LFGarNet: Loose‐Fitting Garment Animation With Multi‐Attribute‐Aware Graph Network

ABSTRACT Current AI animation generation methods excel in tight‐fitting clothing scenarios but struggle with deformation distortion and the gradual loss of wrinkles over extended simulations in loose‐fitting clothing. To address these issues, we propose a multi‐attribute‐aware Graph Network. This ap...

Full description

Saved in:
Bibliographic Details
Published inComputer animation and virtual worlds Vol. 36; no. 2
Main Authors Zhang, Peng, Fei, Bo, Wei, Meng, Zhan, Jiamei, Wang, Kexin, Lv, Youlong
Format Journal Article
LanguageEnglish
Published Hoboken, USA John Wiley & Sons, Inc 01.03.2025
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract ABSTRACT Current AI animation generation methods excel in tight‐fitting clothing scenarios but struggle with deformation distortion and the gradual loss of wrinkles over extended simulations in loose‐fitting clothing. To address these issues, we propose a multi‐attribute‐aware Graph Network. This approach mitigates the gradual loss of wrinkles by dividing animation sequences into multiple stages based on motion categories, recognizing that identical body postures can cause different clothing deformations due to varying motion tendencies. In each stage, we first restore coarse, globally guided deformations based on the motion category, followed by enhancing detailed features. We observed that garments within the same sport category exhibit similar local wrinkles and that the degree of fit to the body varies significantly across different regions of the same garment. We introduce two specific clothing attributes: “looseness” and “deformity,” which relate to local wrinkles and have physical significance. A clothing attribute encoder perceives these attributes and constructs a clothing graph model to estimate detailed features. Our method effectively handles clothing deformations across various motion types, including extreme postures, with qualitative and quantitative analyses confirming its effectiveness. Optimizing Wrinkle Details in Loose Garment Animations Through Garment Attribute Awareness.
AbstractList ABSTRACT Current AI animation generation methods excel in tight‐fitting clothing scenarios but struggle with deformation distortion and the gradual loss of wrinkles over extended simulations in loose‐fitting clothing. To address these issues, we propose a multi‐attribute‐aware Graph Network. This approach mitigates the gradual loss of wrinkles by dividing animation sequences into multiple stages based on motion categories, recognizing that identical body postures can cause different clothing deformations due to varying motion tendencies. In each stage, we first restore coarse, globally guided deformations based on the motion category, followed by enhancing detailed features. We observed that garments within the same sport category exhibit similar local wrinkles and that the degree of fit to the body varies significantly across different regions of the same garment. We introduce two specific clothing attributes: “looseness” and “deformity,” which relate to local wrinkles and have physical significance. A clothing attribute encoder perceives these attributes and constructs a clothing graph model to estimate detailed features. Our method effectively handles clothing deformations across various motion types, including extreme postures, with qualitative and quantitative analyses confirming its effectiveness. Optimizing Wrinkle Details in Loose Garment Animations Through Garment Attribute Awareness.
Current AI animation generation methods excel in tight‐fitting clothing scenarios but struggle with deformation distortion and the gradual loss of wrinkles over extended simulations in loose‐fitting clothing. To address these issues, we propose a multi‐attribute‐aware Graph Network. This approach mitigates the gradual loss of wrinkles by dividing animation sequences into multiple stages based on motion categories, recognizing that identical body postures can cause different clothing deformations due to varying motion tendencies. In each stage, we first restore coarse, globally guided deformations based on the motion category, followed by enhancing detailed features. We observed that garments within the same sport category exhibit similar local wrinkles and that the degree of fit to the body varies significantly across different regions of the same garment. We introduce two specific clothing attributes: “looseness” and “deformity,” which relate to local wrinkles and have physical significance. A clothing attribute encoder perceives these attributes and constructs a clothing graph model to estimate detailed features. Our method effectively handles clothing deformations across various motion types, including extreme postures, with qualitative and quantitative analyses confirming its effectiveness.
