Augmented Reality in Engineering Education: An Application for Electronic Circuits Laboratory
ABSTRACT Engineering education faces challenges in effectively conveying complex theoretical knowledge and practical skills. Traditional teaching tools like smart boards, education kits, web pages, and computer‐based simulators often fall short in bridging the gap between theory and hands‐on applica...
Saved in:
Published in | Computer animation and virtual worlds Vol. 36; no. 2 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Hoboken, USA
John Wiley & Sons, Inc
01.03.2025
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | ABSTRACT
Engineering education faces challenges in effectively conveying complex theoretical knowledge and practical skills. Traditional teaching tools like smart boards, education kits, web pages, and computer‐based simulators often fall short in bridging the gap between theory and hands‐on application. Augmented reality (AR) has emerged as a promising solution to fill this educational gap by providing immersive and interactive learning experiences. In this study, an AR‐based application has been developed for operational amplifiers. Agile methodology and the ADDIE learning development model were used in the system development and instructional design of this application. This application, which requires only a smartphone and a breadboard, detects the circuit marker when users point their smartphone camera at it. After detection, the user can interact with the interface to choose whether the system shows input–output signals for different component values, the output voltage formula, a 3D model, or a brief lecture about the used amplifier. These virtual elements are overlaid onto the real‐world breadboard based on the user's selection. This integration of AR technology provides an immersive, interactive learning experience, allowing students to visualize and interact with circuit elements in real time. |
---|---|
AbstractList | ABSTRACT
Engineering education faces challenges in effectively conveying complex theoretical knowledge and practical skills. Traditional teaching tools like smart boards, education kits, web pages, and computer‐based simulators often fall short in bridging the gap between theory and hands‐on application. Augmented reality (AR) has emerged as a promising solution to fill this educational gap by providing immersive and interactive learning experiences. In this study, an AR‐based application has been developed for operational amplifiers. Agile methodology and the ADDIE learning development model were used in the system development and instructional design of this application. This application, which requires only a smartphone and a breadboard, detects the circuit marker when users point their smartphone camera at it. After detection, the user can interact with the interface to choose whether the system shows input–output signals for different component values, the output voltage formula, a 3D model, or a brief lecture about the used amplifier. These virtual elements are overlaid onto the real‐world breadboard based on the user's selection. This integration of AR technology provides an immersive, interactive learning experience, allowing students to visualize and interact with circuit elements in real time. Engineering education faces challenges in effectively conveying complex theoretical knowledge and practical skills. Traditional teaching tools like smart boards, education kits, web pages, and computer‐based simulators often fall short in bridging the gap between theory and hands‐on application. Augmented reality (AR) has emerged as a promising solution to fill this educational gap by providing immersive and interactive learning