A Lightweight Neural Network-Based Method for Identifying Early-Blight and Late-Blight Leaves of Potato

Crop pests and diseases are one of the most critical disasters that limit agricultural production. In this paper, we trained a lightweight convolutional neural network model and built a Django framework-based potato disease leaf recognition system, which can recognize three types of potato leaf imag...

Full description

Saved in:
Bibliographic Details
Published inApplied sciences Vol. 13; no. 3; p. 1487
Main Authors Kang, Feilong, Li, Jia, Wang, Chunguang, Wang, Fuxiang
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.01.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Crop pests and diseases are one of the most critical disasters that limit agricultural production. In this paper, we trained a lightweight convolutional neural network model and built a Django framework-based potato disease leaf recognition system, which can recognize three types of potato leaf images including early blight, late blight, and healthy. A lightweight, neural network-based model for the identification of early potato leaf diseases significantly reduces the number of model parameters, whereas the accuracy of Top-1 identification is over 93%. We imported the trained model into the Django framework to build a website for a potato early leaf disease identification system, thus providing technical support for the implementation of a mobile-based potato leaf disease identification and early warning system.
AbstractList Crop pests and diseases are one of the most critical disasters that limit agricultural production. In this paper, we trained a lightweight convolutional neural network model and built a Django framework-based potato disease leaf recognition system, which can recognize three types of potato leaf images including early blight, late blight, and healthy. A lightweight, neural network-based model for the identification of early potato leaf diseases significantly reduces the number of model parameters, whereas the accuracy of Top-1 identification is over 93%. We imported the trained model into the Django framework to build a website for a potato early leaf disease identification system, thus providing technical support for the implementation of a mobile-based potato leaf disease identification and early warning system.
Author Li, Jia
Wang, Fuxiang
Wang, Chunguang
Kang, Feilong
Author_xml – sequence: 1
  givenname: Feilong
  surname: Kang
  fullname: Kang, Feilong
– sequence: 2
  givenname: Jia
  surname: Li
  fullname: Li, Jia
– sequence: 3
  givenname: Chunguang
  surname: Wang
  fullname: Wang, Chunguang
– sequence: 4
  givenname: Fuxiang
  surname: Wang
  fullname: Wang, Fuxiang
BookMark eNptUU1P3DAQtSqQSoFT_4ClHlGoP-P4CAjoSgF6aM_WJB4v3qbx1vGC9t8T2LZCiDnMl957M5r5RPbGNCIhnzk7ldKyr7Bec8kkV435QA4EM3UlFTd7r_KP5HiaVmw2y2XD2QFZntE2Lu_LIz57eoubDMMcymPKv6pzmNDTGyz3ydOQMl14HEsM2zgu6SXkYVudDy9EGD1toeC_ukV4wImmQL-nAiUdkf0Aw4THf-Mh-Xl1-ePiW9XeXS8uztqqF1aVSjBoTMeD9jUIjcrz2gejvO5sI7QWhgtTSx462zfArYaAXVczpcHUc4bykCx2uj7Byq1z_A156xJE99JIeekgl9gP6FgPxmsEFjpQQUgrNXirELQKVtfdrPVlp7XO6c8Gp-JWaZPHeX0njLGWMWHsjDrZofqcpilj-D-VM_f8GPfqMTOav0H3cb5PTGPJEId3OU8yPpIw
CitedBy_id crossref_primary_10_3390_agriculture13040841
crossref_primary_10_1007_s11540_024_09763_8
crossref_primary_10_3390_agronomy13051184
crossref_primary_10_1007_s11540_024_09773_6
crossref_primary_10_1016_j_engappai_2024_108307
crossref_primary_10_1007_s11540_024_09787_0
crossref_primary_10_3390_app13085023
crossref_primary_10_36548_jiip_2023_1_003
crossref_primary_10_1007_s11042_023_17610_0