Author Zhan, Jiamei
Zhang, Peng
Fei, Bo
Lv, Youlong
Wei, Meng
Wang, Kexin
Author_xml – sequence: 1
  givenname: Peng
  surname: Zhang
  fullname: Zhang, Peng
  organization: Donghua University
– sequence: 2
  givenname: Bo
  orcidid: 0009-0001-5180-9016
  surname: Fei
  fullname: Fei, Bo
  organization: Donghua University
– sequence: 3
  givenname: Meng
  surname: Wei
  fullname: Wei, Meng
  organization: Donghua University
– sequence: 4
  givenname: Jiamei
  surname: Zhan
  fullname: Zhan, Jiamei
  organization: Donghua University
– sequence: 5
  givenname: Kexin
  surname: Wang
  fullname: Wang, Kexin
  organization: Donghua University
– sequence: 6
  givenname: Youlong
  orcidid: 0000-0001-7201-8603
  surname: Lv
  fullname: Lv, Youlong
  email: lvyoulong@dhu.edu.cn
  organization: Donghua University
BookMark eNp1kL1OwzAUhS1UJNrCwBtEYmJIazuOnbBFFS1IARZ-ulmO41CXNi6O06obj8Az8iS4BLEx3aur75yrcwagV5taAXCO4AhBiMdSbEcMQsSOQB_FhIYEs3nvb6foBAyaZulRihHsg3k-nQl7r9xVkBvTqK-Pz6l2Ttevgb-vVe2CrNZr4bSpgxftFsFdu3LaY5lzVhetO0iynbAqmFmxWQTea2fs2yk4rsSqUWe_cwieptePk5swf5jdTrI8lDglLKQlkRWlEcZxkRYyjjETqWQlIjShSEmaEFkmVLBUsapgLGIqVgmmrCSkQhWJhuCi891Y896qxvGlaW3tX_IIpRGFcRpTT112lLSmaayq-Mb6VHbPEeSH4rgvjv8U59lxx-70Su3_B_kke-4U30vLcxY
Cites_doi 10.1111/cgf.12851
10.1145/2766907
10.1145/3478513.3480479
10.1145/3386569.3392396
10.1145/3355089.3356512
10.1007/978-3-7091-6874-5_13
10.1145/3528233.3530709
10.1109/CVPR52729.2023.01627
10.1145/3550454.3555485
10.1145/3478513.3480497
10.1007/978-3-030-58565-5_21
10.1109/CVPR46437.2021.01159
10.1109/CVPR52688.2022.00797
10.1145/3596711.3596800
10.1145/3550454.3555491
10.1109/TPAMI.2022.3168569
10.1109/CVPR42600.2020.00650
10.1145/1507149.1507157
10.1111/cgf.14651
10.1111/cgf.13643
10.1002/cav.1770
10.1002/cav.1557
10.1145/280814.280821
10.1111/cgf.14937
10.1109/CVPR42600.2020.00739
10.1145/3072959.2990496
10.1145/2366145.2366218
10.1109/ICCV48922.2021.00542
10.1002/cav.1811
10.1145/1576246.1531393
10.1145/3414685.3417763
10.1109/ICCV.2019.00883
10.1016/j.cagd.2007.07.004
10.1109/tpami.2020.3010886
10.1145/3326362
10.1145/3451262
ContentType Journal Article
Copyright 2025 John Wiley & Sons Ltd.
2025 John Wiley & Sons, Ltd.
Copyright_xml – notice: 2025 John Wiley & Sons Ltd.
– notice: 2025 John Wiley & Sons, Ltd.
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1002/cav.70017
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList
CrossRef
Computer and Information Systems Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Visual Arts
EISSN 1546-427X
EndPage n/a
ExternalDocumentID 10_1002_cav_70017
CAV70017
Genre article
GrantInformation_xml – fundername: The Fundamental Research Funds for the Central Universities
  funderid: 2232024G‐14
– fundername: National Key R∖D Program of China
  funderid: 2019YFB1706300
GroupedDBID .3N
.4S
.DC
.GA
.Y3
05W
0R~
10A
1L6
1OC
29F
31~
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
6J9
702
7PT
8-0
8-1
8-3
8-4
8-5
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACPOU
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADMLS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUYR
AFBPY
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGYGG
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ARCSS
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EDO
EJD
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
HF~
HGLYW
HHY
HVGLF
HZ~
I-F
ITG
ITH
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N9A
NF~
O66
O9-
OIG
P2W
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
ROL
RX1
RYL
SUPJJ
TN5
TUS
UB1
V2E
V8K
W8V
W99
WBKPD
WIH
WIK
WQJ
WXSBR
WYISQ
WZISG
XG1
XV2
~IA
~WT
1OB
AAMMB
AAYXX
AEFGJ
AGXDD
AIDQK
AIDYY
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c2947-6d4cf663225b9bc5527a9c7d146861ec684cd86a79e7fb7737e5e8267d44f1f43
IEDL.DBID DR2
ISSN 1546-4261
IngestDate Wed Aug 13 04:10:15 EDT 2025
Tue Aug 05 12:05:26 EDT 2025
Wed Apr 23 09:40:30 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2947-6d4cf663225b9bc5527a9c7d146861ec684cd86a79e7fb7737e5e8267d44f1f43
Notes Funding
This work is supported by the Fundamental Research Funds for the Central Universities (2232024G‐14), and National Key R∖D Program of China (2019YFB1706300).
