A Lightweight Neural Network-Based Method for Identifying Early-Blight and Late-Blight Leaves of Potato
Crop pests and diseases are one of the most critical disasters that limit agricultural production. In this paper, we trained a lightweight convolutional neural network model and built a Django framework-based potato disease leaf recognition system, which can recognize three types of potato leaf imag...
Saved in:
Published in | Applied sciences Vol. 13; no. 3; p. 1487 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.01.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Crop pests and diseases are one of the most critical disasters that limit agricultural production. In this paper, we trained a lightweight convolutional neural network model and built a Django framework-based potato disease leaf recognition system, which can recognize three types of potato leaf images including early blight, late blight, and healthy. A lightweight, neural network-based model for the identification of early potato leaf diseases significantly reduces the number of model parameters, whereas the accuracy of Top-1 identification is over 93%. We imported the trained model into the Django framework to build a website for a potato early leaf disease identification system, thus providing technical support for the implementation of a mobile-based potato leaf disease identification and early warning system. |
---|---|
AbstractList | Crop pests and diseases are one of the most critical disasters that limit agricultural production. In this paper, we trained a lightweight convolutional neural network model and built a Django framework-based potato disease leaf recognition system, which can recognize three types of potato leaf images including early blight, late blight, and healthy. A lightweight, neural network-based model for the identification of early potato leaf diseases significantly reduces the number of model parameters, whereas the accuracy of Top-1 identification is over 93%. We imported the trained model into the Django framework to build a website for a potato early leaf disease identification system, thus providing technical support for the implementation of a mobile-based potato leaf disease identification and early warning system. |
Author | Li, Jia Wang, Fuxiang Wang, Chunguang Kang, Feilong |
Author_xml | – sequence: 1 givenname: Feilong surname: Kang fullname: Kang, Feilong – sequence: 2 givenname: Jia surname: Li fullname: Li, Jia – sequence: 3 givenname: Chunguang surname: Wang fullname: Wang, Chunguang – sequence: 4 givenname: Fuxiang surname: Wang fullname: Wang, Fuxiang |
BookMark | eNptUU1P3DAQtSqQSoFT_4ClHlGoP-P4CAjoSgF6aM_WJB4v3qbx1vGC9t8T2LZCiDnMl957M5r5RPbGNCIhnzk7ldKyr7Bec8kkV435QA4EM3UlFTd7r_KP5HiaVmw2y2XD2QFZntE2Lu_LIz57eoubDMMcymPKv6pzmNDTGyz3ydOQMl14HEsM2zgu6SXkYVudDy9EGD1toeC_ukV4wImmQL-nAiUdkf0Aw4THf-Mh-Xl1-ePiW9XeXS8uztqqF1aVSjBoTMeD9jUIjcrz2gejvO5sI7QWhgtTSx462zfArYaAXVczpcHUc4bykCx2uj7Byq1z_A156xJE99JIeekgl9gP6FgPxmsEFjpQQUgrNXirELQKVtfdrPVlp7XO6c8Gp-JWaZPHeX0njLGWMWHsjDrZofqcpilj-D-VM_f8GPfqMTOav0H3cb5PTGPJEId3OU8yPpIw |