crossref_primary_10_3389_fpls_2024_1485903
crossref_primary_10_1109_ACCESS_2024_3510456
crossref_primary_10_1080_03772063_2025_2467761
crossref_primary_10_3390_make6040114
crossref_primary_10_3390_jimaging10020047
crossref_primary_10_3390_foods13233870
Cites_doi 10.1007/s10489-019-01468-7
10.1038/srep27790
10.1007/978-981-15-1002-1_58
10.1016/j.compag.2019.105146
10.1109/ICCV.2019.00140
10.24963/ijcai.2020/694
10.1109/CVPR.2017.243
10.1016/j.compag.2019.105117
10.1145/2911996.2912035
10.1109/ICCV48922.2021.00951
10.1007/s11042-022-12620-w
10.1109/TIP.2018.2821921
10.1080/08839514.2017.1315516
10.1109/TPAMI.2022.3166956
10.3389/fpls.2017.01348
10.1155/2016/3289801
10.1016/j.compag.2018.01.009
10.1609/aaai.v35i3.16347
10.1007/978-3-031-20050-2_22
10.3389/fpls.2016.01419
10.1016/j.compag.2018.03.032
10.3389/fpls.2017.01852
10.1002/fsn3.2415
10.1145/3505244
10.1109/CVPR.2018.00474
10.1109/TGRS.2018.2868851
10.1145/3380688.3380697
10.1371/journal.pone.0123262
ContentType Journal Article
Copyright 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
DOA
DOI 10.3390/app13031487
DatabaseName CrossRef
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central (NC Live)
ProQuest One Community College
ProQuest Central
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database

CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Sciences (General)
Agriculture
EISSN 2076-3417
ExternalDocumentID oai_doaj_org_article_0ca7d5ea0fba4f23935ad94ea54f956b
10_3390_app13031487
GroupedDBID .4S
2XV
5VS
7XC
8CJ
8FE
8FG
8FH
AADQD
AAFWJ
AAYXX
ADBBV
ADMLS
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
APEBS
ARCSS
BCNDV
BENPR
CCPQU
CITATION
CZ9
D1I
D1J
D1K
GROUPED_DOAJ
IAO
IGS
ITC
K6-
K6V
KC.
KQ8
L6V
LK5
LK8
M7R
MODMG
M~E
OK1
P62
PHGZM
PHGZT
PIMPY
PROAC
TUS
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
PUEGO
ID FETCH-LOGICAL-c294t-20a87b1f5d6a25e4d16df74d5b9825527127631fb9c8a195afebb6045a76ebbe3
IEDL.DBID DOA
ISSN 2076-3417
IngestDate Wed Aug 27 01:32:03 EDT 2025
Mon Jun 30 11:06:52 EDT 2025
Tue Jul 01 04:32:48 EDT 2025
Thu Apr 24 23:00:54 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c294t-20a87b1f5d6a25e4d16df74d5b9825527127631fb9c8a195afebb6045a76ebbe3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://doaj.org/article/0ca7d5ea0fba4f23935ad94ea54f956b
PQID 2779900279
PQPubID 2032433
ParticipantIDs doaj_primary_oai_doaj_org_article_0ca7d5ea0fba4f23935ad94ea54f956b
proquest_journals_2779900279
crossref_primary_10_3390_app13031487
crossref_citationtrail_10_3390_app13031487
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20230101
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – month: 01
  year: 2023
  text: 20230101
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Applied sciences
PublicationYear 2023
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Ferentinos (ref_16) 2018; 145
Elsken (ref_34) 2019; 20
Mohanty (ref_20) 2016; 7
Xiaoli (ref_5) 2016; 6
ref_13
ref_35
ref_12
ref_11
ref_33
ref_10
ref_32
ref_31
ref_30
ref_19
Amanda (ref_21) 2017; 8
Yuan (ref_18) 2019; 49
Too (ref_15) 2019; 161
Wang (ref_1) 2021; 9
Khan (ref_28) 2022; 54
Pandey (ref_6) 2017; 8
Chen (ref_3) 2022; 81
Deng (ref_2) 2018; 57
ref_25
ref_24
Sladojevic (ref_22) 2016; 2016
Brahimi (ref_23) 2017; 31
ref_27
ref_26
Deng (ref_29) 2018; 27
ref_8
Nazki (ref_9) 2020; 168
ref_4
Yang (ref_14) 2022; 45
Zhong (ref_17) 2020; 168
ref_7
References_xml – volume: 49
  start-page: 3570
  year: 2019
  ident: ref_18
  article-title: An effective image classification method for shallow densely connected convolution networks through squeezing and splitting techniques
  publication-title: Appl. Intell.