experiences. In this study, an AR‐based application has been developed for operational amplifiers. Agile methodology and the ADDIE learning development model were used in the system development and instructional design of this application. This application, which requires only a smartphone and a breadboard, detects the circuit marker when users point their smartphone camera at it. After detection, the user can interact with the interface to choose whether the system shows input–output signals for different component values, the output voltage formula, a 3D model, or a brief lecture about the used amplifier. These virtual elements are overlaid onto the real‐world breadboard based on the user's selection. This integration of AR technology provides an immersive, interactive learning experience, allowing students to visualize and interact with circuit elements in real time. |
Author | Vatansever, Fahri Iriqat, Sanaa |
Author_xml | – sequence: 1 givenname: Sanaa orcidid: 0000-0002-8360-1500 surname: Iriqat fullname: Iriqat, Sanaa organization: Al‐Quds University – sequence: 2 givenname: Fahri orcidid: 0000-0002-3885-8622 surname: Vatansever fullname: Vatansever, Fahri email: fahriv@uludag.edu.tr organization: Bursa Uludağ University |
BookMark | eNp10E1LxDAQBuAgK7iuHvwHAU8eupu0adJ6K6V-wIIgKl4kpEm6ZOkmNW2V_nujFW-eZgaemYH3FCyssxqAC4zWGKF4I8XHmiGEsyOwxCmhEYnZ6-Kvp_gEnPb9PlAaY7QEb8W4O2g7aAUftWjNMEFjYWV3xmrtjd3BSo1SDMbZa1hYWHRda-YZNs7DqtVy8M4aCUvj5WiGHm5F7bwYnJ_OwHEj2l6f_9YVeL6pnsq7aPtwe18W20jGOckiJrUgqWryGgkSY9kogVhKiSRCCkYUZTULg8JNmuVKJplKKM1xncUozbCskxW4nO923r2Puh_43o3ehpc8wXlCA0MkqKtZSe_63uuGd94chJ84Rvw7PR7S4z_pBbuZ7adp9fQ_5GXxMm98Ac1Ccx4 |
Cites_doi | 10.1007/978-1-4614-0064-6 10.1145/2897826.2927365 10.1002/cae.22245 10.1177/0018720820904229 10.1016/j.edurev.2016.11.002 10.1002/cae.22156 10.1109/ACCESS.2023.3337394 10.1186/s42492‐020‐00057‐7 10.1155/2019/7208494 10.1002/cae.22306 10.1109/TVCG.2020.3032761 10.1108/OMJ‐01‐2021‐1139 10.4018/ijmbl.2013100103 10.1016/j.compedu.2019.103647 10.1016/j.compedu.2012.10.024 10.1002/cae.20186 10.1016/j.compedu.2022.104641 10.1016/j.compeleceng.2021.107289 10.17482/uumfd.789985 10.1080/10494820.2020.1859546 10.1002/cae.22204 10.1007/978-3-319-58515-4_1 10.1002/cae.21912 10.1186/s41239‐021‐00272‐z 10.1162/pres.1997.6.4.355 10.1007/s11528‐012‐0559‐3 10.1016/j.edurev.2019.04.001 10.1002/cae.22102 10.1007/s10055‐019‐00379‐9 10.1109/TLT.2022.3144356 10.1002/cae.21969 10.3991/ijoe.v10i6.4030 10.1007/s11042‐010‐0660‐6 10.1109/38.963459 10.1007/978-3-030-42156-4 10.1007/s11135‐018‐0705‐x 10.1007/s10639‐023‐12157‐x |
ContentType | Journal Article |
Copyright | 2025 John Wiley & Sons Ltd. 2025 John Wiley & Sons, Ltd. |
Copyright_xml | – notice: 2025 John Wiley & Sons Ltd. – notice: 2025 John Wiley & Sons, Ltd. |
DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
DOI | 10.1002/cav.70018 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
DatabaseTitleList | CrossRef Computer and Information Systems Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Visual Arts |
EISSN | 1546-427X |
EndPage | n/a |
ExternalDocumentID | 10_1002_cav_70018 CAV70018 |
Genre | researchArticle |
GroupedDBID | .3N .4S .DC .GA .Y3 05W 0R~ 10A 1L6 1OC 29F 31~ 33P 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 6J9 702 7PT 8-0 8-1 8-3 8-4 8-5 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACPOU ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADMLS ADNMO ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUYR AFBPY AFFPM AFGKR AFWVQ AFZJQ AGHNM AGQPQ AGYGG AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ARCSS ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS EDO EJD F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA HF~ HGLYW HHY HVGLF HZ~ I-F ITG ITH IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N9A NF~ O66 O9- OIG P2W P4D PQQKQ Q.N Q11 QB0 QRW R.K ROL RX1 RYL SUPJJ TN5 TUS UB1 V2E V8K W8V W99 WBKPD WIH WIK WQJ WXSBR WYISQ WZISG XG1 XV2 ~IA ~WT 1OB AAMMB AAYXX AEFGJ AGXDD AIDQK AIDYY CITATION 7SC 8FD JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c2948-7cea45df9b0a421cfda07564c4aca74d67b74c4d1f589dc38d36691b820581cb3 |
