A Versatile Energy‐Based SPH Surface Tension With Spatial Gradients
ABSTRACT We propose a novel simulation method for surface tension effects based on the Smoothed Particle Hydrodynamics framework, capturing versatile tension effects using a unified interface energy description. Guided by the principle of energy minimization, we compute the interface energy from mul...
Saved in:
Published in | Computer animation and virtual worlds Vol. 36; no. 3 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken, USA
John Wiley & Sons, Inc
01.05.2025
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | ABSTRACT
We propose a novel simulation method for surface tension effects based on the Smoothed Particle Hydrodynamics framework, capturing versatile tension effects using a unified interface energy description. Guided by the principle of energy minimization, we compute the interface energy from multiple interfaces solely using the original kernel function estimation, which eliminates the dependence on second‐order derivative discretization. Subsequently, we incorporate an inertia term into the energy function to strike a balance between tension effects and other forces. To simulate tension, we propose an energy diffusion‐based method for minimizing the objective energy function. The particles at the interface are iteratively shifted from high‐energy regions to low‐energy regions through several iterations, thereby achieving global interface energy minimization. Furthermore, our approach incorporates surface tension parameters as variable quantities within the energy framework, enabling automatic resolution of tension spatial gradients without requiring explicit computation of interfacial gradients. Experimental results demonstrate that our method effectively captures the wetting, capillary, and Marangoni effects, showcasing significant improvements in both the accuracy and stability of tension simulation.
When a drop of soapy water is introduced into the center of the pool, the non‐uniform surface energy coefficient gives rise to a tension gradient. As a result, debris at the center of the pool is pulled outward by the tension–a phenomenon commonly known as the Marangoni effect. |
---|---|
AbstractList | ABSTRACT
We propose a novel simulation method for surface tension effects based on the Smoothed Particle Hydrodynamics framework, capturing versatile tension effects using a unified interface energy description. Guided by the principle of energy minimization, we compute the interface energy from multiple interfaces solely using the original kernel function estimation, which eliminates the dependence on second‐order derivative discretization. Subsequently, we incorporate an inertia term into the energy function to strike a balance between tension effects and other forces. To simulate tension, we propose an energy diffusion‐based method for minimizing the objective energy function. The particles at the interface are iteratively shifted from high‐energy regions to low‐energy regions through several iterations, thereby achieving global interface energy minimization. Furthermore, our approach incorporates surface tension parameters as variable quantities within the energy framework, enabling automatic resolution of tension spatial gradients without requiring explicit computation of interfacial gradients. Experimental results demonstrate that our method effectively captures the wetting, capillary, and Marangoni effects, showcasing significant improvements in both the accuracy and stability of tension simulation.