CitedBy_id | crossref_primary_10_3390_agriculture13040841 crossref_primary_10_1007_s11540_024_09763_8 crossref_primary_10_3390_agronomy13051184 crossref_primary_10_1007_s11540_024_09773_6 crossref_primary_10_1016_j_engappai_2024_108307 crossref_primary_10_1007_s11540_024_09787_0 crossref_primary_10_3390_app13085023 crossref_primary_10_36548_jiip_2023_1_003 crossref_primary_10_1007_s11042_023_17610_0 crossref_primary_10_3389_fpls_2024_1485903 crossref_primary_10_1109_ACCESS_2024_3510456 crossref_primary_10_1080_03772063_2025_2467761 crossref_primary_10_3390_make6040114 crossref_primary_10_3390_jimaging10020047 crossref_primary_10_3390_foods13233870 |
Cites_doi | 10.1007/s10489-019-01468-7 10.1038/srep27790 10.1007/978-981-15-1002-1_58 10.1016/j.compag.2019.105146 10.1109/ICCV.2019.00140 10.24963/ijcai.2020/694 10.1109/CVPR.2017.243 10.1016/j.compag.2019.105117 10.1145/2911996.2912035 10.1109/ICCV48922.2021.00951 10.1007/s11042-022-12620-w 10.1109/TIP.2018.2821921 10.1080/08839514.2017.1315516 10.1109/TPAMI.2022.3166956 10.3389/fpls.2017.01348 10.1155/2016/3289801 10.1016/j.compag.2018.01.009 10.1609/aaai.v35i3.16347 10.1007/978-3-031-20050-2_22 10.3389/fpls.2016.01419 10.1016/j.compag.2018.03.032 10.3389/fpls.2017.01852 10.1002/fsn3.2415 10.1145/3505244 10.1109/CVPR.2018.00474 10.1109/TGRS.2018.2868851 10.1145/3380688.3380697 10.1371/journal.pone.0123262 |
ContentType | Journal Article |
Copyright | 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION ABUWG AFKRA AZQEC BENPR CCPQU DWQXO PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS DOA |
DOI | 10.3390/app13031487 |
DatabaseName | CrossRef ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central (NC Live) ProQuest One Community College ProQuest Central ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Sciences (General) Agriculture |
EISSN | 2076-3417 |
ExternalDocumentID | oai_doaj_org_article_0ca7d5ea0fba4f23935ad94ea54f956b 10_3390_app13031487 |
GroupedDBID | .4S 2XV 5VS 7XC 8CJ 8FE 8FG 8FH AADQD AAFWJ AAYXX ADBBV ADMLS AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS APEBS ARCSS BCNDV BENPR CCPQU CITATION CZ9 D1I D1J D1K GROUPED_DOAJ IAO IGS ITC K6- K6V KC. KQ8 L6V LK5 LK8 M7R MODMG M~E OK1 P62 PHGZM PHGZT PIMPY PROAC TUS ABUWG AZQEC DWQXO PKEHL PQEST PQQKQ PQUKI PRINS PUEGO |
ID | FETCH-LOGICAL-c294t-20a87b1f5d6a25e4d16df74d5b9825527127631fb9c8a195afebb6045a76ebbe3 |
IEDL.DBID | DOA |
ISSN | 2076-3417 |
IngestDate | Wed Aug 27 01:32:03 EDT 2025 Mon Jun 30 11:06:52 EDT 2025 Tue Jul 01 04:32:48 EDT 2025 Thu Apr 24 23:00:54 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c294t-20a87b1f5d6a25e4d16df74d5b9825527127631fb9c8a195afebb6045a76ebbe3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://doaj.org/article/0ca7d5ea0fba4f23935ad94ea54f956b |
PQID | 2779900279 |
PQPubID | 2032433 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_0ca7d5ea0fba4f23935ad94ea54f956b proquest_journals_2779900279 crossref_primary_10_3390_app13031487 crossref_citationtrail_10_3390_app13031487 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20230101 |
PublicationDateYYYYMMDD | 2023-01-01 |
PublicationDate_xml | – month: 01 year: 2023 text: 20230101 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Applied sciences |
