Finding spectrum occupancy pattern using CBFPP mining technique

The main challenge of problem lies in the perception of Cognitive Radio technology is to discover licensed empty spectrum pattern. The efficient model is needed for allocation among licensed and unlicensed users in wireless spectrum to improve the extraction rate and collision rate. To discover the...

Full description

Saved in:
Bibliographic Details
Published inJournal of intelligent & fuzzy systems Vol. 39; no. 3; pp. 4361 - 4368
Main Authors Karthik, G.M., Sayeekumar, M., Kumaravel, R., Aravind, T.
Format Journal Article
LanguageEnglish
Published London, England SAGE Publications 01.01.2020
Sage Publications Ltd
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The main challenge of problem lies in the perception of Cognitive Radio technology is to discover licensed empty spectrum pattern. The efficient model is needed for allocation among licensed and unlicensed users in wireless spectrum to improve the extraction rate and collision rate. To discover the spectrum hole in spectrum paging bands, stirred by FP mining technique proposed an efficient enumeration approach, namely Constraint Based Frequent Periodic Pattern Mining (CBFPP). The proposed algorithm uses TRIE-like data structure with data mining constraints. CBFPP algorithm predicts periodic spectrum occupancy holes in the paging bands. It is shown that CBFPP has a high prediction accuracy with reasonable time complexity. Experiment with synthetic and real data validate higher prediction accuracy and with reasonable time complexities. The unlicensed user utilizes the predicted spectrum pattern in spectrum usage of channel without significant interference to licensed users.
AbstractList The main challenge of problem lies in the perception of Cognitive Radio technology is to discover licensed empty spectrum pattern. The efficient model is needed for allocation among licensed and unlicensed users in wireless spectrum to improve the extraction rate and collision rate. To discover the spectrum hole in spectrum paging bands, stirred by FP mining technique proposed an efficient enumeration approach, namely Constraint Based Frequent Periodic Pattern Mining (CBFPP). The proposed algorithm uses TRIE-like data structure with data mining constraints. CBFPP algorithm predicts periodic spectrum occupancy holes in the paging bands. It is shown that CBFPP has a high prediction accuracy with reasonable time complexity. Experiment with synthetic and real data validate higher prediction accuracy and with reasonable time complexities. The unlicensed user utilizes the predicted spectrum pattern in spectrum usage of channel without significant interference to licensed users.
Author Aravind, T.
Kumaravel, R.
Karthik, G.M.
Sayeekumar, M.
Author_xml – sequence: 1
  givenname: G.M.
  surname: Karthik
  fullname: Karthik, G.M.
  organization: Department of Computer Science and Engineering
– sequence: 2
  givenname: M.
  surname: Sayeekumar
  fullname: Sayeekumar, M.
  organization: Department of Computer Science and Engineering
– sequence: 3
  givenname: R.
  surname: Kumaravel
  fullname: Kumaravel, R.
  organization: Department of Computer Science and Engineering
– sequence: 4
  givenname: T.
  surname: Aravind
  fullname: Aravind, T.
  organization: Department of Computer Science and Engineering
BookMark eNp1kF9LwzAUxYNMcJs--QUKvghSzf-2T6LD6mTgQH0OaZrMjC2tSfqwb29LBUH06d4Lv3PP4czAxDVOA3CO4DXBhNw8L8vXFENIeH4EpijPWJoXPJv0O-Q0RZjyEzALYQshyhiGU3BbWldbt0lCq1X03T5plOpa6dQhaWWM2rukCwOwuC_X62Rv3XBErT6c_ez0KTg2chf02fecg_fy4W3xlK5eHpeLu1WqcEFjipGsK4WxYRmDrKhyQytTQ0Ilz4yGNTcSMsOrilJe49pAnStkDGcUEaNQTebgYvzb-qa3DVFsm8673lJgSgvKOM5IT6GRUr4JwWsjlI0y2sZFL-1OICiGnsTQkxh76jVXvzStt3vpD__QlyMd5Eb_ZPgL_QIynncy
