Improving Generalized Regression Neural Networks with Black Widow Optimization Algorithm for Predicting Waist Muscle Strength
As one of the indispensable and important clinical indicators, muscle strength provides an important judgment basis for the diagnosis and rehabilitation of patients with muscle injuries. At present, muscle strength prediction has been applied to rehabilitation equipment for the upper and lower extre...
Saved in:
Published in | IEEE sensors journal Vol. 24; no. 7; p. 1 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.04.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | As one of the indispensable and important clinical indicators, muscle strength provides an important judgment basis for the diagnosis and rehabilitation of patients with muscle injuries. At present, muscle strength prediction has been applied to rehabilitation equipment for the upper and lower extremities, but there are few studies on muscle strength prediction of lumbar muscle groups. For the muscle strength of the lumbar region, a GRNN model based on the input parameters (lumbar sEMG signal and angle information) was developed to predict it in this study. First, the sEMG signals and angle information of the lumbar muscle groups under different movements of the experimental subjects are extracted, and the standard muscle strength is obtained through the lumbar model of OpenSim software, and then established the data set; then, the BWO-GRNN algorithm model is formed by optimizing the parameters of the existing GRNN network, and compared with similar optimization algorithms using the data set; finally, the effect of the prediction model constructed in this paper on the prediction of lumbar muscle strength was verified by basic experiments and clinical trials. According to the experimental results, compared with other prediction models, the GRNN model optimized by the BWO algorithm has a better prediction effect on the muscle strength. Among them, R 2 can reach 0.864 in six movements. Compared with GRNN, the prediction accuracy of each action of the improved GRNN model is improved, and the MSE is reduced by 92.4% on average. At the same time, in clinical trials, the Bland-Altman plots and ICC plot show that the prediction model is suitable for variety samples. |
---|---|
AbstractList | As one of the indispensable and important clinical indicators, muscle strength provides an important judgment basis for the diagnosis and rehabilitation of patients with muscle injuries. At present, muscle strength prediction has been applied to rehabilitation equipment for the upper and lower extremities, but there are few studies on muscle strength prediction of lumbar muscle groups. For the muscle strength of the lumbar region, a GRNN model based on the input parameters (lumbar sEMG signal and angle information) was developed to predict it in this study. First, the sEMG signals and angle information of the lumbar muscle groups under different movements of the experimental subjects are extracted, and the standard muscle strength is obtained through the lumbar model of OpenSim software, and then established the data set; then, the BWO-GRNN algorithm model is formed by optimizing the parameters of the existing GRNN network, and compared with similar optimization algorithms using the data set; finally, the effect of the prediction model constructed in this paper on the prediction of lumbar muscle strength was verified by basic experiments and clinical trials. According to the experimental results, compared with other prediction models, the GRNN model optimized by the BWO algorithm has a better prediction effect on the muscle strength. Among them, R 2 can reach 0.864 in six movements. Compared with GRNN, the prediction accuracy of each action of the improved GRNN model is improved, and the MSE is reduced by 92.4% on average. At the same time, in clinical trials, the Bland-Altman plots and ICC plot show that the prediction model is suitable for