/3343031.3350890
– volume: 30
  start-page: 1
  year: 2017
  ident: ref37
  article-title: Attention is all you need
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref17
  doi: 10.1109/JSAC.2020.3000415
– ident: ref18
  doi: 10.1007/s00224-015-9626-4
– ident: ref7
  doi: 10.1109/TNSE.2020.3010939
– year: 2018
  ident: ref36
  article-title: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling
  publication-title: arXiv 1803 01271
– ident: ref6
  doi: 10.1109/TNSM.2020.3037147
– ident: ref40
  doi: 10.1145/2827872
SSID ssj0058192
Score 2.3443139
Snippet With the explosive increase in mobile data traffic generated by various application services like video-on-demand and stringent quality of experience...
With the explosive increase in mobile data traffic and stringent quality-of-experience requirements of users, mobile edge caching is a promising paradigm to...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Adaptation models
Algorithms
Approximation
Cache Replacement
Cognitive tasks
Distillation
Edge Caching
Heuristic algorithms
Imitation Learning
Knowledge Distillation
Mathematical analysis
Prediction algorithms
Predictive models
Quality of experience
Task analysis
Training
User requirements
Title OA-Cache: Oracle Approximation based Cache Replacement at the Network Edge
URI https://ieeexplore.ieee.org/document/10025827
https://www.proquest.com/docview/2875570959
Volume 20
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dS8MwEA9uT_rg58TplDz4JLRLm7Q2vo2xMQbrHtxgbyWfIsomswPxrzfXD5mK4luhlzbcXXJ3yd3vELomwvnQQZx4Ikqox5gUHrdEeYFw1tU4JUgkVCNP0ng0Z-NFtKiK1YtaGGNMkXxmfHgs7vL1Sm3gqKwLcKFREt42UMNFbmWxVr3tRoDsVV1bBoR3Z-n9xIfe4D4NqZsP-2J4ik4qP7bfwqYMD1Baz6ZMJXnyN7n01fs3oMZ_T_cQ7VfeJe6V6nCEdszyGO1tYQ6eoPG05_UBxfkOT9fCUeEewIq_PZY1jBjMmsYFBXbeOZyyw2-wyLHzFXFapo3jgX4wLTQfDmb9kVc1VPBUyFnuQXAljWSOHZHhLE6siWNiQy2N5UprqigXLCEWyqu5lhELLLWGaqITbhWlp6i5XC3NGcLCKK0iRbgNLXNvpOUJEzy0VjLANmwjUnM7UxXaODS9eM6KqIPwDASUgYCySkBtdPM55KWE2viLuAUM3yIsed1GnVqmWbUaXzMXFQLSGI_4-S_DLtAufL1MHuugZr7emEvnbeTyqtCyD6Ot0QQ
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT-QwDLZ4HIDD8lwxuwPkwAmpJW2S0uxthEDDY8qBQeJW5YnQohkEHQnx6zduO6sBBOJWqY5i2U7sJPZngH2qQgydZHmkRM4izrWKpKcmSlTwri4YQa6xGnlQZP0bfn4rbtti9boWxjlXJ5-5GD_rt3w7NhO8KjtEuFCRp0fzsBgcv0iacq3pxisQ26t9uEyoPBwW14MYu4PHLGWBI_7G9dS9VD5swLVXOV2FYspPk0zyN55UOjav76Aav83wGvxo40vSawxiHebcaANWZlAHN-H8qhcdI47zH3L1pAIV6SGw-Mt9U8VI0LFZUlOQEJ_jPTtOQ1RFQrRIiiZxnJzYO7cFN6cnw-N-1LZUiEwqeRXh8Uo7zYM4hJM8y73LMupTq52XxlpmmFQ8px4LrKXVgieeeccstbn0hrGfsDAaj9w2EOWMNcJQ6VPPwx_tZc6VTL3XHNENO0Cn0i5NizeObS8eyvrcQWWJCipRQWWroA4c_B_y2IBtfEW8hQKfIWxk3YHuVKdlux6fy3AuRKwxKeSvT4btwVJ_OLgsL8-Ki9-wjDM1qWRdWKieJm4nxB6V3q0t7h-1CNRN
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=OA-Cache%3A+Oracle+Approximation-Based+Cache+Replacement+at+the+Network+Edge&rft.jtitle=IEEE+eTransactions+on+network+and+service+management&rft.au=Qiu%2C+Shuting&rft.au=Fan%2C+Qilin&rft.au=Li%2C+Xiuhua&rft.au=Zhang%2C+Xu&rft.date=2023-09-01&rft.issn=1932-4537&rft.eissn=1932-4537&rft.volume=20&rft.issue=3&rft.spage=3177&rft.epage=3189&rft_id=info:doi/10.1109%2FTNSM.2023.3239664&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TNSM_2023_3239664
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-4537&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-4537&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-4537&client=summon