IEDL.DBID | DR2 |
ISSN | 1546-4261 |
IngestDate | Wed Aug 13 07:33:28 EDT 2025 Tue Aug 05 12:08:36 EDT 2025 Wed Apr 23 09:40:30 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2948-7cea45df9b0a421cfda07564c4aca74d67b74c4d1f589dc38d36691b820581cb3 |
Notes | The authors received no specific funding for this work. Funding ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-8360-1500 0000-0002-3885-8622 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/cav.70018 |
PQID | 3193605804 |
PQPubID | 2034909 |
PageCount | 14 |
ParticipantIDs | proquest_journals_3193605804 crossref_primary_10_1002_cav_70018 wiley_primary_10_1002_cav_70018_CAV70018 |
PublicationCentury | 2000 |
PublicationDate | March/April 2025 2025-03-00 20250301 |
PublicationDateYYYYMMDD | 2025-03-01 |
PublicationDate_xml | – month: 03 year: 2025 text: March/April 2025 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken, USA |
PublicationPlace_xml | – name: Hoboken, USA – name: Chichester |
PublicationTitle | Computer animation and virtual worlds |
PublicationYear | 2025 |
Publisher | John Wiley & Sons, Inc Wiley Subscription Services, Inc |
Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley Subscription Services, Inc |
References | 2023; 31 2017; 20 2019; 2019 2023; 11 2022; 191 2012 2011 2013; 62 2021; 29 1997; 6 2021; 93 2012; 56 2013; 5 2022; 28 2018; 26 2019; 142 2001; 21 2021; 14 2020; 3 2020 2021; 18 2019; 23 2011; 51 2020; 28 2019; 27 2020; 25 2017 2016 2018; 52 2015 2021; 63 2024; 29 2014; 10 2022; 19 2009; 17 e_1_2_8_28_1 e_1_2_8_29_1 e_1_2_8_24_1 e_1_2_8_25_1 e_1_2_8_26_1 e_1_2_8_27_1 e_1_2_8_3_1 e_1_2_8_2_1 e_1_2_8_5_1 e_1_2_8_4_1 e_1_2_8_7_1 e_1_2_8_6_1 e_1_2_8_9_1 e_1_2_8_8_1 e_1_2_8_20_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_22_1 e_1_2_8_23_1 e_1_2_8_41_1 e_1_2_8_17_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_16_1 e_1_2_8_37_1 Onime C. (e_1_2_8_31_1) 2015 e_1_2_8_32_1 e_1_2_8_10_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_30_1 Boylestad R. L. (e_1_2_8_40_1) 2012 |
References_xml | – year: 2011 – volume: 25 start-page: 1155 issue: 3 year: 2020 end-page: 1168 article-title: Comparison of Reality Types publication-title: Uludağ University Journal of the Faculty of Engineering – volume: 28 start-page: 2530 issue: 6 year: 2022 end-page: 2549 article-title: Collaborative Work in Augmented Reality: A Survey publication-title: IEEE Transactions on Visualization and Computer Graphics – volume: 63 start-page: 706 issue: 4 year: 2021 end-page: 726 article-title: The Effects of Virtual Reality, Augmented Reality, and Mixed Reality as Training Enhancement Methods: A Meta‐Analysis publication-title: Human Factors – volume: 191 year: 2022 article-title: Ten Years of Augmented Reality in Education: A Meta‐Analysis of (Quasi‐) Experimental Studies to Investigate the Impact publication-title: Computers & Education – volume: 142 year: 2019 article-title: Research Trends in the Use of Augmented Reality in Science Education: Content and Bibliometric Mapping Analysis publication-title: Computers & Education – volume: 19 start-page: 126 issue: 4 year: 2022 end-page: 142 article-title: Class Size, Student Behaviors and Educational Outcomes publication-title: Organization Management Journal – volume: 21 start-page: 34 issue: 6 year: 2001 end-page: 47 article-title: Recent Advances