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-7201-8603
0009-0001-5180-9016
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/cav.70017
PQID 3193605956
PQPubID 2034909
PageCount 14
ParticipantIDs proquest_journals_3193605956
crossref_primary_10_1002_cav_70017
wiley_primary_10_1002_cav_70017_CAV70017
PublicationCentury 2000
PublicationDate March/April 2025
2025-03-00
20250301
PublicationDateYYYYMMDD 2025-03-01
PublicationDate_xml – month: 03
  year: 2025
  text: March/April 2025
PublicationDecade 2020
PublicationPlace Hoboken, USA
PublicationPlace_xml – name: Hoboken, USA
– name: Chichester
PublicationTitle Computer animation and virtual worlds
PublicationYear 2025
Publisher John Wiley & Sons, Inc
Wiley Subscription Services, Inc
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley Subscription Services, Inc
References 2023; 42
2015; 34
2018; 29
2021; 4
2021; 42
2017; 36
2017; 28
2013; 24
2009
2020; 39
2022; 45
2019; 38
2022; 41
2023; 2
2022; 44
2021; 40
2007; 24
2012; 31
2016; 35
e_1_2_10_23_1
Li Y. (e_1_2_10_20_1) 2021; 42
e_1_2_10_24_1
e_1_2_10_21_1
e_1_2_10_22_1
Wang T. Y. (e_1_2_10_30_1) 2019; 38
e_1_2_10_2_1
e_1_2_10_4_1
e_1_2_10_18_1
e_1_2_10_3_1
e_1_2_10_19_1
e_1_2_10_6_1
e_1_2_10_16_1
e_1_2_10_5_1
e_1_2_10_17_1
e_1_2_10_38_1
e_1_2_10_8_1
e_1_2_10_14_1
e_1_2_10_37_1
e_1_2_10_7_1
e_1_2_10_15_1
e_1_2_10_36_1
e_1_2_10_12_1
e_1_2_10_35_1
e_1_2_10_9_1
e_1_2_10_13_1
e_1_2_10_34_1
e_1_2_10_10_1
e_1_2_10_33_1
e_1_2_10_11_1
e_1_2_10_32_1
e_1_2_10_31_1
e_1_2_10_29_1
e_1_2_10_27_1
e_1_2_10_28_1
e_1_2_10_25_1
e_1_2_10_26_1
References_xml – volume: 28
  issue: 3–4
  year: 2017
  article-title: Automatic 3D Garment Positioning Based on Surface Metric
  publication-title: Computer Animation and Virtual Worlds
– volume: 44
  start-page: 181
  issue: 1
  year: 2022
  end-page: 195
  article-title: GarNet++: Improving Fast and Accurate Static 3D Cloth Draping by Curvature Loss
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– volume: 41
  start-page: 1
  year: 2022
  end-page: 12
  article-title: Motion Guided Deep Dynamic 3D Garments
  publication-title: ACM Transactions on Graphics
– volume: 42
  issue: 7
  year: 2023
  article-title: D‐Cloth: Skinning‐Based Cloth Dynamic Prediction With a Three‐Stage Network
  publication-title: Computer Graphics Forum
– volume: 36
  start-page: 1
  year: 2017
  article-title: Quasi‐Newton Methods for Real‐Time Simulation of Hyperelastic Materials
  publication-title: ACM Transactions on Graphics
– volume: 31
  start-page: 1
  year: 2012
  end-page: 10
  article-title: Smooth Skinning Decomposition With Rigid Bones
  publication-title: ACM Transactions on Graphics
– volume: 38
  start-page: 355
  year: 2019
  end-page: 366
  article-title: Learning‐Based Animation of Clothing for Virtual Try‐On
  publication-title: Computer Graphics Forum
