Finding spectrum occupancy pattern using CBFPP mining technique
The main challenge of problem lies in the perception of Cognitive Radio technology is to discover licensed empty spectrum pattern. The efficient model is needed for allocation among licensed and unlicensed users in wireless spectrum to improve the extraction rate and collision rate. To discover the...
Saved in:
Published in | Journal of intelligent & fuzzy systems Vol. 39; no. 3; pp. 4361 - 4368 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
London, England
SAGE Publications
01.01.2020
Sage Publications Ltd |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The main challenge of problem lies in the perception of Cognitive Radio technology is to discover licensed empty spectrum pattern. The efficient model is needed for allocation among licensed and unlicensed users in wireless spectrum to improve the extraction rate and collision rate. To discover the spectrum hole in spectrum paging bands, stirred by FP mining technique proposed an efficient enumeration approach, namely Constraint Based Frequent Periodic Pattern Mining (CBFPP). The proposed algorithm uses TRIE-like data structure with data mining constraints. CBFPP algorithm predicts periodic spectrum occupancy holes in the paging bands. It is shown that CBFPP has a high prediction accuracy with reasonable time complexity. Experiment with synthetic and real data validate higher prediction accuracy and with reasonable time complexities. The unlicensed user utilizes the predicted spectrum pattern in spectrum usage of channel without significant interference to licensed users. |
---|---|
AbstractList | The main challenge of problem lies in the perception of Cognitive Radio technology is to discover licensed empty spectrum pattern. The efficient model is needed for allocation among licensed and unlicensed users in wireless spectrum to improve the extraction rate and collision rate. To discover the spectrum hole in spectrum paging bands, stirred by FP mining technique proposed an efficient enumeration approach, namely Constraint Based Frequent Periodic Pattern Mining (CBFPP). The proposed algorithm uses TRIE-like data structure with data mining constraints. CBFPP algorithm predicts periodic spectrum occupancy holes in the paging bands. It is shown that CBFPP has a high prediction accuracy with reasonable time complexity. Experiment with synthetic and real data validate higher prediction accuracy and with reasonable time complexities. The unlicensed user utilizes the predicted spectrum pattern in spectrum usage of channel without significant interference to licensed users. |
Author | Aravind, T. Kumaravel, R. Karthik, G.M. Sayeekumar, M. |
Author_xml | – sequence: 1 givenname: G.M. surname: Karthik fullname: Karthik, G.M. organization: Department of Computer Science and Engineering – sequence: 2 givenname: M. surname: Sayeekumar fullname: Sayeekumar, M. organization: Department of Computer Science and Engineering – sequence: 3 givenname: R. surname: Kumaravel fullname: Kumaravel, R. organization: Department of Computer Science and Engineering – sequence: 4 givenname: T. surname: Aravind fullname: Aravind, T. organization: Department of Computer Science and Engineering |
BookMark | eNp1kF9LwzAUxYNMcJs--QUKvghSzf-2T6LD6mTgQH0OaZrMjC2tSfqwb29LBUH06d4Lv3PP4czAxDVOA3CO4DXBhNw8L8vXFENIeH4EpijPWJoXPJv0O-Q0RZjyEzALYQshyhiGU3BbWldbt0lCq1X03T5plOpa6dQhaWWM2rukCwOwuC_X62Rv3XBErT6c_ez0KTg2chf02fecg_fy4W3xlK5eHpeLu1WqcEFjipGsK4WxYRmDrKhyQytTQ0Ilz4yGNTcSMsOrilJe49pAnStkDGcUEaNQTebgYvzb-qa3DVFsm8673lJgSgvKOM5IT6GRUr4JwWsjlI0y2sZFL-1OICiGnsTQkxh76jVXvzStt3vpD__QlyMd5Eb_ZPgL_QIynncy |