  doi: 10.1007/s10489-019-01468-7
– volume: 6
  start-page: 27790
  year: 2016
  ident: ref_5
  article-title: Hyperspectral imaging for determining pigment contents in cucumber leaves in response to angular leaf spot disease
  publication-title: Sci. Rep.
  doi: 10.1038/srep27790
– ident: ref_7
  doi: 10.1007/978-981-15-1002-1_58
– volume: 168
  start-page: 105146
  year: 2020
  ident: ref_17
  article-title: Research on deep learning in apple leaf disease recognition
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2019.105146
– ident: ref_24
– ident: ref_26
  doi: 10.1109/ICCV.2019.00140
– ident: ref_11
– ident: ref_31
  doi: 10.24963/ijcai.2020/694
– ident: ref_13
  doi: 10.1109/CVPR.2017.243
– volume: 168
  start-page: 105117
  year: 2020
  ident: ref_9
  article-title: Unsupervised image translation using adversarial networks for improved plant disease recognition
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2019.105117
– ident: ref_30
  doi: 10.1145/2911996.2912035
– ident: ref_32
  doi: 10.1109/ICCV48922.2021.00951
– volume: 81
  start-page: 20797
  year: 2022
  ident: ref_3
  article-title: Mobile convolution neural network for the recognition of potato leaf disease images
  publication-title: Multimed. Tools Appl.
  doi: 10.1007/s11042-022-12620-w
– volume: 27
  start-page: 3893
  year: 2018
  ident: ref_29
  article-title: Triplet-based deep hashing network for cross-modal retrieval
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2018.2821921
– ident: ref_35
– volume: 31
  start-page: 299
  year: 2017
  ident: ref_23
  article-title: Deep Learning for Tomato Diseases: Classification and Symptoms Visualization
  publication-title: Appl. Artif. Intell.
  doi: 10.1080/08839514.2017.1315516
– volume: 45
  start-page: 2384
  year: 2022
  ident: ref_14
  article-title: Scrdet++: Detecting small, cluttered and rotated objects via instance-level feature denoising and rotation loss smoothing
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2022.3166956
– volume: 8
  start-page: 1348
  year: 2017
  ident: ref_6
  article-title: High throughput in vivo analysis of plant leaf chemical properties using hyperspectral imaging
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2017.01348
– volume: 2016
  start-page: 3289801
  year: 2016
  ident: ref_22
  article-title: Deep neural networks based recognition of plant diseases by leaf image classification
  publication-title: Comput. Intell. Neurosci.
  doi: 10.1155/2016/3289801
– volume: 145
  start-page: 311
  year: 2018
  ident: ref_16
  article-title: Deep learning models for plant disease detection and diagnosis
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2018.01.009
– ident: ref_10
  doi: 10.1609/aaai.v35i3.16347
– volume: 20
  start-page: 1997
  year: 2019
  ident: ref_34
  article-title: Neural architecture search: A survey
  publication-title: J. Mach. Learn. Res.
– ident: ref_33
  doi: 10.1007/978-3-031-20050-2_22
– volume: 7
  start-page: 1419
  year: 2016
  ident: ref_20
  article-title: Using deep learning for image-based plant disease detection
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2016.01419
– ident: ref_27
– ident: ref_12
– volume: 161
  start-page: 272
  year: 2019
  ident: ref_15
  article-title: A comparative study of fine-tuning deep learning models for plant disease identification
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2018.03.032
– volume: 8
  start-page: 1852
  year: 2017
  ident: ref_21
  article-title: Deep learning for image-based cassava disease detection
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2017.01852
– volume: 9
  start-page: 4420
  year: 2021
  ident: ref_1
  article-title: Study on starch content detection and visualization of potato based on hyperspectral imaging
  publication-title: Food Sci. Nutr.