in Augmented Reality publication-title: IEEE Computer Graphics and Applications – volume: 10 start-page: 68 issue: 6 year: 2014 end-page: 72 article-title: Augmented Reality in Electrical Fundamentals publication-title: International Journal of Online and Biomedical Engineering – volume: 5 start-page: 43 issue: 4 year: 2013 end-page: 58 article-title: Augmented Reality and Mobile Learning: The State of the Art publication-title: International Journal of Mobile and Blended Learning – year: 2016 – volume: 26 start-page: 602 issue: 3 year: 2018 end-page: 616 article-title: Handheld Augmented Reality System for Resistive Electric Circuits Understanding for Undergraduate Students publication-title: Computer Applications in Engineering Education – volume: 27 start-page: 615 issue: 3 year: 2019 end-page: 630 article-title: A Smartphone Based Augmented Reality System for University Students for Learning Digital Electronics publication-title: Computer Applications in Engineering Education – volume: 18 start-page: 38 year: 2021 article-title: Impact of Remote Experimentation, Interactivity and Platform Effectiveness on Laboratory Learning Outcomes publication-title: International Journal of Educational Technology in Higher Education – year: 2012 – volume: 20 start-page: 1 year: 2017 end-page: 11 article-title: Advantages and Challenges Associated With Augmented Reality for Education: A Systematic Review of the Literature publication-title: Educational Research Review – volume: 29 start-page: 244 issue: 1 year: 2021 end-page: 257 article-title: Development of an Augmented Reality‐Based Scaffold to Improve the Learning Experience of Engineering Students in Embedded System Course publication-title: Computer Applications in Engineering Education – volume: 93 year: 2021 article-title: Educational Applications of Augmented Reality: A Bibliometric Study publication-title: Computers and Electrical Engineering – volume: 52 start-page: 2785 year: 2018 end-page: 2793 article-title: The Future of Augmented Reality and an Overview on the to Researches: A Study of Content Analysis publication-title: Quality & Quantity – volume: 28 start-page: 1355 issue: 5 year: 2020 end-page: 1368 article-title: Evaluating an Online Augmented Reality Puzzle for DC Circuits: Students' Feddback and Conceptual Knowledge Gain publication-title: Computer Applications in Engineering Education – volume: 23 start-page: 447 year: 2019 end-page: 459 article-title: Systematic Review and Meta‐Analysis of Augmented Reality in Educational Settings publication-title: Virtual Reality – volume: 29 start-page: 9257 year: 2024 end-page: 9282 article-title: A Systematic Review of Augmented Reality in Science, Technology, Engineering and Mathematics Education publication-title: Education and Information Technologies – volume: 17 start-page: 108 issue: 1 year: 2009 end-page: 118 article-title: Virtual Laboratories in Engineering Education: The Simulation Lab and Remote Lab publication-title: Computer Applications in Engineering Education – volume: 28 start-page: 420 issue: 2 year: 2020 end-page: 434 article-title: Implementation of the Augmented Reality to Electronic Practice publication-title: Computer Applications in Engineering Education – year: 2020 – volume: 51 start-page: 341 year: 2011 end-page: 377 article-title: Augmented Reality Technologies, Systems and Applications publication-title: Multimedia Tools and Applications – volume: 2019 year: 2019 article-title: The Impact of an Augmented Reality Application on Learning Motivation of Students publication-title: Advances in Human‐Computer Interaction – volume: 14 start-page: 817 issue: 6 year: 2021 end-page: 831 article-title: Augmented Reality and Engineering Education: A Systematic