PublicationYear | 2023 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Ferentinos (ref_16) 2018; 145 Elsken (ref_34) 2019; 20 Mohanty (ref_20) 2016; 7 Xiaoli (ref_5) 2016; 6 ref_13 ref_35 ref_12 ref_11 ref_33 ref_10 ref_32 ref_31 ref_30 ref_19 Amanda (ref_21) 2017; 8 Yuan (ref_18) 2019; 49 Too (ref_15) 2019; 161 Wang (ref_1) 2021; 9 Khan (ref_28) 2022; 54 Pandey (ref_6) 2017; 8 Chen (ref_3) 2022; 81 Deng (ref_2) 2018; 57 ref_25 ref_24 Sladojevic (ref_22) 2016; 2016 Brahimi (ref_23) 2017; 31 ref_27 ref_26 Deng (ref_29) 2018; 27 ref_8 Nazki (ref_9) 2020; 168 ref_4 Yang (ref_14) 2022; 45 Zhong (ref_17) 2020; 168 ref_7 |
References_xml | – volume: 49 start-page: 3570 year: 2019 ident: ref_18 article-title: An effective image classification method for shallow densely connected convolution networks through squeezing and splitting techniques publication-title: Appl. Intell. doi: 10.1007/s10489-019-01468-7 – volume: 6 start-page: 27790 year: 2016 ident: ref_5 article-title: Hyperspectral imaging for determining pigment contents in cucumber leaves in response to angular leaf spot disease publication-title: Sci. Rep. doi: 10.1038/srep27790 – ident: ref_7 doi: 10.1007/978-981-15-1002-1_58 – volume: 168 start-page: 105146 year: 2020 ident: ref_17 article-title: Research on deep learning in apple leaf disease recognition publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2019.105146 – ident: ref_24 – ident: ref_26 doi: 10.1109/ICCV.2019.00140 – ident: ref_11 – ident: ref_31 doi: 10.24963/ijcai.2020/694 – ident: ref_13 doi: 10.1109/CVPR.2017.243 – volume: 168 start-page: 105117 year: 2020 ident: ref_9 article-title: Unsupervised image translation using adversarial networks for improved plant disease recognition publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2019.105117 – ident: ref_30 doi: 10.1145/2911996.2912035 – ident: ref_32 doi: 10.1109/ICCV48922.2021.00951 – volume: 81 start-page: 20797 year: 2022 ident: ref_3 article-title: Mobile convolution neural network for the recognition of potato leaf disease images publication-title: Multimed. Tools Appl. doi: 10.1007/s11042-022-12620-w – volume: 27 start-page: 3893 year: 2018 ident: ref_29 article-title: Triplet-based deep hashing network for cross-modal retrieval publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2018.2821921 – ident: ref_35 – volume: 31 start-page: 299 year: 2017 ident: ref_23 article-title: Deep Learning for Tomato Diseases: Classification and Symptoms Visualization publication-title: Appl. Artif. Intell. doi: 10.1080/08839514.2017.1315516 – volume: 45 start-page: 2384 year: 2022 ident: ref_14 article-title: Scrdet++: Detecting small, cluttered and rotated objects via instance-level feature denoising and rotation loss smoothing publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2022.3166956 – volume: 8 start-page: 1348 year: 2017 ident: ref_6 article-title: High throughput in vivo analysis of plant leaf chemical properties using hyperspectral imaging publication-title: Front. Plant Sci. doi: 10.3389/fpls.2017.01348 – volume: 2016 start-page: 3289801 year: 2016 ident: ref_22 article-title: Deep neural networks based recognition of plant diseases by leaf image classification publication-title: Comput. Intell. Neurosci. doi: 10.1155/2016/3289801 – volume: 145 start-page: 311 year: 2018 ident: ref_16 article-title: Deep learning models for plant disease detection and diagnosis publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2018.01.009 – ident: ref_10 doi: 10.1609/aaai.v35i3.16347 – volume: 20 start-page: 1997 year: 2019 ident: ref_34 article-title: Neural architecture search: A survey publication-title: J. Mach. Learn. Res. – ident: ref_33 doi: 10.1007/978-3-031-20050-2_22 – volume: 7 start-page: 1419 year: 2016 ident: ref_20 article-title: Using deep learning for image-based plant disease detection publication-title: Front. Plant Sci. doi: 10.3389/fpls.2016.01419 – ident: ref_27 – ident: ref_12 – volume: 161 start-page: 272 year: 2019 ident: ref_15 article-title: A comparative study of fine-tuning deep learning models for plant disease identification publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2018.03.032 – volume: 8 start-page: 1852 year: 2017 ident: ref_21 article-title: Deep learning for image-based cassava disease detection publication-title: Front. Plant Sci. doi: 10.3389/fpls.2017.01852 – volume: 9 start-page: 4420 year: 2021 ident: ref_1 article-title: Study on starch content detection and visualization of potato based on hyperspectral imaging publication-title: Food Sci. Nutr. doi: 10.1002/fsn3.2415 – volume: 54 start-page: 1 year: 2022 ident: ref_28 article-title: Transformers in vision: A survey publication-title: ACM Comput. Surv. (CSUR) doi: 10.1145/3505244 – ident: ref_19 – ident: ref_25 doi: 10.1109/CVPR.2018.00474 – volume: 57 start-page: 1741 year: 2018 ident: ref_2 article-title: Active transfer learning network: A unified deep joint spectral–spatial feature learning model for hyperspectral image classification publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2018.2868851 – ident: ref_8 doi: 10.1145/3380688.3380697 – ident: ref_4 doi: 10.1371/journal.pone.0123262 |
SSID | ssj0000913810 |
Score | 2.3508415 |
Snippet | Crop pests and diseases are one of the most critical disasters that limit agricultural production. In this paper, we trained a lightweight convolutional neural... |
SourceID | doaj proquest crossref |
SourceType | Open Website Aggregation Database Enrichment Source Index Database |
StartPage | 1487 |
SubjectTerms | Agricultural production Agriculture Artificial intelligence Classification convolutional neural networks Crop diseases Crops Deep learning Django framework machine learning Neural networks Pesticides potato disease leaf |
SummonAdditionalLinks | – databaseName: ProQuest Central (NC Live) dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Rb9MwED5B9wIPiA0QZWPywx4AKSJx7Dh5mlq0aZq6akJM2lt0ju2-TM3WFvj73DluGQLxFidOIuXi8_edfd8BnLDUqc-DzlxQlghKhRk6W2ZdKBwngpYFcqLw1by6uFGXt_o2BdzWaVvl1idGR-36jmPkn6Ux5DiJRDWn9w8ZV43i1dVUQuMp7JELrusR7E3P5tdfd1EWVr2si3xIzCuJ3_O6MLttYgHmj6koKvb_5ZDjLHP-El4keCgmgz334YlfHsDzyWKVJDI8tR5JCB7Afhqca_EhKUh_fAWLiZgx6f4Z456CBTjoofNhx3c2pYnLiatYOloQZhVDsm5MeBJR8Dib3sUbcenEjMDotj3z-IPe1Adx3RNI7V_DzfnZty8XWaqokHWyURsaElgbWwTtKpTaK1dULhjltG2IKWppCkn-pgi26WosGo3BW1sR6kNT0ZEv38Bo2S_9WxCBoZ40uc-tVl0nrS2R0JkzAWVAL8fwaftx2y7JjXPVi7uWaAdbon1kiTGc7DrfDyob_-42ZSvturA0djzRrxZtGmlt3qFx2mMeLKoQFd7QNcqjVoHIoB3D0dbGbRqv6_b33_Xu_5cP4RkXnB-CMEcw2qy--_cESzb2OP17vwDW6uNq priority: 102 providerName: ProQuest |
