Improving Generalized Regression Neural Networks with Black Widow Optimization Algorithm for Predicting Waist Muscle Strength

As one of the indispensable and important clinical indicators, muscle strength provides an important judgment basis for the diagnosis and rehabilitation of patients with muscle injuries. At present, muscle strength prediction has been applied to rehabilitation equipment for the upper and lower extre...

Full description

Saved in:
Bibliographic Details
Published inIEEE sensors journal Vol. 24; no. 7; p. 1
Main Authors Cheng, Shuhong, Li, Xinyue, Zhang, Shijun, Liu, Fei, Wang, Hongbo, Xie, Ping, Fan, Xiaohua, Liu, Qingjiang
Format Journal Article
LanguageEnglish
Published New York IEEE 01.04.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract As one of the indispensable and important clinical indicators, muscle strength provides an important judgment basis for the diagnosis and rehabilitation of patients with muscle injuries. At present, muscle strength prediction has been applied to rehabilitation equipment for the upper and lower extremities, but there are few studies on muscle strength prediction of lumbar muscle groups. For the muscle strength of the lumbar region, a GRNN model based on the input parameters (lumbar sEMG signal and angle information) was developed to predict it in this study. First, the sEMG signals and angle information of the lumbar muscle groups under different movements of the experimental subjects are extracted, and the standard muscle strength is obtained through the lumbar model of OpenSim software, and then established the data set; then, the BWO-GRNN algorithm model is formed by optimizing the parameters of the existing GRNN network, and compared with similar optimization algorithms using the data set; finally, the effect of the prediction model constructed in this paper on the prediction of lumbar muscle strength was verified by basic experiments and clinical trials. According to the experimental results, compared with other prediction models, the GRNN model optimized by the BWO algorithm has a better prediction effect on the muscle strength. Among them, R 2 can reach 0.864 in six movements. Compared with GRNN, the prediction accuracy of each action of the improved GRNN model is improved, and the MSE is reduced by 92.4% on average. At the same time, in clinical trials, the Bland-Altman plots and ICC plot show that the prediction model is suitable for variety samples.
AbstractList As one of the indispensable and important clinical indicators, muscle strength provides an important judgment basis for the diagnosis and rehabilitation of patients with muscle injuries. At present, muscle strength prediction has been applied to rehabilitation equipment for the upper and lower extremities, but there are few studies on muscle strength prediction of lumbar muscle groups. For the muscle strength of the lumbar region, a GRNN model based on the input parameters (lumbar sEMG signal and angle information) was developed to predict it in this study. First, the sEMG signals and angle information of the lumbar muscle groups under different movements of the experimental subjects are extracted, and the standard muscle strength is obtained through the lumbar model of OpenSim software, and then established the data set; then, the BWO-GRNN algorithm model is formed by optimizing the parameters of the existing GRNN network, and compared with similar optimization algorithms using the data set; finally, the effect of the prediction model constructed in this paper on the prediction of lumbar muscle strength was verified by basic experiments and clinical trials. According to the experimental results, compared with other prediction models, the GRNN model optimized by the BWO algorithm has a better prediction effect on the muscle strength. Among them, R 2 can reach 0.864 in six movements. Compared with GRNN, the prediction accuracy of each action of the improved GRNN model is improved, and the MSE is reduced by 92.4% on average. At the same time, in clinical trials, the Bland-Altman plots and ICC plot show that the prediction model is suitable for variety samples.
As one of the indispensable and important clinical indicators, muscle strength provides an important judgment basis for the diagnosis and rehabilitation of patients with muscle injuries. At present, muscle strength prediction has been applied to rehabilitation equipment for the upper and lower extremities, but there are few studies on muscle strength prediction of lumbar muscle groups. For the muscle strength of the lumbar region, a GRNN model based on the input parameters (lumbar surface electromyography (sEMG) signal and angle information) was developed to predict it in this study. First, the sEMG signals and angle information of the lumbar muscle groups under different movements of the experimental subjects are extracted, and the standard muscle strength is obtained through the lumbar model of OpenSim software, and then established the dataset; then, the black widow optimization (BWO)-GRNN algorithm model is formed by optimizing the parameters of the existing GRNN network, and compared with similar optimization algorithms using the dataset; finally, the effect of the prediction model constructed in this article on the prediction of lumbar muscle strength was verified by basic experiments and clinical trials. According to the experimental results, compared with other prediction models, the GRNN model optimized by the BWO algorithm has a better prediction effect on the muscle strength. Among them, [Formula Omitted] can reach 0.864 in six movements. Compared with GRNN, the prediction accuracy of each action of the improved GRNN model is improved, and the mse is reduced by 92.4% on average. At the same time, in clinical trials, the Bland-Altman plots and ICC plot show that the prediction model is suitable for variety samples.