When a drop of soapy water is introduced into the center of the pool, the non‐uniform surface energy coefficient gives rise to a tension gradient. As a result, debris at the center of the pool is pulled outward by the tension–a phenomenon commonly known as the Marangoni effect. We propose a novel simulation method for surface tension effects based on the Smoothed Particle Hydrodynamics framework, capturing versatile tension effects using a unified interface energy description. Guided by the principle of energy minimization, we compute the interface energy from multiple interfaces solely using the original kernel function estimation, which eliminates the dependence on second‐order derivative discretization. Subsequently, we incorporate an inertia term into the energy function to strike a balance between tension effects and other forces. To simulate tension, we propose an energy diffusion‐based method for minimizing the objective energy function. The particles at the interface are iteratively shifted from high‐energy regions to low‐energy regions through several iterations, thereby achieving global interface energy minimization. Furthermore, our approach incorporates surface tension parameters as variable quantities within the energy framework, enabling automatic resolution of tension spatial gradients without requiring explicit computation of interfacial gradients. Experimental results demonstrate that our method effectively captures the wetting, capillary, and Marangoni effects, showcasing significant improvements in both the accuracy and stability of tension simulation. |
Author | Guo, Yu Wang, Xiaokun Sheng, Xiangyu Yao, Chao Zhang, Jianjun Chang, Jian Xu, Yanrui Wang, Qianwei |
Author_xml | – sequence: 1 givenname: Qianwei orcidid: 0009-0003-6763-2643 surname: Wang fullname: Wang, Qianwei organization: University of Science and Technology Beijing – sequence: 2 givenname: Yanrui orcidid: 0000-0002-2154-1178 surname: Xu fullname: Xu, Yanrui organization: University of Science and Technology Beijing – sequence: 3 givenname: Xiangyu surname: Sheng fullname: Sheng, Xiangyu organization: University of Science and Technology Beijing – sequence: 4 givenname: Chao orcidid: 0000-0001-5483-3225 surname: Yao fullname: Yao, Chao email: yaochao@ustb.edu.cn organization: University of Science and Technology Beijing – sequence: 5 givenname: Yu surname: Guo fullname: Guo, Yu organization: University of Science and Technology Beijing – sequence: 6 givenname: Jian surname: Chang fullname: Chang, Jian organization: Bournemouth University – sequence: 7 givenname: Jianjun surname: Zhang fullname: Zhang, Jianjun organization: University of Science and Technology Beijing – sequence: 8 givenname: Xiaokun orcidid: 0000-0002-4449-591X surname: Wang fullname: Wang, Xiaokun email: wangxiaokun@ustb.edu.cn organization: University of Science and Technology Beijing |