Title | A Lightweight Neural Network-Based Method for Identifying Early-Blight and Late-Blight Leaves of Potato |
URI | https://www.proquest.com/docview/2779900279 https://doaj.org/article/0ca7d5ea0fba4f23935ad94ea54f956b |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fS8MwED788aIPolNxOkce9qBCsU2TZn3cZFNkDhGFvZVLk_gim-jUf99L2slEwRff2pI24XK5-y7NfQfQ8VSnNnYyMk5oClAyjNDoNCpdYnwiaJqgTxS-GWdXD-J6IidLpb78mbCKHrgS3HlcojLSYuw0ChcIu9DkwqIUjrC99taXfN5SMBVscJ546qoqIS-luN7_D_bmmtC_-uaCAlP_D0McvMtwG7ZqWMh61XB2YMVOG7C5RBbYgJ16Gb6yk5or-nQXHnts5MPrj7DDyTzVBn1mXJ3tjvrkogy7CUWiGaFTVqXlhtQmFqiNo_5TeBGnho0Idi7uRxbfqaeZY7czgqOzPXgYDu4vrqK6dkJU8lzMSfmxq3TipMmQSytMkhmnhJE6p5hQcpVwsiyJ03nZxSSX6KzWGeE7VBld2XQf1qazqT0A5jyo4yq2sZaiLLnWKRIOM8ohd2h5E84W4izKmljc17d4KijA8LIvlmTfhM5X4-eKT-P3Zn0_L19NPAl2eECqUdSqUfylGk1oLWa1qFfma8GVIgdMwXh--B99HMGGL0Bfbcq0YG3-8maPCabMdRtWu8PLNqz3B-Pbu3bQz09aTel_ |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Pb9MwFH8a4wAcJjZA6zbAhyEBUkTi2HFzmKYWKB1LKw6btFuwY7uXqRltx8SX4jPynpOUIRC33eLYcSS_5_fPfr8HcEhQpy72MrJeGHRQMh1pa9Ko8omlRNA00ZQoPJlm43Px-UJebMDPLheGrlV2MjEIaltXFCN_x5VCwYlOVH589S2iqlF0utqV0GjY4tT9uEGXbXl08gHp-4rz0cez9-OorSoQVTwXK2QL3Vcm8dJmmksnbJJZr4SVJkdvSXKVcNxziTd51ddJLrV3xmRo-WiV4ZNLcd57cF-kqMkpM330aR3TIYzNfhI3aYDYH9MpNCkJ9DnUH4ov1Af4S_wHnTZ6DFutMcoGDfdsw4ab78CjwWzRAnI4bN0CLNyB7VYULNnrFq_6zROYDVhBLv5NiLIygvvASafN_fJoiGrSskkoVM3QQmZNanBIr2IBXjkaXoYP9dyyAk3frl04_R3_VHv2pUaTuH4K53ey0s9gc17P3S4wT4YlV7GLjRRVxY1JNdqCVnnNvXa8B2-7xS2rFtycamxclujkECXKW5ToweF68FWD6fHvYUOi0noIAXGHF_ViVrb7uowrrax0OvZGCx_w5LTNhdNSeHQ9TQ8OOhqXrXRYlr95ee__3S_hwfhsUpTFyfR0Hx5Sqfsm_HMAm6vFtXuOBtHKvAhcyODrXbP9L6EgHyk |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Rb9MwED6NTkLwMG0DtLIN_DAkQIqWOHHcPExTy1ZtrKsqxKS9BTu2-zI1oy1M_DV-HXeOU4ZAvO0tTpxE8p3v7rN93wEcENWpjZ2IjMs0ApRcRcroNKpcYigRNE0UJQpfjvOzq-zjtbheg59tLgwdq2xtojfUpq5ojfyQS4mGE0FUcejCsYjJyfD49mtEFaRop7Utp9GoyIX9cYfwbXF0foKyfsP58PTzh7MoVBiIKl5kS1QR1ZM6ccLkigubmSQ3TmZG6AKRk-Ay4Tj_EqeLqqeSQihntc4xClIyxyub4ncfwbokVNSB9cHpePJptcJDjJu9JG6SAtO0iGlPmlwGIhD5hxv01QL-cgbeww03YSOEpqzf6NIWrNnZNjztT-eBnsNi6x594TZsBcOwYG8De_W7ZzDtsxEB_ju_5sqI_AM_Om5Om0cDdJqGXfqy1QzjZdYkCvtkK-bJlqPBjX9RzQwbYSDctkdWfcc_1Y5NagyQ6-dw9SBj_QI6s3pmd4A5CjO5jG2sRVZVXOtUYWRopFPcKcu78L4d3LIKVOdUceOmRMhDkijvSaILB6vOtw3Dx7-7DUhKqy5Ey-1v1PNpGWZ5GVdKGmFV7LTKnGeXU6bIrBKZQyCqu7DXyrgMtmJR_tbsl_9__Boeo8qXo_PxxS48obr3zVrQHnSW8292H6OjpX4V1JDBl4fW_F-a3yS7 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Lightweight+Neural+Network-Based+Method+for+Identifying+Early-Blight+and+Late-Blight+Leaves+of+Potato&rft.jtitle=Applied+sciences&rft.au=Kang%2C+Feilong&rft.au=Li%2C+Jia&rft.au=Wang%2C+Chunguang&rft.au=Wang%2C+Fuxiang&rft.date=2023-01-01&rft.issn=2076-3417&rft.eissn=2076-3417&rft.volume=13&rft.issue=3&rft.spage=1487&rft_id=info:doi/10.3390%2Fapp13031487&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_app13031487 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3417&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3417&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3417&client=summon |