Author Fan, Xiaohua
Wang, Hongbo
Liu, Qingjiang
Liu, Fei
Cheng, Shuhong
Li, Xinyue
Zhang, Shijun
Xie, Ping
Author_xml – sequence: 1
  givenname: Shuhong
  orcidid: 0000-0003-0086-432X
  surname: Cheng
  fullname: Cheng, Shuhong
  organization: school of electrical engineering Yanshan University, Qinhuangdao, China
– sequence: 2
  givenname: Xinyue
  surname: Li
  fullname: Li, Xinyue
  organization: school of electrical engineering Yanshan University, Qinhuangdao, China
– sequence: 3
  givenname: Shijun
  surname: Zhang
  fullname: Zhang, Shijun
  organization: Institute of Mechanical Engineering, Yanshan University, Qinhuangdao, China
– sequence: 4
  givenname: Fei
  surname: Liu
  fullname: Liu, Fei
  organization: First Hospital of Qinhuangdao, Qinhuangdao, China
– sequence: 5
  givenname: Hongbo
  orcidid: 0000-0002-0205-6441
  surname: Wang
  fullname: Wang, Hongbo
  organization: Academy for Engineering& Technology, Fudan University, China
– sequence: 6
  givenname: Ping
  orcidid: 0000-0001-5878-087X
  surname: Xie
  fullname: Xie, Ping
  organization: school of electrical engineering Yanshan University, Qinhuangdao, China
– sequence: 7
  givenname: Xiaohua
  surname: Fan
  fullname: Fan, Xiaohua
  organization: Department of Rehabilitation, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
– sequence: 8
  givenname: Qingjiang
  surname: Liu
  fullname: Liu, Qingjiang
  organization: Department of Rehabilitation, Shandong Provincial Hospital, Jinan, China
BookMark eNp9kUlPwzAQhS0EEqXwA5A4WOKc4i2Lj4CgFJVFLIJb5DiTYkjjYrtUVOK_k9AeEAdOMxq9N6P3zQ7abGwDCO1TMqCUyKPL-7PrASNMDDhPiJR0A_VoHGcRTUW22fWcRIKnz9tox_tXQqhM47SHvkbTmbMfppngITTgVG2WUOI7mDjw3tgGX8O8nbYlLKx783hhwgs-qZV-w0-mtAt8MwtmapYqdOrjemJdq5jiyjp866A0OnTbn5TxAV_Nva4B3wcHzSS87KKtStUe9ta1jx7Pzx5OL6LxzXB0ejyONJMiRLQkOiFFomLaJhOsUIyRsqA6k5VIYlYUmSwrnkFGMhaTJE2rjHCpq7QAIQrG--hwtbfN-j4HH_JXO3dNezLnhFMuJWGdiq5U2lnvHVT5zJmpcp85JXlHOe8o5x3lfE259aR_PNqEHxTBKVP_6zxYOQ0A_LokmBDtt74BU6mOHA
CODEN ISJEAZ
CitedBy_id crossref_primary_10_1038_s41598_024_64233_y
Cites_doi 10.1007/s12551-020-00770-w
10.1109/ICBSII58188.2023.10181085
10.1109/EMBC.2013.6609506
10.1197/j.jht.2005.01.011
10.1016/j.enconman.2016.05.061
10.1007/s10029-011-0805-1
10.1109/CONIT55038.2022.9848211
10.1109/IEMBS.2009.5332493
10.1016/B978-0-12-816713-7.00008-8
10.1109/SMC.2014.6974250
10.1002/(SICI)1097-0207(19981115)43:5<941::AID-NME435>3.0.CO;2-3
10.1016/j.bej.2003.08.009
10.1109/TIM.2023.3300424
10.1016/j.engappai.2019.103249
10.1109/CCDC55256.2022.10033982
10.1016/j.bspc.2022.104454
10.1016/j.jbiomech.2008.02.002
10.1016/j.piutam.2011.04.019
10.1016/j.jbiomech.2019.05.007
10.1016/j.jpba.2016.02.040
10.1038/s41598-023-31906-z
10.1007/s11277-022-09627-9
10.1016/j.ymssp.2017.08.010
10.3390/s16122018
10.1111/sms.12870
10.1109/ICAICE51518.2020.00017
10.1109/MSN48538.2019.00073
10.1109/JSEN.2020.3023742
10.1007/s11517-021-02466-z
10.1177/15501477211053997
10.1109/JSEN.2023.3299384
10.1016/j.jbiomech.2016.02.046
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
7U5
8FD
L7M
DOI 10.1109/JSEN.2024.3360991
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList
Solid State and Superconductivity Abstracts
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Engineering
EISSN 1558-1748
EndPage 1
ExternalDocumentID 10_1109_JSEN_2024_3360991
10424415
Genre orig-research
GrantInformation_xml – fundername: National Key Research and Development Program of China