CitedBy_id crossref_primary_10_1109_ACCESS_2023_3271864
crossref_primary_10_1016_j_knosys_2024_112713
crossref_primary_10_1002_int_22799
Cites_doi 10.1109/JSAC.2004.839380
10.1109/TMC.2011.128
10.1109/TKDE.2007.1001
10.1145/276304.276307
10.1109/TKDE.2003.1262186
10.1137/1.9781611972740.9
10.1007/978-981-13-8196-6_53
10.1023/A:1009796218281
10.1016/j.asoc.2018.07.041
10.1109/ICCW.2008.34
10.1109/APMC.2007.4554696
10.1109/ICDE.2009.104
10.1109/VTCFall.2018.8690575
10.1109/ISDA.2008.287
10.3923/ajit.2014.670.677
10.1007/s00521-016-2653-5
10.1145/3318265.3318284
10.3844/jcssp.2014.2105.2116
10.1007/s41650-018-0013-6
10.1145/1614235.1614250
10.1186/s13638-017-1019-8
10.1109/SECON.2007.342884
10.1145/1267066.1267068
10.1137/1.9781611972788.28
10.1016/j.comnet.2006.05.001
10.1109/SECON.2010.5453870
10.1007/978-3-540-44497-8_8
10.1109/2.781634
10.1007/978-3-030-11437-4_17
10.1109/TPDS.2013.283
ContentType Journal Article
Copyright 2020 – IOS Press and the authors. All rights reserved
Copyright IOS Press BV 2020
Copyright_xml – notice: 2020 – IOS Press and the authors. All rights reserved
– notice: Copyright IOS Press BV 2020
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.3233/JIFS-200368
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList
CrossRef
Computer and Information Systems Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1875-8967
EndPage 4368
ExternalDocumentID 10_3233_JIFS_200368
10.3233_JIFS-200368
GroupedDBID .4S
.DC
4.4
5GY
8VB
AAGLT
ABCQX
ABDBF
ABJNI
ABUJY
ACGFS
ACPQW
ACUHS
ADMLS
ADZMO
AEMOZ
AENEX
AFRHK
AHDMH
AHQJS
AJNRN
AKVCP
ALMA_UNASSIGNED_HOLDINGS
AMVHM
ARCSS
ARTOV
ASPBG
AVWKF
DU5
EAD
EAP
EBA
EBR
EBS
EBU
EDO
EMK
EPL
EST
ESX
H13
HZ~
I-F
IOS
K1G
L7B
MET
MIO
MK~
MV1
NGNOM
O9-
P2P
QWB
TH9
TUS
ZL0
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c294t-21adbc22f575059b8f4bfd034a67fe0d6fa05f6bb446d2df0e8c1ff65413fc1d3
ISSN 1064-1246
IngestDate Fri Jul 25 10:04:09 EDT 2025
Thu Apr 24 22:53:52 EDT 2025
Tue Jul 01 05:15:01 EDT 2025
Sun Jul 13 06:01:35 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords frequent pattern
spectrum occupancy prediction
Cognitive radio
data mining
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c294t-21adbc22f575059b8f4bfd034a67fe0d6fa05f6bb446d2df0e8c1ff65413fc1d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2449456273
PQPubID 2046407
PageCount 8
ParticipantIDs proquest_journals_2449456273
crossref_citationtrail_10_3233_JIFS_200368
crossref_primary_10_3233_JIFS_200368
sage_journals_10_3233_JIFS_200368
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-01-01
PublicationDateYYYYMMDD 2020-01-01
PublicationDate_xml – month: 01
  year: 2020
  text: 2020-01-01
  day: 01
PublicationDecade 2020
PublicationPlace London, England
PublicationPlace_xml – name: London, England
– name: London
PublicationTitle Journal of intelligent & fuzzy systems
PublicationYear 2020
Publisher SAGE Publications
Sage Publications Ltd
Publisher_xml – name: SAGE Publications
– name: Sage Publications Ltd
References 2018; 29
2007; 19
2018; 3
2006; 50
2004; 16
1997; 01
2014; 25
2014; 13
1999; 32
2018; 71
2007; 01
2012; 11
2005; 23
2014; 10
e_1_3_1_21_2
e_1_3_1_22_2
e_1_3_1_23_2
e_1_3_1_24_2
e_1_3_1_8_2
e_1_3_1_7_2
e_1_3_1_9_2
e_1_3_1_20_2
e_1_3_1_4_2
e_1_3_1_29_2
e_1_3_1_3_2
e_1_3_1_6_2
e_1_3_1_5_2
e_1_3_1_25_2
e_1_3_1_26_2
e_1_3_1_2_2
e_1_3_1_27_2
e_1_3_1_28_2
e_1_3_1_32_2
e_1_3_1_33_2
e_1_3_1_34_2
e_1_3_1_35_2
e_1_3_1_13_2
e_1_3_1_12_2
e_1_3_1_11_2
e_1_3_1_30_2
e_1_3_1_10_2