– volume: 42
  start-page: 231
  issue: 1
  year: 2023
  end-page: 244
  article-title: Detail‐Aware Deep Clothing Animations Infused With Multi‐Source Attributes
  publication-title: Computer Graphics Forum
– volume: 24
  start-page: 428
  year: 2007
  end-page: 442
  article-title: Principal Curvatures From the Integral Invariant Viewpoint
  publication-title: Computer Aided Geometric Design
– volume: 29
  issue: 3–4
  year: 2018
  article-title: A Fast Garment Fitting Algorithm Using Skeleton‐Based Error Metric
  publication-title: Computer Animation and Virtual Worlds
– volume: 2
  start-page: 851
  year: 2023
  end-page: 866
– volume: 39
  start-page: 1
  issue: 6
  year: 2020
  end-page: 15
  article-title: P‐Cloth: Interactive Complex Cloth Simulation on Multi‐GPU Systems Using Dynamic Matrix Assembly and Pipelined Implicit Integrators
  publication-title: ACM Transactions on Graphics (TOG)
– volume: 41
  start-page: 1
  issue: 6
  year: 2022
  end-page: 14
  article-title: Neural Cloth Simulation
  publication-title: ACM Transactions on Graphics (TOG)
– volume: 42
  start-page: 1
  year: 2021
  end-page: 20
  article-title: DiffCloth: Differentiable Cloth Simulation With Dry Frictional Contact
  publication-title: ACM Transactions on Graphics
– volume: 38
  start-page: 1
  issue: 6
  year: 2019
  end-page: 12
  article-title: Learning an Intrinsic Garment Space for Interactive Authoring of Garment Animation
  publication-title: ACM Transactions on Graphics (TOG)
– volume: 24
  start-page: 565
  issue: 6
  year: 2013
  end-page: 576
  article-title: Human Motion Reconstruction From Sparse 3D Motion Sensors Using Kernel CCA‐Based Regression
  publication-title: Computer Animation and Virtual Worlds
– volume: 39
  issue: 4
  year: 2020
  article-title: Projective Dynamics With Dry Frictional Contact
  publication-title: ACM Transactions on Graphics
– volume: 38
  start-page: 1
  year: 2019
  end-page: 12
  article-title: Dynamic Graph CNN for Learning on Point Clouds
  publication-title: ACM Transactions on Graphics
– volume: 35
  start-page: 511
  year: 2016
  end-page: 521
  article-title: CAMA: Contact‐Aware Matrix Assembly With Unified Collision Handling for GPU‐Based Cloth Simulation
  publication-title: Computer Graphics Forum
– volume: 45
  start-page: 1581
  issue: 2
  year: 2022
  end-page: 1593
  article-title: Deepcloth: Neural Garment Representation for Shape and Style Editing
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– volume: 4
  start-page: 1
  issue: 1
  year: 2021
  end-page: 19
  article-title: HeterSkinNet: A Heterogeneous Network for Skin Weights Prediction
  publication-title: Proceedings of the ACM on Computer Graphics and Interactive Techniques
– volume: 34
  start-page: 1
  year: 2015
  end-page: 9