Review publication-title: IEEE Transactions on Learning Technologies – volume: 27 start-page: 244 year: 2019 end-page: 260 article-title: Meta‐Analysis of the Impact of Augmented Reality on Students' Learning Gains publication-title: Educational Research Review – volume: 26 start-page: 1590 issue: 5 year: 2018 end-page: 1602 article-title: Step‐By‐Step Augmented Reality in Power Engineering Education publication-title: Computer Applications in Engineering Education – volume: 56 start-page: 13 issue: 2 year: 2012 end-page: 21 article-title: Augmented Reality in Education and Training publication-title: TechTrends – volume: 31 start-page: 1860 issue: 4 year: 2023 end-page: 1874 article-title: Augmented Reality in Education. A Scientific Mapping in Web of Science publication-title: Interactive Learning Environments – volume: 11 start-page: 134717 year: 2023 end-page: 134738 article-title: Applications of Augmented and Virtual Reality in Electrical Engineering Education: A Review publication-title: IEEE Access – year: 2017 – volume: 62 start-page: 41 year: 2013 end-page: 49 article-title: Current Status, Opportunities and Challenges of Augmented Reality in Education publication-title: Computers & Education – year: 2015 – volume: 3 start-page: 21 year: 2020 article-title: Systematic Review and Meta‐Analysis of Augmented Reality in Medicine, Retail, and Games publication-title: Visual Computing for Industry, Biomedicine, and Art – volume: 6 start-page: 355 issue: 4 year: 1997 end-page: 385 article-title: A Survey of Augmented Reality publication-title: Presence – volume: 27 start-page: 1361 issue: 6 year: 2019 end-page: 1375 article-title: Evaluating the Impact of the Augmented Reality Learning Environment on Electronics Laboratory Skills of Engineering Student publication-title: Computer Applications in Engineering Education – ident: e_1_2_8_6_1 doi: 10.1007/978-1-4614-0064-6 – ident: e_1_2_8_4_1 doi: 10.1145/2897826.2927365 – ident: e_1_2_8_36_1 doi: 10.1002/cae.22245 – ident: e_1_2_8_17_1 doi: 10.1177/0018720820904229 – ident: e_1_2_8_10_1 doi: 10.1016/j.edurev.2016.11.002 – ident: e_1_2_8_34_1 doi: 10.1002/cae.22156 – ident: e_1_2_8_25_1 doi: 10.1109/ACCESS.2023.3337394 – ident: e_1_2_8_8_1 doi: 10.1186/s42492‐020‐00057‐7 – ident: e_1_2_8_18_1 doi: 10.1155/2019/7208494 – ident: e_1_2_8_35_1 doi: 10.1002/cae.22306 – ident: e_1_2_8_9_1 doi: 10.1109/TVCG.2020.3032761 – ident: e_1_2_8_28_1 doi: 10.1108/OMJ‐01‐2021‐1139 – ident: e_1_2_8_23_1 doi: 10.4018/ijmbl.2013100103 – ident: e_1_2_8_11_1 doi: 10.1016/j.compedu.2019.103647 – ident: e_1_2_8_20_1 doi: 10.1016/j.compedu.2012.10.024 – ident: e_1_2_8_29_1 doi: 10.1002/cae.20186 – ident: e_1_2_8_12_1 doi: 10.1016/j.compedu.2022.104641 – ident: e_1_2_8_16_1 doi: 10.1016/j.compeleceng.2021.107289 – ident: e_1_2_8_7_1 doi: 10.17482/uumfd.789985 – ident: e_1_2_8_19_1 doi: 10.1080/10494820.2020.1859546 – ident: e_1_2_8_38_1 doi: 10.1002/cae.22204 – ident: e_1_2_8_32_1 doi: 10.1007/978-3-319-58515-4_1 – ident: e_1_2_8_39_1 doi: 10.1002/cae.21912 – ident: e_1_2_8_27_1 doi: 10.1186/s41239‐021‐00272‐z – ident: e_1_2_8_3_1 doi: 10.1162/pres.1997.6.4.355 – ident: e_1_2_8_22_1 doi: 10.1007/s11528‐012‐0559‐3 – ident: e_1_2_8_13_1 doi: 10.1016/j.edurev.2019.04.001 – volume-title: Online Experimentation: Emerging Technologies and IoT year: 2015 ident: e_1_2_8_31_1 – ident: e_1_2_8_33_1 doi: 10.1002/cae.22102 – ident: e_1_2_8_41_1 – ident: e_1_2_8_14_1 doi: 10.1007/s10055‐019‐00379‐9 – ident: e_1_2_8_24_1 doi: 10.1109/TLT.2022.3144356 – ident: e_1_2_8_37_1 doi: 10.1002/cae.21969 – ident: e_1_2_8_30_1 doi: 10.3991/ijoe.v10i6.4030 – ident: e_1_2_8_5_1 doi: 10.1007/s11042‐010‐0660‐6 – volume-title: Electronic Devices and Circuit Theory year: 2012 ident: e_1_2_8_40_1 – ident: e_1_2_8_2_1 doi: 10.1109/38.963459 – ident: e_1_2_8_15_1 doi: 10.1007/978-3-030-42156-4 – ident: e_1_2_8_42_1 – ident: e_1_2_8_21_1 doi: 10.1007/s11135‐018‐0705‐x – ident: e_1_2_8_26_1 doi: 10.1007/s10639‐023‐12157‐x |