CitedBy_id | crossref_primary_10_1109_ACCESS_2023_3271864 crossref_primary_10_1016_j_knosys_2024_112713 crossref_primary_10_1002_int_22799 |
Cites_doi | 10.1109/JSAC.2004.839380 10.1109/TMC.2011.128 10.1109/TKDE.2007.1001 10.1145/276304.276307 10.1109/TKDE.2003.1262186 10.1137/1.9781611972740.9 10.1007/978-981-13-8196-6_53 10.1023/A:1009796218281 10.1016/j.asoc.2018.07.041 10.1109/ICCW.2008.34 10.1109/APMC.2007.4554696 10.1109/ICDE.2009.104 10.1109/VTCFall.2018.8690575 10.1109/ISDA.2008.287 10.3923/ajit.2014.670.677 10.1007/s00521-016-2653-5 10.1145/3318265.3318284 10.3844/jcssp.2014.2105.2116 10.1007/s41650-018-0013-6 10.1145/1614235.1614250 10.1186/s13638-017-1019-8 10.1109/SECON.2007.342884 10.1145/1267066.1267068 10.1137/1.9781611972788.28 10.1016/j.comnet.2006.05.001 10.1109/SECON.2010.5453870 10.1007/978-3-540-44497-8_8 10.1109/2.781634 10.1007/978-3-030-11437-4_17 10.1109/TPDS.2013.283 |
ContentType | Journal Article |
Copyright | 2020 – IOS Press and the authors. All rights reserved Copyright IOS Press BV 2020 |
Copyright_xml | – notice: 2020 – IOS Press and the authors. All rights reserved – notice: Copyright IOS Press BV 2020 |
DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
DOI | 10.3233/JIFS-200368 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
DatabaseTitleList | CrossRef Computer and Information Systems Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1875-8967 |
EndPage | 4368 |
ExternalDocumentID | 10_3233_JIFS_200368 10.3233_JIFS-200368 |
GroupedDBID | .4S .DC 4.4 5GY 8VB AAGLT ABCQX ABDBF ABJNI ABUJY ACGFS ACPQW ACUHS ADMLS ADZMO AEMOZ AENEX AFRHK AHDMH AHQJS AJNRN AKVCP ALMA_UNASSIGNED_HOLDINGS AMVHM ARCSS ARTOV ASPBG AVWKF DU5 EAD EAP EBA EBR EBS EBU EDO EMK EPL EST ESX H13 HZ~ I-F IOS K1G L7B MET MIO MK~ MV1 NGNOM O9- P2P QWB TH9 TUS ZL0 AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c294t-21adbc22f575059b8f4bfd034a67fe0d6fa05f6bb446d2df0e8c1ff65413fc1d3 |
ISSN | 1064-1246 |
IngestDate | Fri Jul 25 10:04:09 EDT 2025 Thu Apr 24 22:53:52 EDT 2025 Tue Jul 01 05:15:01 EDT 2025 Sun Jul 13 06:01:35 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | frequent pattern spectrum occupancy prediction Cognitive radio data mining |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c294t-21adbc22f575059b8f4bfd034a67fe0d6fa05f6bb446d2df0e8c1ff65413fc1d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2449456273 |
PQPubID | 2046407 |
PageCount | 8 |
ParticipantIDs | proquest_journals_2449456273 crossref_citationtrail_10_3233_JIFS_200368 crossref_primary_10_3233_JIFS_200368 sage_journals_10_3233_JIFS_200368 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-01-01 |
PublicationDateYYYYMMDD | 2020-01-01 |
PublicationDate_xml | – month: 01 year: 2020 text: 2020-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | London, England |
PublicationPlace_xml | – name: London, England – name: London |
PublicationTitle | Journal of intelligent & fuzzy systems |
PublicationYear | 2020 |
Publisher | SAGE Publications Sage Publications Ltd |
Publisher_xml | – name: SAGE Publications – name: Sage Publications Ltd |
References | 2018; 29 2007; 19 2018; 3 2006; 50 2004; 16 1997; 01 2014; 25 2014; 13 1999; 32 2018; 71 2007; 01 2012; 11 2005; 23 2014; 10 e_1_3_1_21_2 e_1_3_1_22_2 e_1_3_1_23_2 e_1_3_1_24_2 e_1_3_1_8_2 e_1_3_1_7_2 e_1_3_1_9_2 e_1_3_1_20_2 e_1_3_1_4_2 e_1_3_1_29_2 e_1_3_1_3_2 e_1_3_1_6_2 e_1_3_1_5_2 e_1_3_1_25_2 e_1_3_1_26_2 e_1_3_1_2_2 e_1_3_1_27_2 e_1_3_1_28_2 e_1_3_1_32_2 e_1_3_1_33_2 e_1_3_1_34_2 e_1_3_1_35_2 e_1_3_1_13_2 e_1_3_1_12_2 e_1_3_1_11_2 e_1_3_1_30_2 e_1_3_1_10_2 e_1_3_1_31_2 e_1_3_1_17_2 e_1_3_1_16_2 e_1_3_1_15_2 e_1_3_1_14_2 e_1_3_1_36_2 e_1_3_1_37_2 e_1_3_1_19_2 e_1_3_1_38_2 e_1_3_1_18_2 e_1_3_1_39_2 |