  grantid: 2021YFB3202303
  funderid: 10.13039/501100012166
– fundername: National Natural Science Foundation of China
  grantid: 52275035; 61803017
  funderid: 10.13039/501100001809
– fundername: Special Cultivation Project of Qinhuangdao First Hospital of Yanshan University in 2022
  grantid: UY202209
– fundername: Natural Science Foundation of Shandong Province
  grantid: ZR2020MH284
  funderid: 10.13039/501100007129
GroupedDBID -~X
0R~
29I
4.4
5GY
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AGQYO
AHBIQ
AJQPL
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
EBS
F5P
HZ~
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
TWZ
AAYXX
CITATION
7SP
7U5
8FD
L7M
ID FETCH-LOGICAL-c294t-1d0c60b6a5199142ba220db1c89f4652bb89df38e808250677f8039cf7be44b23
IEDL.DBID RIE
ISSN 1530-437X
IngestDate Mon Jun 30 08:30:07 EDT 2025
Thu Apr 24 23:10:03 EDT 2025
Tue Jul 01 04:27:27 EDT 2025
Wed Aug 27 02:17:10 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c294t-1d0c60b6a5199142ba220db1c89f4652bb89df38e808250677f8039cf7be44b23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-5878-087X
0000-0002-0205-6441
0000-0003-0086-432X
0009-0009-1406-819X
0000-0002-5658-7715
PQID 3031399022
PQPubID 75733
PageCount 1
ParticipantIDs proquest_journals_3031399022
crossref_primary_10_1109_JSEN_2024_3360991
ieee_primary_10424415
crossref_citationtrail_10_1109_JSEN_2024_3360991
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-04-01
PublicationDateYYYYMMDD 2024-04-01
PublicationDate_xml – month: 04
  year: 2024
  text: 2024-04-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE sensors journal
PublicationTitleAbbrev JSEN
PublicationYear 2024
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref34
ref15
ref14
ref31
ref30
ref11
ref33
ref10
ref32
ref2
ref1
ref17
ref16
ref19
ref18
Hollars (ref8) 1991; 20
ref24
ref23
Ma (ref6) 2011; 26
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
ref7
ref9
ref4
ref3
ref5
References_xml – volume: 26
  start-page: 538
  year: 2011
  ident: ref6
  article-title: A biomechanical analysis based on life MOD for individualized artificial knee joint design
  publication-title: Chin. J. Rehabil. Med.
– ident: ref22
  doi: 10.1007/s12551-020-00770-w
– ident: ref16
  doi: 10.1109/ICBSII58188.2023.10181085
– ident: ref25
  doi: 10.1109/EMBC.2013.6609506
– ident: ref2
  doi: 10.1197/j.jht.2005.01.011
– ident: ref17
  doi: 10.1016/j.enconman.2016.05.061
– ident: ref33
  doi: 10.1007/s10029-011-0805-1
– ident: ref30
  doi: 10.1109/CONIT55038.2022.9848211
– ident: ref10
  doi: 10.1109/IEMBS.2009.5332493
– ident: ref7
  doi: 10.1016/B978-0-12-816713-7.00008-8
– ident: ref13
  doi: 10.1109/SMC.2014.6974250
– ident: ref5
  doi: 10.1002/(SICI)1097-0207(19981115)43:5<941::AID-NME435>3.0.CO;2-3
– ident: ref18
  doi: 10.1016/j.bej.2003.08.009
– ident: ref29
  doi: 10.1109/TIM.2023.3300424
– ident: ref21
  doi: 10.1016/j.engappai.2019.103249
– ident: ref31
  doi: 10.1109/CCDC55256.2022.10033982
– ident: ref14
  doi: 10.1016/j.bspc.2022.104454
– ident: ref3
  doi: 10.1016/j.jbiomech.2008.02.002
– ident: ref9
  doi: 10.1016/j.piutam.2011.04.019
– ident: ref28
  doi: 10.1016/j.jbiomech.2019.05.007
– ident: ref4
  doi: 10.1016/j.jpba.2016.02.040
– ident: ref15
  doi: 10.1038/s41598-023-31906-z
– ident: ref26
  doi: 10.1007/s11277-022-09627-9
– ident: ref23
  doi: 10.1016/j.ymssp.2017.08.010