BookMark | eNp10MFOAjEQBuDGYCKgB9-giScPC2233XaPSBBMSDSBoLemdGd1CXaxXTTcfASf0Sexusabp87hm5nO30MdVztA6JySASWEDa15HUhChDxCXSp4lnAmHzp_dUZPUC-ETaQZo6SLJiO8Ah9MU20BTxz4x8Pn-8eVCVDgxd0ML_a-NBbwElyoaofvq-YJL3bRmy2eelNU4Jpwio5Lsw1w9vv20fJ6shzPkvnt9GY8mieW5VwmhSyoyK3hnMjSijWHklFILVDLCpUxIkT8llCEK8vWIgVCDGHpuuSUGSXTPrpox-58_bKH0OhNvfcubtQpYypXUvE8qstWWV-H4KHUO189G3_QlOjvkHQMSf-EFO2wtW_x_sP_UI9Hq7bjC5M9aQo |
Cites_doi | 10.1016/j.jcp.2022.111895 10.1145/3550454.3555476 10.1016/0021‐9991(92)90240‐Y 10.1145/2185520.2185558 10.1145/2767003 10.1145/3130800.3130835 10.1145/3386569.3392487 10.1016/j.ijheatmasstransfer.2014.01.064 10.1145/2682630 10.1002/1097-0363(20000615)33:3<333::AID-FLD11>3.0.CO;2-7 10.1145/3414685.3417845 10.1016/j.jcp.2010.03.022 10.1145/3180486 10.1145/2897824.2925899 10.1109/TVCG.2017.2706289 10.1145/3631936 10.1109/TVCG.2013.105 10.1145/3708034 10.1145/3450626.3459862 10.1115/DETC2019-98124 10.1145/3478513.3480539 10.1145/2508363.2508395 10.1006/jcph.1994.1034 10.1145/3450626.3459874 10.1007/s11390-017-1793-0 10.1145/2601097.2601116 10.1016/S0021-9991(03)00324-3 10.1016/j.jcp.2011.10.027 10.1098/rstl.1805.0005 |
ContentType | Journal Article |
Copyright | 2025 John Wiley & Sons Ltd. 2025 John Wiley & Sons, Ltd. |
Copyright_xml | – notice: 2025 John Wiley & Sons Ltd. – notice: 2025 John Wiley & Sons, Ltd. |
DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
DOI | 10.1002/cav.70057 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
DatabaseTitleList | CrossRef Computer and Information Systems Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Visual Arts |
EISSN | 1546-427X |
EndPage | n/a |
ExternalDocumentID | 10_1002_cav_70057 CAV70057 |
Genre | researchArticle |
GrantInformation_xml | – fundername: Basic and Applied Basic Research Foundation of Guangdong Province funderid: 2023A1515030177 – fundername: National High Level Hospital Clinical Research Funding funderid: 2022‐PUMCH‐D‐004 – fundername: National Natural Science Foundation of China funderid: 62376025; 62332017 – fundername: Hainan Provincial Key Research and Development Program funderid: ZDYF2024GXJS032 |
GroupedDBID | .3N .4S .DC .GA .Y3 05W 0R~ 10A 1L6 1OC 29F 31~ 33P 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 6J9 702 7PT 8-0 8-1 8-3 8-4 8-5 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACPOU ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADMLS ADNMO ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUYR AFBPY AFFPM AFGKR AFWVQ AFZJQ AGHNM AGQPQ AGYGG AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ARCSS ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS EDO EJD F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA HF~ HGLYW HHY HVGLF HZ~ I-F ITG ITH IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N9A NF~ O66 O9- OIG P2W P4D PQQKQ Q.N Q11 QB0 QRW R.K ROL RX1 RYL SUPJJ TN5 TUS UB1 V2E V8K W8V W99 WBKPD WIH WIK WQJ WXSBR WYISQ WZISG XG1 XV2 ~IA ~WT AAMMB AAYXX AEFGJ AGXDD AIDQK AIDYY CITATION 1OB 7SC 8FD JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c2947-d7d159ca4407fc5b4ef21e3ce1c2d86205526258048c2b53e00a023bf412a873 |
IEDL.DBID | DR2 |
ISSN | 1546-4261 |
IngestDate | Sat Aug 23 13:22:07 EDT 2025 Thu Jul 03 08:37:33 EDT 2025 Wed Jun 25 09:40:24 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2947-d7d159ca4407fc5b4ef21e3ce1c2d86205526258048c2b53e00a023bf412a873 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0009-0003-6763-2643 0000-0001-5483-3225 0000-0002-2154-1178 0000-0002-4449-591X |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/cav.70057 |