e_1_3_1_31_2
e_1_3_1_17_2
e_1_3_1_16_2
e_1_3_1_15_2
e_1_3_1_14_2
e_1_3_1_36_2
e_1_3_1_37_2
e_1_3_1_19_2
e_1_3_1_38_2
e_1_3_1_18_2
e_1_3_1_39_2
References_xml – volume: 01
  start-page: 7:1
  issue: 02
  year: 2007
  end-page: 7:39
  article-title: Mining Periodic Patterns with Gap Requirement from Sequences
  publication-title: ACM Transactions on Knowledge Discovery from Data (TKDD)
– volume: 50
  start-page: 2127
  issue: 13
  year: 2006
  end-page: 2159
  article-title: Next Generation/Dynamic Spectrum Access/Cognitive Radio Wireless Networks: A Survey
  publication-title: The International Journal of Computer and Telecommunications Networking
– volume: 71
  start-page: 926
  year: 2018
  end-page: 938
  article-title: Analysis of differencing and decomposition preprocessing methods for wind speed prediction
  publication-title: Appl Soft Comput
– volume: 3
  issue: 2
  year: 2018
  article-title: Spectrum Occupancy Prediction for Realistic Traffic Scenarios: Time Series versus Learning-Based Models
  publication-title: Journal of Communications and Information Networks
– volume: 13
  start-page: 670
  issue: 10
  year: 2014
  end-page: 677
  article-title: Parallel frequent correlated pattern mining using time series data
  publication-title: Asian Journal of Information Technology
– volume: 23
  start-page: 201
  issue: 02
  year: 2005
  end-page: 220
  article-title: Cognitive Radio: Brain-Empowered Wireless Communications
  publication-title: IEEE Journal on Selected Areas in Communications
– volume: 32
  start-page: 46
  issue: 08
  year: 1999
  end-page: 50
  article-title: Constraint-Based Multidimensional Data Mining
  publication-title: IEEE Computer Society Press Los Alamitos, CA, USA
– volume: 01
  start-page: 241
  issue: 03
  year: 1997
  end-page: 258
  article-title: Levelwise search and borders of theories in knowledge discovery
  publication-title: Data Mining and Knowledge Discover
– volume: 29
  start-page: 1363
  issue: 12
  year: 2018
  end-page: 1376
  article-title: Spectrum occupancy prediction based on functional link artificial neural network (FLANN) in ISM band
  publication-title: Neural Computing and Applications
– volume: 25
  start-page: 1925
  issue: 07
  year: 2014
  end-page: 1934
  article-title: Wireless Spectrum Occupancy Prediction Based on Partial Periodic Pattern Mining
  publication-title: IEEE Transactions on Parallel and Distributed Systems
– volume: 16
  start-page: 332
  issue: 03
  year: 2004
  end-page: 342
  article-title: Incremental, Online, Merge Mining of Partial Periodic Patterns in Time-Series Databases
  publication-title: IEEE Transactions on Knowledge and Data Engineering
– volume: 19
  start-page: 509
  issue: 04
  year: 2007
  end-page: 522
  article-title: An Exact Data Mining Method for Finding Center Strings and All Their Instances
  publication-title: IEEE Transactions on Knowledge and Data Engineering
– volume: 10
  start-page: 2105
  issue: 10
  year: 2014
  end-page: 2116
  article-title: Frequent Correlated Periodic Pattern Mining for Large volume set using Time series data
  publication-title: Journal of Computer Science
– volume: 11
  start-page: 1033
  issue: 06
  year: 2012
  end-page: 1046
  article-title: Mining Usage Data: A Large-Scale Spectrum Measurement Study
  publication-title: IEEE Transactions on Mobile Computing
– ident: e_1_3_1_32_2
  doi: 10.1109/JSAC.2004.839380
– ident: e_1_3_1_9_2
– ident: e_1_3_1_34_2
– ident: e_1_3_1_35_2
  doi: 10.1109/TMC.2011.128
– ident: e_1_3_1_37_2
– ident: e_1_3_1_3_2
– ident: e_1_3_1_29_2
  doi: 10.1109/TKDE.2007.1001
– ident: e_1_3_1_30_2