  doi: 10.1002/fsn3.2415
– volume: 54
  start-page: 1
  year: 2022
  ident: ref_28
  article-title: Transformers in vision: A survey
  publication-title: ACM Comput. Surv. (CSUR)
  doi: 10.1145/3505244
– ident: ref_19
– ident: ref_25
  doi: 10.1109/CVPR.2018.00474
– volume: 57
  start-page: 1741
  year: 2018
  ident: ref_2
  article-title: Active transfer learning network: A unified deep joint spectral–spatial feature learning model for hyperspectral image classification
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2018.2868851
– ident: ref_8
  doi: 10.1145/3380688.3380697
– ident: ref_4
  doi: 10.1371/journal.pone.0123262
SSID ssj0000913810
Score 2.3508415
Snippet Crop pests and diseases are one of the most critical disasters that limit agricultural production. In this paper, we trained a lightweight convolutional neural...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 1487
SubjectTerms Agricultural production
Agriculture
Artificial intelligence
Classification
convolutional neural networks
Crop diseases
Crops
Deep learning
Django framework
machine learning
Neural networks
Pesticides
potato disease leaf
SummonAdditionalLinks – databaseName: ProQuest Central (NC Live)
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Rb9MwED5B9wIPiA0QZWPywx4AKSJx7Dh5mlq0aZq6akJM2lt0ju2-TM3WFvj73DluGQLxFidOIuXi8_edfd8BnLDUqc-DzlxQlghKhRk6W2ZdKBwngpYFcqLw1by6uFGXt_o2BdzWaVvl1idGR-36jmPkn6Ux5DiJRDWn9w8ZV43i1dVUQuMp7JELrusR7E3P5tdfd1EWVr2si3xIzCuJ3_O6MLttYgHmj6koKvb_5ZDjLHP-El4keCgmgz334YlfHsDzyWKVJDI8tR5JCB7Afhqca_EhKUh_fAWLiZgx6f4Z456CBTjoofNhx3c2pYnLiatYOloQZhVDsm5MeBJR8Dib3sUbcenEjMDotj3z-IPe1Adx3RNI7V_DzfnZty8XWaqokHWyURsaElgbWwTtKpTaK1dULhjltG2IKWppCkn-pgi26WosGo3BW1sR6kNT0ZEv38Bo2S_9WxCBoZ40uc-tVl0nrS2R0JkzAWVAL8fwaftx2y7JjXPVi7uWaAdbon1kiTGc7DrfDyob_-42ZSvturA0djzRrxZtGmlt3qFx2mMeLKoQFd7QNcqjVoHIoB3D0dbGbRqv6_b33_Xu_5cP4RkXnB-CMEcw2qy--_cESzb2OP17vwDW6uNq
  priority: 102
  providerName: ProQuest
Title A Lightweight Neural Network-Based Method for Identifying Early-Blight and Late-Blight Leaves of Potato
URI https://www.proquest.com/docview/2779900279
https://doaj.org/article/0ca7d5ea0fba4f23935ad94ea54f956b
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fS8MwED788aIPolNxOkce9qBCsU2TZn3cZFNkDhGFvZVLk_gim-jUf99L2slEwRff2pI24XK5-y7NfQfQ8VSnNnYyMk5oClAyjNDoNCpdYnwiaJqgTxS-GWdXD-J6IidLpb78mbCKHrgS3HlcojLSYuw0ChcIu9DkwqIUjrC99taXfN5SMBVscJ546qoqIS-luN7_D_bmmtC_-uaCAlP_D0McvMtwG7ZqWMh61XB2YMVOG7C5RBbYgJ16Gb6yk5or-nQXHnts5MPrj7DDyTzVBn1mXJ3tjvrkogy7CUWiGaFTVqXlhtQmFqiNo_5TeBGnho0Idi7uRxbfqaeZY7czgqOzPXgYDu4vrqK6dkJU8lzMSfmxq3TipMmQSytMkhmnhJE6p5hQcpVwsiyJ03nZxSSX6KzWGeE7VBld2XQf1qazqT0A5jyo4yq2sZaiLLnWKRIOM8ohd2h5E84W4izKmljc17d4KijA8LIvlmTfhM5X4-eKT-P3Zn0_L19NPAl2eECqUdSqUfylGk1oLWa1qFfma8GVIgdMwXh--B99HMGGL0Bfbcq0YG3-8maPCabMdRtWu8PLNqz3B-Pbu3bQz09aTel_