variety samples. As one of the indispensable and important clinical indicators, muscle strength provides an important judgment basis for the diagnosis and rehabilitation of patients with muscle injuries. At present, muscle strength prediction has been applied to rehabilitation equipment for the upper and lower extremities, but there are few studies on muscle strength prediction of lumbar muscle groups. For the muscle strength of the lumbar region, a GRNN model based on the input parameters (lumbar surface electromyography (sEMG) signal and angle information) was developed to predict it in this study. First, the sEMG signals and angle information of the lumbar muscle groups under different movements of the experimental subjects are extracted, and the standard muscle strength is obtained through the lumbar model of OpenSim software, and then established the dataset; then, the black widow optimization (BWO)-GRNN algorithm model is formed by optimizing the parameters of the existing GRNN network, and compared with similar optimization algorithms using the dataset; finally, the effect of the prediction model constructed in this article on the prediction of lumbar muscle strength was verified by basic experiments and clinical trials. According to the experimental results, compared with other prediction models, the GRNN model optimized by the BWO algorithm has a better prediction effect on the muscle strength. Among them, [Formula Omitted] can reach 0.864 in six movements. Compared with GRNN, the prediction accuracy of each action of the improved GRNN model is improved, and the mse is reduced by 92.4% on average. At the same time, in clinical trials, the Bland-Altman plots and ICC plot show that the prediction model is suitable for variety samples. |
Author | Fan, Xiaohua Wang, Hongbo Liu, Qingjiang Liu, Fei Cheng, Shuhong Li, Xinyue Zhang, Shijun Xie, Ping |
Author_xml | – sequence: 1 givenname: Shuhong orcidid: 0000-0003-0086-432X surname: Cheng fullname: Cheng, Shuhong organization: school of electrical engineering Yanshan University, Qinhuangdao, China – sequence: 2 givenname: Xinyue surname: Li fullname: Li, Xinyue organization: school of electrical engineering Yanshan University, Qinhuangdao, China – sequence: 3 givenname: Shijun surname: Zhang fullname: Zhang, Shijun organization: Institute of Mechanical Engineering, Yanshan University, Qinhuangdao, China – sequence: 4 givenname: Fei surname: Liu fullname: Liu, Fei organization: First Hospital of Qinhuangdao, Qinhuangdao, China – sequence: 5 givenname: Hongbo orcidid: 0000-0002-0205-6441 surname: Wang fullname: Wang, Hongbo organization: Academy for Engineering& Technology, Fudan University, China – sequence: 6 givenname: Ping orcidid: 0000-0001-5878-087X surname: Xie fullname: Xie, Ping organization: school of electrical engineering Yanshan University, Qinhuangdao, China – sequence: 7 givenname: Xiaohua surname: Fan fullname: Fan, Xiaohua organization: Department of Rehabilitation, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China – sequence: 8 givenname: Qingjiang surname: Liu fullname: Liu, Qingjiang organization: Department of Rehabilitation, Shandong Provincial Hospital, Jinan, China |
BookMark | eNp9kUlPwzAQhS0EEqXwA5A4WOKc4i2Lj4CgFJVFLIJb5DiTYkjjYrtUVOK_k9AeEAdOMxq9N6P3zQ7abGwDCO1TMqCUyKPL-7PrASNMDDhPiJR0A_VoHGcRTUW22fWcRIKnz9tox_tXQqhM47SHvkbTmbMfppngITTgVG2WUOI7mDjw3tgGX8O8nbYlLKx783hhwgs-qZV-w0-mtAt8MwtmapYqdOrjemJdq5jiyjp866A0OnTbn5TxAV_Nva4B3wcHzSS87KKtStUe9ta1jx7Pzx5OL6LxzXB0ejyONJMiRLQkOiFFomLaJhOsUIyRsqA6k5VIYlYUmSwrnkFGMhaTJE2rjHCpq7QAIQrG--hwtbfN-j4HH_JXO3dNezLnhFMuJWGdiq5U2lnvHVT5zJmpcp85JXlHOe8o5x3lfE259aR_PNqEHxTBKVP_6zxYOQ0A_LokmBDtt74BU6mOHA |
CODEN | ISJEAZ |
CitedBy_id | crossref_primary_10_1038_s41598_024_64233_y |