  doi: 10.1145/276304.276307
– ident: e_1_3_1_36_2
  doi: 10.1109/TKDE.2003.1262186
– ident: e_1_3_1_25_2
  doi: 10.1137/1.9781611972740.9
– ident: e_1_3_1_19_2
  doi: 10.1007/978-981-13-8196-6_53
– ident: e_1_3_1_13_2
  doi: 10.1023/A:1009796218281
– ident: e_1_3_1_23_2
– ident: e_1_3_1_26_2
  doi: 10.1016/j.asoc.2018.07.041
– ident: e_1_3_1_39_2
  doi: 10.1109/ICCW.2008.34
– ident: e_1_3_1_6_2
  doi: 10.1109/APMC.2007.4554696
– ident: e_1_3_1_4_2
  doi: 10.1109/ICDE.2009.104
– ident: e_1_3_1_27_2
  doi: 10.1109/VTCFall.2018.8690575
– ident: e_1_3_1_7_2
  doi: 10.1109/ISDA.2008.287
– ident: e_1_3_1_12_2
  doi: 10.3923/ajit.2014.670.677
– ident: e_1_3_1_10_2
  doi: 10.1007/s00521-016-2653-5
– ident: e_1_3_1_8_2
– ident: e_1_3_1_21_2
  doi: 10.1145/3318265.3318284
– ident: e_1_3_1_11_2
  doi: 10.3844/jcssp.2014.2105.2116
– ident: e_1_3_1_2_2
  doi: 10.1007/s41650-018-0013-6
– ident: e_1_3_1_17_2
– ident: e_1_3_1_18_2
  doi: 10.1145/1614235.1614250
– ident: e_1_3_1_22_2
– ident: e_1_3_1_14_2
  doi: 10.1186/s13638-017-1019-8
– ident: e_1_3_1_15_2
  doi: 10.1109/SECON.2007.342884
– ident: e_1_3_1_24_2
  doi: 10.1145/1267066.1267068
– ident: e_1_3_1_5_2
  doi: 10.1137/1.9781611972788.28
– ident: e_1_3_1_16_2
  doi: 10.1016/j.comnet.2006.05.001
– ident: e_1_3_1_38_2
  doi: 10.1109/SECON.2010.5453870
– ident: e_1_3_1_33_2
  doi: 10.1007/978-3-540-44497-8_8
– ident: e_1_3_1_20_2
  doi: 10.1109/2.781634
– ident: e_1_3_1_31_2
  doi: 10.1007/978-3-030-11437-4_17
– ident: e_1_3_1_28_2
  doi: 10.1109/TPDS.2013.283
SSID ssj0017520
Score 2.2032762
Snippet The main challenge of problem lies in the perception of Cognitive Radio technology is to discover licensed empty spectrum pattern. The efficient model is...
SourceID proquest
crossref
sage
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 4361
SubjectTerms Algorithms
Cognitive radio
Collision rates
Data mining
Data structures
Enumeration
Licenses
Occupancy
Paging
Pattern analysis
Title Finding spectrum occupancy pattern using CBFPP mining technique
URI https://journals.sagepub.com/doi/full/10.3233/JIFS-200368
https://www.proquest.com/docview/2449456273
Volume 39
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6F9gIHxFOkFGSknohs7H147RNqC6ZUBFU0lXqzvN5dEdGmFSSRml_P7MMPKiMVLpa1GTvxzOfNzOzMtwjtYSpZLFgFr7jkIZWchyLHMiRMSCxkynFqGoWnX9OjM3p8zs5Ho3Wvamm1FFG9Gewr-R-rwhjY1XTJ_oNl25vCAJyDfeEIFobjnWxczF1Pim2X_Lm6nFxZzmDTTHlteTMXk5Vb2D8oTk4ml3YziElL2_oXx3TesnQuLTD0arO58ZTP3dIP_JzvczuVfoqmUZuoqW6U-tGUbXfjtpK7WruSgG9RB7NqPXep7VnUT0Dg-FYCwq18DeYYIdw0pIg-x6jcGARIYZa7PTiaKdjxGXmokd58Somjavf_zYYuf2jeJ9jkpYvjz8WpAYiXukWk7eXKntQ9tI0hvID5cXv_w_TLabv-xBl2PBb-AVxnp7n8Xe_yP32ZLkDp1QRaN2X2CD30Zgz2HVgeo5FaPEEPeqyTT9F7D5uggU3QwibwsAksbAILm8DBJmhh8wydFR9nh0eh30cjrHFOlyFOKilqjDW45uBNi0xToWVMaJVyrWKZ6ipmOhWC0lRiqWOV1YnWZod4outEkudoa3G1UC9QkBOSVzlRCeMJ5ZRlEE7zjGmsYma-YozeNhopa08yb_Y6uSgh2Gy1Xzr1jdFeK3ztuFWGxXYb1Zb-5ftVgleam-CdkzF6Y9TdfTRwi507yLxE9zt076It0L96BQ7nUrz26PgNT0h79g
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Finding+spectrum+occupancy+pattern+using+CBFPP+mining+technique&rft.jtitle=Journal+of+intelligent+%26+fuzzy+systems&rft.au=Karthik%2C+G.M.&rft.au=Sayeekumar%2C+M.&rft.au=Kumaravel%2C+R.&rft.au=Aravind%2C+T.&rft.date=2020-01-01&rft.pub=SAGE+Publications&rft.issn=1064-1246&rft.eissn=1875-8967&rft.volume=39&rft.issue=3&rft.spage=4361&rft.epage=4368&rft_id=info:doi/10.3233%2FJIFS-200368&rft.externalDocID=10.3233_JIFS-200368
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1064-1246&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1064-1246&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1064-1246&client=summon