PQID | 3228987849 |
PQPubID | 2034909 |
PageCount | 11 |
ParticipantIDs | proquest_journals_3228987849 crossref_primary_10_1002_cav_70057 wiley_primary_10_1002_cav_70057_CAV70057 |
PublicationCentury | 2000 |
PublicationDate | May/June 2025 2025-05-00 20250501 |
PublicationDateYYYYMMDD | 2025-05-01 |
PublicationDate_xml | – month: 05 year: 2025 text: May/June 2025 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken, USA |
PublicationPlace_xml | – name: Hoboken, USA – name: Chichester |
PublicationTitle | Computer animation and virtual worlds |
PublicationYear | 2025 |
Publisher | John Wiley & Sons, Inc Wiley Subscription Services, Inc |
Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley Subscription Services, Inc |
References | 2015; 34 1994; 110 2010; 229 1992; 100 2017; 23 2020; 39 2008 2007 2022; 41 2003; 191 2012; 31 2016; 35 2014; 20 2023; 43 2019; 59261 2012; 231 2023 1805; 95 2013; 32 2017; 36 2020 2023; 476 2017; 32 2000; 33 2024; 44 2015 2014; 73 2021; 40 2014; 33 2018; 37 e_1_2_14_30_1 e_1_2_14_31_1 Becker M. (e_1_2_14_3_1) 2007 Huber M. (e_1_2_14_16_1) 2015 e_1_2_14_11_1 e_1_2_14_10_1 e_1_2_14_35_1 e_1_2_14_13_1 e_1_2_14_12_1 e_1_2_14_33_1 e_1_2_14_15_1 e_1_2_14_14_1 e_1_2_14_17_1 e_1_2_14_29_1 e_1_2_14_6_1 e_1_2_14_5_1 e_1_2_14_8_1 e_1_2_14_7_1 e_1_2_14_9_1 Solenthaler B. (e_1_2_14_32_1) 2008 e_1_2_14_2_1 e_1_2_14_20_1 e_1_2_14_4_1 e_1_2_14_23_1 e_1_2_14_24_1 e_1_2_14_21_1 e_1_2_14_22_1 e_1_2_14_27_1 e_1_2_14_28_1 e_1_2_14_25_1 e_1_2_14_26_1 e_1_2_14_19_1 e_1_2_14_18_1 Löschner F. (e_1_2_14_34_1) 2023 |
References_xml | – volume: 23 start-page: 2235 issue: 10 year: 2017 end-page: 2247 article-title: Pairwise Force SPH Model for Real‐Time Multi‐Interaction Applications publication-title: IEEE Transactions on Visualization and Computer Graphics – volume: 43 start-page: 1 issue: 1 year: 2023 end-page: 14 article-title: Implicit Surface Tension for SPH Fluid Simulation publication-title: ACM Transactions on Graphics – volume: 100 start-page: 335 issue: 2 year: 1992 end-page: 354 article-title: A Continuum Method for Modeling Surface Tension publication-title: Journal of Computational Physics – volume: 95 start-page: 65 year: 1805 end-page: 87 article-title: An Essay on the Cohesion of Fluids publication-title: Philosophical Transactions of the Royal Society of London Series I – volume: 229 start-page: 5011 issue: 13 year: 2010 end-page: 5021 article-title: A New Surface‐Tension Formulation for Multi‐Phase SPH Using a Reproducing Divergence Approximation publication-title: Journal of Computational Physics – volume: 110 start-page: 399 issue: 2 year: 1994 end-page: 406 article-title: Simulating Free Surface Flows With SPH publication-title: Journal of Computational Physics – year: 2007 – volume: 33 start-page: 1 issue: 4 year: 2014 end-page: 11 article-title: Projective Dynamics: Fusing Constraint Projections for Fast Simulation publication-title: ACM Transactions on Graphics – volume: 34 start-page: 1 issue: 1 year: 2015 end-page: 9 article-title: Robust Simulation of Sparsely Sampled Thin Features in SPH‐Based Free Surface Flows