– ident: ref20
  doi: 10.3390/s16122018
– ident: ref1
  doi: 10.1111/sms.12870
– ident: ref19
  doi: 10.1109/ICAICE51518.2020.00017
– ident: ref34
  doi: 10.1109/MSN48538.2019.00073
– volume: 20
  start-page: 3258
  year: 1991
  ident: ref8
  article-title: SD/FAST user’s manual
  publication-title: Bioinformatics
– ident: ref12
  doi: 10.1109/JSEN.2020.3023742
– ident: ref32
  doi: 10.1007/s11517-021-02466-z
– ident: ref27
  doi: 10.1177/15501477211053997
– ident: ref11
  doi: 10.1109/JSEN.2023.3299384
– ident: ref24
  doi: 10.1016/j.jbiomech.2016.02.046
SSID ssj0019757
Score 2.399395
Snippet As one of the indispensable and important clinical indicators, muscle strength provides an important judgment basis for the diagnosis and rehabilitation of...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Algorithms
Clinical trials
Datasets
Electromyography
improving generalized regression neural networks
Lumbar region
Mathematical models
Muscle strength
Neural networks
Optimization
Parameters
Prediction models
Rehabilitation
surface electromyography
waist muscle strength prediction
Title Improving Generalized Regression Neural Networks with Black Widow Optimization Algorithm for Predicting Waist Muscle Strength
URI https://ieeexplore.ieee.org/document/10424415
https://www.proquest.com/docview/3031399022
Volume 24
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NS-QwFA_qxfXg-smOq0sOnoTOpmnaJkcRRQRHcRXnVprkdRzUzjLTQRT2f9-8NDO4yoq3HJIQeC_J-_r9HiH7xnlr2JgwUrnNIlFBHimdVZFJGFgpYmE5opHPe9npjTjrp_0AVvdYGADwxWfQxaHP5duRmWKozN1whGUhpHzReW4tWGueMlC5p_V0N5hFIsn7IYUZM_Xz7Ndxz7mCXHSTJHMmUfzPJ-S7qrx7iv3_cvKV9GYna8tK7rvTRnfNyxvSxk8ffY2sBkuTHraqsU4WoN4gK6_4BzfIcmiBfve8Sf7Mwws0UFEPX8DSKxi0lbI1RR4Pt2GvLRyfUAzhUh8ApLdDO3qiF-75eQy4Tnr4MBiN3YxH6sxiejnGhBCWWNPb0mkWPZ9O3KkoJsXrQXO3RW5Ojq-PTqPQmyEyXIkmii0zGdNZmWLtlOC65JxZHRupKpGlXGupbJVIkOiDIk1dJVmiTJVrEELzZJss1aMavhFqnEkkpYZUVrEoK6tAGRZDFpcpONNfdgibCaswgbgc-2c8FN6BYapA-RYo3yLIt0MO5kt-t6wdH03eQnm9mtiKqkN2ZypRhIs9KRLkunQ_OOc7_1n2nXzB3dvqnl2y1IynsOcMl0b_8Ar7F1vE6nc
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3Pb9MwFLbQOAwODMYQZQN84ISUYjtOYh8ntKmMNSDYtN6i2H7pJrYUtakQk_a_z89xqwECccvBSSy9Z79f3_seIW-sj9ZwMGGiC5cnsoEi0SZvEpsycEpy6QR2I4_LfHQqjybZJDarh14YAAjgMxjiY6jlu5ldYqrMn3Bsy8KW8vve8Ge8b9daFw10EYg9_RlmiUyLSSxicqbfHX09KH0wKOQwTXPvFPFfzFCYq_LHZRwszOEWKVd764El34bLzgzt9W-0jf-9-cfkUfQ16X6vHE_IPWi3ycM7DITbZDMOQT__-ZTcrBMMNJJRX1yDo19g2mNlW4pMHv6DZQ8dX1BM4tKQAqRnF272g37yF9BV7Oyk-5fT2dyvuKLeMaaf51gSQpA1Pau9btHxcuF3RbEs3k678x1yenhw8n6UxOkMiRVadgl3zObM5HWG6CkpTC0Ec4ZbpRuZZ8IYpV2TKlAYhSJRXaNYqm1TGJDSiPQZ2WhnLTwn1HqnSCkDmWq4rBunQVvGIed1Bt75VwPCVsKqbKQuxwkal1UIYZiuUL4VyreK8h2Qt-tXvve8Hf9avIPyurOwF9WA7K1UoopHe1GlyHbpbbgQL_7y2muyOToZH1fHH8qPu-QB_qnH-uyRjW6-hJfejenMq6C8t7v37cA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improving+Generalized+Regression+Neural+Networks+with+Black+Widow+Optimization+Algorithm+for+Predicting+Waist+Muscle+Strength&rft.jtitle=IEEE+sensors+journal&rft.au=Cheng%2C+Shuhong&rft.au=Li%2C+Xinyue&rft.au=Zhang%2C+Shijun&rft.au=Liu%2C+Fei&rft.date=2024-04-01&rft.pub=IEEE&rft.issn=1530-437X&rft.spage=1&rft.epage=1&rft_id=info:doi/10.1109%2FJSEN.2024.3360991&rft.externalDocID=10424415
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-437X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-437X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-437X&client=summon