References_xml | – volume: 01 start-page: 7:1 issue: 02 year: 2007 end-page: 7:39 article-title: Mining Periodic Patterns with Gap Requirement from Sequences publication-title: ACM Transactions on Knowledge Discovery from Data (TKDD) – volume: 50 start-page: 2127 issue: 13 year: 2006 end-page: 2159 article-title: Next Generation/Dynamic Spectrum Access/Cognitive Radio Wireless Networks: A Survey publication-title: The International Journal of Computer and Telecommunications Networking – volume: 71 start-page: 926 year: 2018 end-page: 938 article-title: Analysis of differencing and decomposition preprocessing methods for wind speed prediction publication-title: Appl Soft Comput – volume: 3 issue: 2 year: 2018 article-title: Spectrum Occupancy Prediction for Realistic Traffic Scenarios: Time Series versus Learning-Based Models publication-title: Journal of Communications and Information Networks – volume: 13 start-page: 670 issue: 10 year: 2014 end-page: 677 article-title: Parallel frequent correlated pattern mining using time series data publication-title: Asian Journal of Information Technology – volume: 23 start-page: 201 issue: 02 year: 2005 end-page: 220 article-title: Cognitive Radio: Brain-Empowered Wireless Communications publication-title: IEEE Journal on Selected Areas in Communications – volume: 32 start-page: 46 issue: 08 year: 1999 end-page: 50 article-title: Constraint-Based Multidimensional Data Mining publication-title: IEEE Computer Society Press Los Alamitos, CA, USA – volume: 01 start-page: 241 issue: 03 year: 1997 end-page: 258 article-title: Levelwise search and borders of theories in knowledge discovery publication-title: Data Mining and Knowledge Discover – volume: 29 start-page: 1363 issue: 12 year: 2018 end-page: 1376 article-title: Spectrum occupancy prediction based on functional link artificial neural network (FLANN) in ISM band publication-title: Neural Computing and Applications – volume: 25 start-page: 1925 issue: 07 year: 2014 end-page: 1934 article-title: Wireless Spectrum Occupancy Prediction Based on Partial Periodic Pattern Mining publication-title: IEEE Transactions on Parallel and Distributed Systems – volume: 16 start-page: 332 issue: 03 year: 2004 end-page: 342 article-title: Incremental, Online, Merge Mining of Partial Periodic Patterns in Time-Series Databases publication-title: IEEE Transactions on Knowledge and Data Engineering – volume: 19 start-page: 509 issue: 04 year: 2007 end-page: 522 article-title: An Exact Data Mining Method for Finding Center Strings and All Their Instances publication-title: IEEE Transactions on Knowledge and Data Engineering – volume: 10 start-page: 2105 issue: 10 year: 2014 end-page: 2116 article-title: Frequent Correlated Periodic Pattern Mining for Large volume set using Time series data publication-title: Journal of Computer Science – volume: 11 start-page: 1033 issue: 06 year: 2012 end-page: 1046 article-title: Mining Usage Data: A Large-Scale Spectrum Measurement Study publication-title: IEEE Transactions on Mobile Computing – ident: e_1_3_1_32_2 doi: 10.1109/JSAC.2004.839380 – ident: e_1_3_1_9_2 – ident: e_1_3_1_34_2 – ident: e_1_3_1_35_2 doi: 10.1109/TMC.2011.128 – ident: e_1_3_1_37_2 – ident: e_1_3_1_3_2 – ident: e_1_3_1_29_2 doi: 10.1109/TKDE.2007.1001 – ident: e_1_3_1_30_2 doi: 10.1145/276304.276307 – ident: e_1_3_1_36_2 doi: 10.1109/TKDE.2003.1262186 – ident: e_1_3_1_25_2 doi: 10.1137/1.9781611972740.9 – ident: e_1_3_1_19_2 doi: 10.1007/978-981-13-8196-6_53 – ident: e_1_3_1_13_2 doi: 10.1023/A:1009796218281 – ident: e_1_3_1_23_2 – ident: e_1_3_1_26_2 doi: 10.1016/j.asoc.2018.07.041 – ident: e_1_3_1_39_2 doi: 10.1109/ICCW.2008.34 – ident: e_1_3_1_6_2 doi: 10.1109/APMC.2007.4554696 – ident: e_1_3_1_4_2 doi: 10.1109/ICDE.2009.104 – ident: e_1_3_1_27_2 doi: 10.1109/VTCFall.2018.8690575 – ident: e_1_3_1_7_2 doi: 10.1109/ISDA.2008.287 – ident: e_1_3_1_12_2 doi: 10.3923/ajit.2014.670.677 – ident: e_1_3_1_10_2 doi: 10.1007/s00521-016-2653-5 – ident: e_1_3_1_8_2 – ident: e_1_3_1_21_2 doi: 10.1145/3318265.3318284 – ident: e_1_3_1_11_2 doi: 10.3844/jcssp.2014.2105.2116 – ident: e_1_3_1_2_2 doi: 10.1007/s41650-018-0013-6 – ident: e_1_3_1_17_2 – ident: e_1_3_1_18_2 doi: 10.1145/1614235.1614250 – ident: e_1_3_1_22_2 – ident: e_1_3_1_14_2 doi: 10.1186/s13638-017-1019-8 – ident: e_1_3_1_15_2 doi: 10.1109/SECON.2007.342884 – ident: e_1_3_1_24_2 doi: 10.1145/1267066.1267068 – ident: e_1_3_1_5_2 doi: 10.1137/1.9781611972788.28 – ident: e_1_3_1_16_2 doi: 10.1016/j.comnet.2006.05.001 – ident: e_1_3_1_38_2 doi: 10.1109/SECON.2010.5453870 – ident: e_1_3_1_33_2 doi: 10.1007/978-3-540-44497-8_8 – ident: e_1_3_1_20_2 doi: 10.1109/2.781634 – ident: e_1_3_1_31_2 doi: 10.1007/978-3-030-11437-4_17 – ident: e_1_3_1_28_2 doi: 10.1109/TPDS.2013.283 |
SSID | ssj0017520 |
Score | 2.2032762 |
Snippet | The main challenge of problem lies in the perception of Cognitive Radio technology is to discover licensed empty spectrum pattern. The efficient model is... |
SourceID | proquest crossref sage |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 4361 |
SubjectTerms | Algorithms Cognitive radio Collision rates Data mining Data structures Enumeration Licenses Occupancy Paging Pattern analysis |
Title | Finding spectrum occupancy pattern using CBFPP mining technique |
URI | https://journals.sagepub.com/doi/full/10.3233/JIFS-200368 https://www.proquest.com/docview/2449456273 |
Volume | 39 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6F9gIHxFOkFGSknohs7H147RNqC6ZUBFU0lXqzvN5dEdGmFSSRml_P7MMPKiMVLpa1GTvxzOfNzOzMtwjtYSpZLFgFr7jkIZWchyLHMiRMSCxkynFqGoWnX9OjM3p8zs5Ho3Wvamm1FFG9Gewr-R-rwhjY1XTJ_oNl25vCAJyDfeEIFobjnWxczF1Pim2X_Lm6nFxZzmDTTHlteTMXk5Vb2D8oTk4ml3YziElL2_oXx3TesnQuLTD0arO58ZTP3dIP_JzvczuVfoqmUZuoqW6U-tGUbXfjtpK7WruSgG9RB7NqPXep7VnUT0Dg-FYCwq18DeYYIdw0pIg-x6jcGARIYZa7PTiaKdjxGXmokd58Somjavf_zYYuf2jeJ9jkpYvjz8WpAYiXukWk7eXKntQ9tI0hvID5cXv_w_TLabv-xBl2PBb-AVxnp7n8Xe_yP32ZLkDp1QRaN2X2CD30Zgz2HVgeo5FaPEEPeqyTT9F7D5uggU3QwibwsAksbAILm8DBJmhh8wydFR9nh0eh30cjrHFOlyFOKilqjDW45uBNi0xToWVMaJVyrWKZ6ipmOhWC0lRiqWOV1YnWZod4outEkudoa3G1UC9QkBOSVzlRCeMJ5ZRlEE7zjGmsYma-YozeNhopa08yb_Y6uSgh2Gy1Xzr1jdFeK3ztuFWGxXYb1Zb-5ftVgleam-CdkzF6Y9TdfTRwi507yLxE9zt076It0L96BQ7nUrz26PgNT0h79g |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Finding+spectrum+occupancy+pattern+using+CBFPP+mining+technique&rft.jtitle=Journal+of+intelligent+%26+fuzzy+systems&rft.au=Karthik%2C+G.M.&rft.au=Sayeekumar%2C+M.&rft.au=Kumaravel%2C+R.&rft.au=Aravind%2C+T.&rft.date=2020-01-01&rft.pub=SAGE+Publications&rft.issn=1064-1246&rft.eissn=1875-8967&rft.volume=39&rft.issue=3&rft.spage=4361&rft.epage=4368&rft_id=info:doi/10.3233%2FJIFS-200368&rft.externalDocID=10.3233_JIFS-200368 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1064-1246&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1064-1246&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1064-1246&client=summon |