publication-title: ACM Transactions on Graphics – volume: 44 start-page: 1 issue: 1 year: 2024 end-page: 28 article-title: Unified Pressure, Surface Tension and Friction for SPH Fluids publication-title: ACM Transactions on Graphics – volume: 31 start-page: 1 issue: 4 year: 2012 end-page: 8 article-title: Versatile Rigid‐Fluid Coupling for Incompressible SPH publication-title: ACM Transactions on Graphics – volume: 32 start-page: 1186 year: 2017 end-page: 1197 article-title: Surface Tension Model Based on Implicit Incompressible Smoothed Particle Hydrodynamics for Fluid Simulation publication-title: Journal of Computer Science and Technology – volume: 476 year: 2023 article-title: Energy‐Conserving Formulation of the CSF Model for the Simulation of Surface Tension at Fluid‐Fluid Interfaces With Smoothed Particle Hydrodynamics publication-title: Journal of Computational Physics – volume: 59261 year: 2019 – volume: 39 start-page: 1 issue: 4 year: 2020 end-page: 14 article-title: Codimensional Surface Tension Flow Using Moving‐Least‐Squares Particles publication-title: ACM Transactions on Graphics – volume: 40 start-page: 1 issue: 4 year: 2021 end-page: 12 article-title: Solid‐Fluid Interaction With Surface‐Tension‐Dominant Contact publication-title: ACM Transactions on Graphics – volume: 34 start-page: 1 issue: 4 year: 2015 end-page: 9 article-title: Double Bubbles Sans Toil and Trouble: Discrete Circulation‐Preserving Vortex Sheets for Soap Films and Foams publication-title: ACM Transactions on Graphics – volume: 191 start-page: 448 issue: 2 year: 2003 end-page: 475 article-title: Numerical Simulation of Interfacial Flows by Smoothed Particle Hydrodynamics publication-title: Journal of Computational Physics – year: 2008 – volume: 32 start-page: 1 issue: 6 year: 2013 end-page: 8 article-title: Versatile Surface Tension and Adhesion for SPH Fluids publication-title: ACM Transactions on Graphics – year: 2020 – volume: 73 start-page: 284 year: 2014 end-page: 292 article-title: An Incompressible Multi‐Phase Smoothed Particle Hydrodynamics (SPH) Method for Modelling Thermocapillary Flow publication-title: International Journal of Heat and Mass Transfer – volume: 33 start-page: 333 issue: 3 year: 2000 end-page: 353 article-title: Simulating Surface Tension With Smoothed Particle Hydrodynamics publication-title: International Journal for Numerical Methods in Fluids – year: 2023 – volume: 39 start-page: 1 issue: 6 year: 2020 end-page: 13 article-title: An Implicit Updated Lagrangian Formulation for Liquids With Large Surface Energy publication-title: ACM Transactions on Graphics – volume: 36 start-page: 1 issue: 6 year: 2017 end-page: 11 article-title: A Hyperbolic Geometric Flow for Evolving Films and Foams publication-title: ACM Transactions on Graphics – volume: 20 start-page: 426 issue: 3 year: 2014 end-page: 435 article-title: Implicit Incompressible SPH publication-title: IEEE Transactions on Visualization and Computer Graphics – volume: 37 start-page: 1 issue: 2 year: 2018 end-page: 11 article-title: Pressure Boundaries for Implicit Incompressible SPH publication-title: ACM Transactions on Graphics – volume: 35 start-page: 1 issue: 4 year: 2016 end-page: 12 article-title: Surface‐Only Liquids publication-title: ACM Transactions