SSID | ssj0026210 |
Score | 2.3663008 |
Snippet | ABSTRACT
Engineering education faces challenges in effectively conveying complex theoretical knowledge and practical skills. Traditional teaching tools like... Engineering education faces challenges in effectively conveying complex theoretical knowledge and practical skills. Traditional teaching tools like smart... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Index Database Publisher |
SubjectTerms | Augmented reality educational technology Electronic circuits Engineering education Instructional design Interactive learning Learning Operational amplifiers Simulators Smartphones Three dimensional models |
Title | Augmented Reality in Engineering Education: An Application for Electronic Circuits Laboratory |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcav.70018 https://www.proquest.com/docview/3193605804 |
Volume | 36 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA_Dkx78FqdTgnjw0q1N07TVUxkbQ9TDcGMHpeSjlSJ0sraC_vXmY-2mIIi3pjSlfXkv-b28l98D4NL3UuSHjFu-K6h0UIRrUY8RK0i5KzQ9CVf7kPcPZDTBtzNv1gI39VkYww_RbLgpy9DztTJwyoreijSU0_euCpqqg74qV0sBonFDHYUIMkwEHiaWchNqViEb9Zqe39eiFcBch6l6nRnugKf6C016yWu3KlmXf_4gb_znL-yC7SX-hJFRmD3QSvJ9sDXNisrcLQ7Ac1S9aKpOAceJhukwy-EacSFsskKuYZTDaBUDhxICw0FTWQf2swWvsrKAd0bX5ouPQzAZDh77I2tZhcHiKMSB5fOEYk-kIbMpRg5PBZUwg2COKac-FsRnvmwIJ_WCUHA3EC4hocMktPAChzP3CGzk8zw5BlB68cwOeCgwFViEEt35Eo6FCU09Th1C2uCiHo_4zZBtxIZWGcVSVrGWVRt06pGKl_ZWxHIicVWA18ZtcKVF_vsL4n401Rcnf3_0FGwiVfhXJ591wEa5qJIziUZKdq7V7gupw9sW |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LS8QwEB58HNSDb3F9BlHw0nWbpmkreCirsurqQVS8SM2jlUWost0q-pv8K_4nk3TbVUHw4sFbW0poMzOZbyaTbwA2PTfBXsCF5TmSqQBFOhZzObX8RDjS0JMInYc8PaOtS3J87V4PwVt5Fqbgh6gSbtoyzHqtDVwnpHcGrKGCPdX1rqnfL6k8iV-eVcCW7R3tK-luYXx4cNFsWf2eApbAAfEtT8SMuDIJeIMRbItEMuU0KRGECeYRST3uqRtpJ64fSOH40qE0sLlylK5vC-6ocYdhVHcQ10z9--cVWRWmuOA-cAm1dGBS8hg18E71qV-93wDSfgbGxrMdTsF7OSdFQct9Pe_xunj9Rhf5XyZtGib7EBuFhU3MwFCczsLEVSfLi6fZHNyE-Z1hI5XoPDaRCOqk6BM3I6oKX3ZRmKJwsM2PFMpHB1XzINTsdEXe6WWoXZjTQ_dlHi7_5P8WYCR9SONFQDHHvOGLQBImiQwUgPUU4gxilriC2ZTWYKNUgOix4BOJCuZoHCnZREY2NVgpVSPqLylZpNZKR-9hN0gNto2Mfx4gaoZX5mLp96-uw1jr4rQdtY_OTpZhHOs-x6bWbgVGet08XlXgq8fXjM4juP1rffkAqkA5lw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1fS9xAEB_8A6IP1VbFq7ZdSgu-5C7ZbDZZwYdw56E9K0X0uBeJ-yeRQ4hyubToV_Kr-KHcbC65syD44oNvSQhLsjOz85ud2d8A_PC9BPtMSMt3FdcBinIt7glqBYl0laEnkcU-5O8TenhOfg28wRw8VGdhSn6IesOtsAyzXhcGfquS1pQ0VPK_zSJpGkwqKnvx3T8dr2X7Rx0t3J8Ydw_O2ofWpKWAJTEjgeXLmBNPJUzYnGBHJoprn0mJJFxynyjqC1_fKCfxAqakGyiXUuYI7Se9wJHC1ePOwyKhNiv6RHROa64qTHFJfeARahVxSUVjZONW_anPnd8U0c7iYuPYuqvwWE1JWc9y3czHoinv_2OLfCdztgYfJgAbhaVFfIS5OP0EK_1hlpdPs3W4CPMrw0Wq0Gls4hA0TNEMMyOqy172UJiicJrkRxrjo4O6dRBqD0cyH44zdFwa083obgPO3-T_NmEhvUnjLUCxwMIOJFOEK6KYhq--xpss5oknuUNpA75X8o9uSzaRqOSNxpGWTWRk04CdSjOiyYKSRXqldIsMtk0asGtE_PIAUTvsm4vPr3_1Gyz96XSj46OT3jYs46LJsSm024GF8SiPv2jkNRZfjcYjuHxrdXkCqao4Rg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Augmented+Reality+in+Engineering+Education%3A+An+Application+for+Electronic+Circuits+Laboratory&rft.jtitle=Computer+animation+and+virtual+worlds&rft.au=Iriqat%2C+Sanaa&rft.au=Vatansever%2C+Fahri&rft.date=2025-03-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1546-4261&rft.eissn=1546-427X&rft.volume=36&rft.issue=2&rft_id=info:doi/10.1002%2Fcav.70018&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1546-4261&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1546-4261&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1546-4261&client=summon |