  article-title: Air Meshes for Robust Collision Handling
  publication-title: ACM Transactions on Graphics
– volume: 40
  start-page: 1
  year: 2021
  end-page: 15
  article-title: Dynamic Neural Garments
  publication-title: ACM Transactions on Graphics
– start-page: 1
  year: 2009
  end-page: 12
– ident: e_1_2_10_19_1
  doi: 10.1111/cgf.12851
– ident: e_1_2_10_17_1
  doi: 10.1145/2766907
– ident: e_1_2_10_27_1
  doi: 10.1145/3478513.3480479
– volume: 42
  start-page: 1
  year: 2021
  ident: e_1_2_10_20_1
  article-title: DiffCloth: Differentiable Cloth Simulation With Dry Frictional Contact
  publication-title: ACM Transactions on Graphics
– ident: e_1_2_10_21_1
  doi: 10.1145/3386569.3392396
– volume: 38
  start-page: 1
  issue: 6
  year: 2019
  ident: e_1_2_10_30_1
  article-title: Learning an Intrinsic Garment Space for Interactive Authoring of Garment Animation
  publication-title: ACM Transactions on Graphics (TOG)
  doi: 10.1145/3355089.3356512
– ident: e_1_2_10_18_1
  doi: 10.1007/978-3-7091-6874-5_13
– ident: e_1_2_10_10_1
  doi: 10.1145/3528233.3530709
– ident: e_1_2_10_38_1
  doi: 10.1109/CVPR52729.2023.01627
– ident: e_1_2_10_12_1
  doi: 10.1145/3550454.3555485
– ident: e_1_2_10_11_1
  doi: 10.1145/3478513.3480497
– ident: e_1_2_10_23_1
  doi: 10.1007/978-3-030-58565-5_21
– ident: e_1_2_10_24_1
  doi: 10.1109/CVPR46437.2021.01159
– ident: e_1_2_10_28_1
  doi: 10.1109/CVPR52688.2022.00797
– ident: e_1_2_10_36_1
  doi: 10.1145/3596711.3596800
– ident: e_1_2_10_29_1
  doi: 10.1145/3550454.3555491
– ident: e_1_2_10_31_1
  doi: 10.1109/TPAMI.2022.3168569
– ident: e_1_2_10_8_1
  doi: 10.1109/CVPR42600.2020.00650
– ident: e_1_2_10_33_1
  doi: 10.1145/1507149.1507157
– ident: e_1_2_10_35_1
  doi: 10.1111/cgf.14651
– ident: e_1_2_10_34_1
  doi: 10.1111/cgf.13643
– ident: e_1_2_10_2_1
  doi: 10.1002/cav.1770
– ident: e_1_2_10_4_1
  doi: 10.1002/cav.1557
– ident: e_1_2_10_5_1
  doi: 10.1145/280814.280821
– ident: e_1_2_10_32_1
  doi: 10.1111/cgf.14937
– ident: e_1_2_10_22_1
  doi: 10.1109/CVPR42600.2020.00739
– ident: e_1_2_10_6_1
  doi: 10.1145/3072959.2990496
– ident: e_1_2_10_9_1
  doi: 10.1145/2366145.2366218
– ident: e_1_2_10_26_1
  doi: 10.1109/ICCV48922.2021.00542
– ident: e_1_2_10_3_1
  doi: 10.1002/cav.1811
– ident: e_1_2_10_15_1
  doi: 10.1145/1576246.1531393
– ident: e_1_2_10_16_1
  doi: 10.1145/3414685.3417763
– ident: e_1_2_10_7_1
  doi: 10.1109/ICCV.2019.00883
– ident: e_1_2_10_37_1
  doi: 10.1016/j.cagd.2007.07.004
– ident: e_1_2_10_25_1
  doi: 10.1109/tpami.2020.3010886
– ident: e_1_2_10_14_1
  doi: 10.1145/3326362
– ident: e_1_2_10_13_1
  doi: 10.1145/3451262
SSID ssj0026210
Score 2.3661246
Snippet ABSTRACT Current AI animation generation methods excel in tight‐fitting clothing scenarios but struggle with deformation distortion and the gradual loss of...