on Graphics – start-page: 41 year: 2015 end-page: 50 – volume: 41 start-page: 1 issue: 6 year: 2022 end-page: 12 article-title: Position‐Based Surface Tension Flow publication-title: ACM Transactions on Graphics – volume: 40 start-page: 1 issue: 4 year: 2021 end-page: 16 article-title: A Momentum‐Conserving Implicit Material Point Method for Surface Tension With Contact Angles and Spatial Gradients publication-title: ACM Transactions on Graphics – volume: 231 start-page: 1499 issue: 4 year: 2012 end-page: 1523 article-title: Incompressible Smoothed Particle Hydrodynamics for Free‐Surface Flows: A Generalised Diffusion‐Based Algorithm for Stability and Validations for Impulsive Flows and Propagating Waves publication-title: Journal of Computational Physics – volume: 40 start-page: 1 issue: 6 year: 2021 end-page: 20 article-title: FrictionalMonolith: A Monolithic Optimization‐Based Approach for Granular Flow With Contact‐Aware Rigid‐Body Coupling publication-title: ACM Transactions on Graphics – ident: e_1_2_14_27_1 doi: 10.1016/j.jcp.2022.111895 – ident: e_1_2_14_22_1 doi: 10.1145/3550454.3555476 – ident: e_1_2_14_17_1 doi: 10.1016/0021‐9991(92)90240‐Y – ident: e_1_2_14_15_1 doi: 10.1145/2185520.2185558 – ident: e_1_2_14_5_1 doi: 10.1145/2767003 – ident: e_1_2_14_6_1 doi: 10.1145/3130800.3130835 – ident: e_1_2_14_4_1 doi: 10.1145/3386569.3392487 – ident: e_1_2_14_13_1 doi: 10.1016/j.ijheatmasstransfer.2014.01.064 – start-page: 41 volume-title: Workshop on Virtual Reality Interaction and Physical Simulation year: 2015 ident: e_1_2_14_16_1 – ident: e_1_2_14_20_1 doi: 10.1145/2682630 – ident: e_1_2_14_18_1 doi: 10.1002/1097-0363(20000615)33:3<333::AID-FLD11>3.0.CO;2-7 – ident: e_1_2_14_23_1 doi: 10.1145/3414685.3417845 – ident: e_1_2_14_19_1 doi: 10.1016/j.jcp.2010.03.022 – ident: e_1_2_14_29_1 – volume-title: Eurographics/SIGGRAPH Symposium on Computer Animation year: 2008 ident: e_1_2_14_32_1 – ident: e_1_2_14_33_1 doi: 10.1145/3180486 – ident: e_1_2_14_21_1 doi: 10.1145/2897824.2925899 – ident: e_1_2_14_7_1 doi: 10.1109/TVCG.2017.2706289 – ident: e_1_2_14_12_1 doi: 10.1145/3631936 – ident: e_1_2_14_31_1 doi: 10.1109/TVCG.2013.105 – ident: e_1_2_14_8_1 doi: 10.1145/3708034 – ident: e_1_2_14_9_1 doi: 10.1145/3450626.3459862 – ident: e_1_2_14_11_1 doi: 10.1115/DETC2019-98124 – ident: e_1_2_14_25_1 doi: 10.1145/3478513.3480539 – ident: e_1_2_14_2_1 doi: 10.1145/2508363.2508395 – ident: e_1_2_14_26_1 doi: 10.1006/jcph.1994.1034 – volume-title: Eurographics/SIGGRAPH Symposium on Computer Animation year: 2007 ident: e_1_2_14_3_1 – ident: e_1_2_14_24_1 doi: 10.1145/3450626.3459874 – volume-title: Vision, Modeling, and Visualization year: 2023 ident: e_1_2_14_34_1 – ident: e_1_2_14_10_1 doi: 10.1007/s11390-017-1793-0 – ident: e_1_2_14_14_1 doi: 10.1145/2601097.2601116 – ident: e_1_2_14_30_1 doi: 10.1016/S0021-9991(03)00324-3 – ident: e_1_2_14_28_1 doi: 10.1016/j.jcp.2011.10.027 – ident: e_1_2_14_35_1 doi: 10.1098/rstl.1805.0005 |
SSID | ssj0026210 |
Score | 2.3716266 |
Snippet | ABSTRACT
We propose a novel simulation method for surface tension effects based on the Smoothed Particle Hydrodynamics framework, capturing versatile tension... We propose a novel simulation method for surface tension effects based on the Smoothed Particle Hydrodynamics framework, capturing versatile tension effects... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Index Database Publisher |