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Pb9MwFH8a4wAcJjZA6zbAhyEBUkTi2HFzmKYWKB1LKw6btFuwY7uXqRltx8SX4jPynpOUIRC33eLYcSS_5_fPfr8HcEhQpy72MrJeGHRQMh1pa9Ko8omlRNA00ZQoPJlm43Px-UJebMDPLheGrlV2MjEIaltXFCN_x5VCwYlOVH589S2iqlF0utqV0GjY4tT9uEGXbXl08gHp-4rz0cez9-OorSoQVTwXK2QL3Vcm8dJmmksnbJJZr4SVJkdvSXKVcNxziTd51ddJLrV3xmRo-WiV4ZNLcd57cF-kqMkpM330aR3TIYzNfhI3aYDYH9MpNCkJ9DnUH4ov1Af4S_wHnTZ6DFutMcoGDfdsw4ab78CjwWzRAnI4bN0CLNyB7VYULNnrFq_6zROYDVhBLv5NiLIygvvASafN_fJoiGrSskkoVM3QQmZNanBIr2IBXjkaXoYP9dyyAk3frl04_R3_VHv2pUaTuH4K53ey0s9gc17P3S4wT4YlV7GLjRRVxY1JNdqCVnnNvXa8B2-7xS2rFtycamxclujkECXKW5ToweF68FWD6fHvYUOi0noIAXGHF_ViVrb7uowrrax0OvZGCx_w5LTNhdNSeHQ9TQ8OOhqXrXRYlr95ee__3S_hwfhsUpTFyfR0Hx5Sqfsm_HMAm6vFtXuOBtHKvAhcyODrXbP9L6EgHyk
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Rb9MwED6NTkLwMG0DtLIN_DAkQIqWOHHcPExTy1ZtrKsqxKS9BTu2-zI1oy1M_DV-HXeOU4ZAvO0tTpxE8p3v7rN93wEcENWpjZ2IjMs0ApRcRcroNKpcYigRNE0UJQpfjvOzq-zjtbheg59tLgwdq2xtojfUpq5ojfyQS4mGE0FUcejCsYjJyfD49mtEFaRop7Utp9GoyIX9cYfwbXF0foKyfsP58PTzh7MoVBiIKl5kS1QR1ZM6ccLkigubmSQ3TmZG6AKRk-Ay4Tj_EqeLqqeSQihntc4xClIyxyub4ncfwbokVNSB9cHpePJptcJDjJu9JG6SAtO0iGlPmlwGIhD5hxv01QL-cgbeww03YSOEpqzf6NIWrNnZNjztT-eBnsNi6x594TZsBcOwYG8De_W7ZzDtsxEB_ju_5sqI_AM_Om5Om0cDdJqGXfqy1QzjZdYkCvtkK-bJlqPBjX9RzQwbYSDctkdWfcc_1Y5NagyQ6-dw9SBj_QI6s3pmd4A5CjO5jG2sRVZVXOtUYWRopFPcKcu78L4d3LIKVOdUceOmRMhDkijvSaILB6vOtw3Dx7-7DUhKqy5Ey-1v1PNpGWZ5GVdKGmFV7LTKnGeXU6bIrBKZQyCqu7DXyrgMtmJR_tbsl_9__Boeo8qXo_PxxS48obr3zVrQHnSW8292H6OjpX4V1JDBl4fW_F-a3yS7
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Lightweight+Neural+Network-Based+Method+for+Identifying+Early-Blight+and+Late-Blight+Leaves+of+Potato&rft.jtitle=Applied+sciences&rft.au=Kang%2C+Feilong&rft.au=Li%2C+Jia&rft.au=Wang%2C+Chunguang&rft.au=Wang%2C+Fuxiang&rft.date=2023-01-01&rft.issn=2076-3417&rft.eissn=2076-3417&rft.volume=13&rft.issue=3&rft.spage=1487&rft_id=info:doi/10.3390%2Fapp13031487&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_app13031487
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3417&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3417&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3417&client=summon