Current AI animation generation methods excel in tight‐fitting clothing scenarios but struggle with deformation distortion and the gradual loss of wrinkles...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Index Database
Publisher
SubjectTerms Animation
clothing attributes
Deformation effects
garment deformation prediction
garment dynamics
Garments
motion driven animation
Qualitative analysis
Title LFGarNet: Loose‐Fitting Garment Animation With Multi‐Attribute‐Aware Graph Network
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcav.70017
https://www.proquest.com/docview/3193605956
Volume 36
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LSgMxFA2lK134FqtVgrhwM32kaTKjq6HYFqldiK1dCEOSuYNFaKUzVXDlJ_iNfol5dOoDBHE3hGSYuclJzk3uPUHoROMLanUINJAS7aDEtOYJEFQDT-j1WdZJ4psE56s-6w7o5ag5KqDzPBfG6UMsN9wMMux8bQAuZFr9FA1V4qliDk1NJrmJ1TKE6HopHUUYcUoETco84ybkqkI1Ul22_L4WfRLMrzTVrjPtdXSXf6ELL3mozDNZUS8_xBv_-QsbaG3BP3HoBswmKsBkC60Ox-nclabbaNRrd8SsD9kZ7k2nKby_vrXHNjwa63Kzm4jDydilPOLbcXaPbRavrhZm7v4s0yR8FjPAHaOHjfsu1nwHDdoXN62ut7iAwVMkoNxjMVWJpiQa8zKQyoi1iUDx2KRrsToo5lMV-0zwAHgiOW9waIL2V3hMaVJPaGMXFSfTCewhzAASCkwxJRWVjPhAa1KTv8BXnDRUXELHeVdEj05nI3KKyiTSZoqsmUqonHdStIBaGuk5pKF9Mu3nldCptfbvL4ha4dA-7P-96gFaIebOXxt3VkbFbDaHQ01EMnlkR9wH8ina_g
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9tAEB5ROFAO5VEqUh5dVRy4OI_NZtdGXCwgSamTA4I0l8ryrsdqhOSgxGklTvwEfiO_hH3EASpVQr1Zq13Lnt1vd2Z25huAQ40vrDcw0EDKtIGSsrqXYMI08BJ9PssGzXyT4Nzr8-41uxi2hktwUubCOH6IhcPNIMPu1wbgxiFde2YNVcnvqrk1Fe9gxVT0Nsz5Z5cL8ijKqeMiaDHuGUOh5BWq09pi6OvT6FnFfKmo2pOmvQ4_y290ASY31Vkhq-ruL_rG__2JDfgwV0FJ6NbMJixhvgVrg9F05lqnH2EYtTvJpI_FMYnG4yk-3j-0RzZCmuh241AkYT5yWY_kx6j4RWwir-4WFq6ElhkS_kkmSDqGEpv0Xbj5Nly3z69Ou968BoOnaMCEx1OmMq2VaNjLQCrD15YESqQmY4s3UHGfqdTniQhQZFKIpsAWapNFpIxljYw1P8FyPs5xBwhHzBhyxZVUTHLqI6tLrf8FvhK0qdIKfC3nIr51VBuxI1WmsRZTbMVUgb1yluI52qax3kaa2izTpl4Fjqy4__2C-DQc2IfPb-_6BVa7V70ojr71v-_Ce2pKANswtD1YLiYz3Nd6SSEP7PJ7AqQ-3xo
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fa9swED_SFEb30O5fabp0E2MPe3HqKIpkt0-mrZNtWRilyfJQMJZ8ZqGQlMTpoE_9CP2M_STVnzjpBoOxNyMkY5_0091Jd78D-KjxhX4TQw2kXDsoGfO9FFOmgZdq_SybNA9MgvO3Pu8O2JdRe1SB4zIXxvFDrA7cDDLsfm0Afp3lh2vSUJXeNMylqdiATcb90NRtOD1fcUdRTh0VQZtxz_gJJa2QTw9XQ39XRmsL86mdahVNvAOX5Se6-JKrxqKQDXX7B3vjf_7DC9heGqAkcivmJVRw8gqeD8fzhWudv4ZRL-6ksz4WR6Q3nc7x4e4-Htv4aKLbzXEiiSZjl_NIfoyLn8Sm8epuUeEKaJkh0a90hqRjCLFJ3wWbv4FBfHZx0vWWFRg8RUMmPJ4xlWubRINehlIZtrY0VCIz-Vq8iYoHTGUBT0WIIpdCtAS2UTssImMsb-astQvVyXSCe0A4Ys6QK66kYpLTAJkvtfUXBkrQlspq8KGciuTaEW0kjlKZJlpMiRVTDerlJCVLrM0TvYm0tFOmHb0afLLS_vsLkpNoaB_2_73re3j2_TROep_7X9_CFjX1f20MWh2qxWyBB9ooKeQ7u_geAS1u3ck
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=LFGarNet+%3A+Loose%E2%80%90Fitting+Garment+Animation+With+Multi%E2%80%90Attribute%E2%80%90Aware+Graph+Network&rft.jtitle=Computer+animation+and+virtual+worlds&rft.au=Zhang%2C+Peng&rft.au=Fei%2C+Bo&rft.au=Wei%2C+Meng&rft.au=Zhan%2C+Jiamei&rft.date=2025-03-01&rft.issn=1546-4261&rft.eissn=1546-427X&rft.volume=36&rft.issue=2&rft_id=info:doi/10.1002%2Fcav.70017&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_cav_70017
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1546-4261&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1546-4261&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1546-4261&client=summon