SubjectTerms | Energy fluid simulation interface energy Interfaces Kernel functions Marangoni convection Marangoni effect Optimization Smooth particle hydrodynamics Surface tension wetting |
Title | A Versatile Energy‐Based SPH Surface Tension With Spatial Gradients |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcav.70057 https://www.proquest.com/docview/3228987849 |
Volume | 36 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB6kJz34FqtVFvHgJW2y2c0DT7W0FkERW2sPQsg-gkVJpUk9ePIn-Bv9Je5umlYFQbyFkA3JPHZmlm--AThWEUMmXGpYuZ1YRChdxK4QlhsK17dZwoSZdXh55XVvycWQDpfgtOyFKfgh5gdu2jPMfq0dPGZZY0EayuOXuq97KdX-q7FaOiG6mVNHYQ8XTASUeJYuE0pWIRs35iu_x6JFgvk1TTVxprMG9-UXFvCSx_o0Z3X--oO88Z-_sA6rs_wTNQuD2YAlmW7CymCUTYu72Ra0m0ifoimVPUnUNr2BH2_vZyrcCdS77qLedJLEXKK-xr6PU3Q3yh-QHm2sTBmdTwyGLM-2od9p91tdazZtweI4JL4lfKFSGx4TVeIlnDKlQ-xIl0uHY6HqHptSJVQaKJfnmFFX2nasAj5LiIPjwHd3oJKOU7kLyHZEQJhWNncJ9h1Gde3LPZ6QmFHmVOGoFHv0XHBqRAV7Mo6USCIjkirUSoVEM7fKIrX7BGHgBySswomR7O8viFrNgbnY-_uj-7CM9XxfA2isQSWfTOWBSjpydmis6xOwLdDy |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtNAEB6FcCg9QGlBBEJZoVbi4tRer2PnwCHkh5Q2UUVC2tvK-2M1apWg2AHBiUfgPfoqfYo-SWfXcQqVkHrpgZtleVfrnf_RzDcAO2gxdCK1KSt3E4cppEXsK-X4DeWHrkiEsrMO-4N67wv7dBKclOCi6IXJ8SFWCTcjGVZfGwE3Cem9G9RQGX-rhaaZcllSeaB_fMeALX2_30bq7lLa7YxaPWc5U8CRtMFCR4UKDbiMGQYyiQwEnpR62pfak1Shd-8GAcWQIELGllQEvnbdGM2aSJhH4yj0cdsH8NAMEDdA_e3PK6wqXJVDHwSs7pi4pIAxcune6qR_G78bj_ZPv9gatu4TuCyuJK9nOastMlGTP2-hRf4nd7YBj5cONmnmEvEUSnq6CevjSbrI36Zb0GkSkyZEnjzXpGObH69-_f6A9lyR4VGPDBfzJJaajExx_2xKjifZKTGzm1FWyce5LZLL0mcwuo_feA7l6WyqXwBxPRUxYbhZ-oyGnghMcC_rMmGxCIRXgbcFmfnXHDSE5_DQlCMFuKVABaoFA_Cl3kg5qteoEYURa1TgnaXkvzfgrebYPry8-6dvYK036h_yw_3BwSt4RM0wY1u9WYVyNl_o1-hhZWLbcjYBfs9ccQ3uWiun |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NTttAEB5RkKpy4KctIvyuqiL14mCv17F94BBIQigUoZICt5X3xwKBAoodEJx4BJ6DV-EteBJm13FokZB64cDNsryr9X4zOzOrmW8AvqPF0KnUJq3cTR2mEIvEV8rxY-WHrkiFsr0Of-3W2n_Yz6PgaATuy1qYgh9ieOFmNMOe10bBL1S6-kwaKpPLamhqKQcZldv6-grjtWxtq4HgrlDaanY22s6gpYAjacxCR4UK7bdMGMYxqQwELpR62pfak1Shc-8GAcWIIEK5llQEvnbdBK2aSJlHkyj0cdoPMMZqbmzaRDR-D6mqcFTBfBCwmmPCkpLFyKWrw5X-a_ueHdq_3WJr11qT8FDuSJHOclrt56Iqb16QRb6PLZuCiYF7TeqFPkzDiO5-hvGDk6xfvM2-QLNOzCUhSuSZJk1b-vh4e7eO1lyR_b022e_30kRq0jGp_eddcniSHxPTuRk1lWz2bIpcnn2Fzlv8xgyMds-7ehaI66mICSPL0mc09ERgQntZkylLRCC8CnwrUeYXBWUIL8ihKUcEuEWgAgsl_nxwamQcD9cojsKIxRX4YYF8fQK-UT-wD3P__-kyfNxrtPjO1u72PHyippOxTd1cgNG819eL6F7lYsnKNQH-xkLxBBW6KlY |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Versatile+Energy%E2%80%90Based+SPH+Surface+Tension+With+Spatial+Gradients&rft.jtitle=Computer+animation+and+virtual+worlds&rft.au=Wang%2C+Qianwei&rft.au=Xu%2C+Yanrui&rft.au=Sheng%2C+Xiangyu&rft.au=Yao%2C+Chao&rft.date=2025-05-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=1546-4261&rft.eissn=1546-427X&rft.volume=36&rft.issue=3&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fcav.70057&rft.externalDBID=10.1002%252Fcav.70057&rft.externalDocID=CAV70057 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1546-4261&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1546-4261&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1546-4261&client=summon |