Cites_doi | 10.1007/s12551-020-00770-w 10.1109/ICBSII58188.2023.10181085 10.1109/EMBC.2013.6609506 10.1197/j.jht.2005.01.011 10.1016/j.enconman.2016.05.061 10.1007/s10029-011-0805-1 10.1109/CONIT55038.2022.9848211 10.1109/IEMBS.2009.5332493 10.1016/B978-0-12-816713-7.00008-8 10.1109/SMC.2014.6974250 10.1002/(SICI)1097-0207(19981115)43:5<941::AID-NME435>3.0.CO;2-3 10.1016/j.bej.2003.08.009 10.1109/TIM.2023.3300424 10.1016/j.engappai.2019.103249 10.1109/CCDC55256.2022.10033982 10.1016/j.bspc.2022.104454 10.1016/j.jbiomech.2008.02.002 10.1016/j.piutam.2011.04.019 10.1016/j.jbiomech.2019.05.007 10.1016/j.jpba.2016.02.040 10.1038/s41598-023-31906-z 10.1007/s11277-022-09627-9 10.1016/j.ymssp.2017.08.010 10.3390/s16122018 10.1111/sms.12870 10.1109/ICAICE51518.2020.00017 10.1109/MSN48538.2019.00073 10.1109/JSEN.2020.3023742 10.1007/s11517-021-02466-z 10.1177/15501477211053997 10.1109/JSEN.2023.3299384 10.1016/j.jbiomech.2016.02.046 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
DBID | 97E RIA RIE AAYXX CITATION 7SP 7U5 8FD L7M |
DOI | 10.1109/JSEN.2024.3360991 |
DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
DatabaseTitleList | Solid State and Superconductivity Abstracts |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography Engineering |
EISSN | 1558-1748 |
EndPage | 1 |
ExternalDocumentID | 10_1109_JSEN_2024_3360991 10424415 |
Genre | orig-research |
GrantInformation_xml | – fundername: National Key Research and Development Program of China grantid: 2021YFB3202303 funderid: 10.13039/501100012166 – fundername: National Natural Science Foundation of China grantid: 52275035; 61803017 funderid: 10.13039/501100001809 – fundername: Special Cultivation Project of Qinhuangdao First Hospital of Yanshan University in 2022 grantid: UY202209 – fundername: Natural Science Foundation of Shandong Province grantid: ZR2020MH284 funderid: 10.13039/501100007129 |
GroupedDBID | -~X 0R~ 29I 4.4 5GY 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AGQYO AHBIQ AJQPL AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 EBS F5P HZ~ IFIPE IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS TWZ AAYXX CITATION 7SP 7U5 8FD L7M |
ID | FETCH-LOGICAL-c294t-1d0c60b6a5199142ba220db1c89f4652bb89df38e808250677f8039cf7be44b23 |
IEDL.DBID | RIE |
ISSN | 1530-437X |
IngestDate | Mon Jun 30 08:30:07 EDT 2025 Thu Apr 24 23:10:03 EDT 2025 Tue Jul 01 04:27:27 EDT 2025 Wed Aug 27 02:17:10 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c294t-1d0c60b6a5199142ba220db1c89f4652bb89df38e808250677f8039cf7be44b23 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-5878-087X 0000-0002-0205-6441 0000-0003-0086-432X 0009-0009-1406-819X 0000-0002-5658-7715 |
PQID | 3031399022 |
PQPubID | 75733 |
PageCount | 1 |
ParticipantIDs | proquest_journals_3031399022 crossref_primary_10_1109_JSEN_2024_3360991 ieee_primary_10424415 crossref_citationtrail_10_1109_JSEN_2024_3360991 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-04-01 |
PublicationDateYYYYMMDD | 2024-04-01 |
PublicationDate_xml | – month: 04 year: 2024 text: 2024-04-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE sensors journal |
PublicationTitleAbbrev | JSEN |
PublicationYear | 2024 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref12 ref34 ref15 ref14 ref31 ref30 ref11 ref33 ref10 ref32 ref2 ref1 ref17 ref16 ref19 ref18 Hollars (ref8) 1991; 20 ref24 ref23 Ma (ref6) 2011; 26 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 ref7 ref9 ref4 ref3 ref5 |
References_xml | – volume: 26 start-page: 538 year: 2011 ident: ref6 article-title: A biomechanical analysis based on life MOD for individualized artificial knee joint design publication-title: Chin. J. Rehabil. Med. – ident: ref22 doi: 10.1007/s12551-020-00770-w – ident: ref16 doi: 10.1109/ICBSII58188.2023.10181085 – ident: ref25 doi: 10.1109/EMBC.2013.6609506 – ident: ref2 doi: 10.1197/j.jht.2005.01.011 – ident: ref17 doi: 10.1016/j.enconman.2016.05.061 – ident: ref33 doi: 10.1007/s10029-011-0805-1 – ident: ref30 doi: 10.1109/CONIT55038.2022.9848211 – ident: ref10 doi: 10.1109/IEMBS.2009.5332493 – ident: ref7 doi: 10.1016/B978-0-12-816713-7.00008-8 – ident: ref13 doi: 10.1109/SMC.2014.6974250 – ident: ref5 doi: 10.1002/(SICI)1097-0207(19981115)43:5<941::AID-NME435>3.0.CO;2-3 – ident: ref18 doi: 10.1016/j.bej.2003.08.009 – ident: ref29 doi: 10.1109/TIM.2023.3300424 – ident: ref21 doi: 10.1016/j.engappai.2019.103249 – ident: ref31 doi: 10.1109/CCDC55256.2022.10033982 – ident: ref14 doi: 10.1016/j.bspc.2022.104454 – ident: ref3 doi: 10.1016/j.jbiomech.2008.02.002 – ident: ref9 doi: 10.1016/j.piutam.2011.04.019 – ident: ref28 doi: 10.1016/j.jbiomech.2019.05.007 – ident: ref4 doi: 10.1016/j.jpba.2016.02.040 – ident: ref15 doi: 10.1038/s41598-023-31906-z – ident: ref26 doi: 10.1007/s11277-022-09627-9 – ident: ref23 doi: 10.1016/j.ymssp.2017.08.010 – ident: ref20 doi: 10.3390/s16122018 – ident: ref1 doi: 10.1111/sms.12870 – ident: ref19 doi: 10.1109/ICAICE51518.2020.00017 – ident: ref34 doi: 10.1109/MSN48538.2019.00073 – volume: 20 start-page: 3258 year: 1991 ident: ref8 article-title: SD/FAST user’s manual publication-title: Bioinformatics – ident: ref12 doi: 10.1109/JSEN.2020.3023742 – ident: ref32 doi: 10.1007/s11517-021-02466-z – ident: ref27 doi: 10.1177/15501477211053997 – ident: ref11 doi: 10.1109/JSEN.2023.3299384 – ident: ref24 doi: 10.1016/j.jbiomech.2016.02.046 |
SSID | ssj0019757 |
Score | 2.399395 |
Snippet | As one of the indispensable and important clinical indicators, muscle strength provides an important judgment basis for the diagnosis and rehabilitation of... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1 |
SubjectTerms | Algorithms Clinical trials Datasets Electromyography improving generalized regression neural networks Lumbar region Mathematical models Muscle strength Neural networks Optimization Parameters Prediction models Rehabilitation surface electromyography waist muscle strength prediction |
Title | Improving Generalized Regression Neural Networks with Black Widow Optimization Algorithm for Predicting Waist Muscle Strength |
URI | https://ieeexplore.ieee.org/document/10424415 https://www.proquest.com/docview/3031399022 |
Volume | 24 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NS-QwFA_qxfXg-smOq0sOnoTOpmnaJkcRRQRHcRXnVprkdRzUzjLTQRT2f9-8NDO4yoq3HJIQeC_J-_r9HiH7xnlr2JgwUrnNIlFBHimdVZFJGFgpYmE5opHPe9npjTjrp_0AVvdYGADwxWfQxaHP5duRmWKozN1whGUhpHzReW4tWGueMlC5p_V0N5hFIsn7IYUZM_Xz7Ndxz7mCXHSTJHMmUfzPJ-S7qrx7iv3_cvKV9GYna8tK7rvTRnfNyxvSxk8ffY2sBkuTHraqsU4WoN4gK6_4BzfIcmiBfve8Sf7Mwws0UFEPX8DSKxi0lbI1RR4Pt2GvLRyfUAzhUh8ApLdDO3qiF-75eQy4Tnr4MBiN3YxH6sxiejnGhBCWWNPb0mkWPZ9O3KkoJsXrQXO3RW5Ojq-PTqPQmyEyXIkmii0zGdNZmWLtlOC65JxZHRupKpGlXGupbJVIkOiDIk1dJVmiTJVrEELzZJss1aMavhFqnEkkpYZUVrEoK6tAGRZDFpcpONNfdgibCaswgbgc-2c8FN6BYapA-RYo3yLIt0MO5kt-t6wdH03eQnm9mtiKqkN2ZypRhIs9KRLkunQ_OOc7_1n2nXzB3dvqnl2y1IynsOcMl0b_8Ar7F1vE6nc |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3Pb9MwFLbQOAwODMYQZQN84ISUYjtOYh8ntKmMNSDYtN6i2H7pJrYUtakQk_a_z89xqwECccvBSSy9Z79f3_seIW-sj9ZwMGGiC5cnsoEi0SZvEpsycEpy6QR2I4_LfHQqjybZJDarh14YAAjgMxjiY6jlu5ldYqrMn3Bsy8KW8vve8Ge8b9daFw10EYg9_RlmiUyLSSxicqbfHX09KH0wKOQwTXPvFPFfzFCYq_LHZRwszOEWKVd764El34bLzgzt9W-0jf-9-cfkUfQ16X6vHE_IPWi3ycM7DITbZDMOQT__-ZTcrBMMNJJRX1yDo19g2mNlW4pMHv6DZQ8dX1BM4tKQAqRnF272g37yF9BV7Oyk-5fT2dyvuKLeMaaf51gSQpA1Pau9btHxcuF3RbEs3k678x1yenhw8n6UxOkMiRVadgl3zObM5HWG6CkpTC0Ec4ZbpRuZZ8IYpV2TKlAYhSJRXaNYqm1TGJDSiPQZ2WhnLTwn1HqnSCkDmWq4rBunQVvGIed1Bt75VwPCVsKqbKQuxwkal1UIYZiuUL4VyreK8h2Qt-tXvve8Hf9avIPyurOwF9WA7K1UoopHe1GlyHbpbbgQL_7y2muyOToZH1fHH8qPu-QB_qnH-uyRjW6-hJfejenMq6C8t7v37cA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improving+Generalized+Regression+Neural+Networks+with+Black+Widow+Optimization+Algorithm+for+Predicting+Waist+Muscle+Strength&rft.jtitle=IEEE+sensors+journal&rft.au=Cheng%2C+Shuhong&rft.au=Li%2C+Xinyue&rft.au=Zhang%2C+Shijun&rft.au=Liu%2C+Fei&rft.date=2024-04-01&rft.pub=IEEE&rft.issn=1530-437X&rft.spage=1&rft.epage=1&rft_id=info:doi/10.1109%2FJSEN.2024.3360991&rft.externalDocID=10424415 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-437X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-437X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-437X&client=summon |