LFGarNet: Loose‐Fitting Garment Animation With Multi‐Attribute‐Aware Graph Network
ABSTRACT Current AI animation generation methods excel in tight‐fitting clothing scenarios but struggle with deformation distortion and the gradual loss of wrinkles over extended simulations in loose‐fitting clothing. To address these issues, we propose a multi‐attribute‐aware Graph Network. This ap...
Saved in:
Published in | Computer animation and virtual worlds Vol. 36; no. 2 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken, USA
John Wiley & Sons, Inc
01.03.2025
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | ABSTRACT
Current AI animation generation methods excel in tight‐fitting clothing scenarios but struggle with deformation distortion and the gradual loss of wrinkles over extended simulations in loose‐fitting clothing. To address these issues, we propose a multi‐attribute‐aware Graph Network. This approach mitigates the gradual loss of wrinkles by dividing animation sequences into multiple stages based on motion categories, recognizing that identical body postures can cause different clothing deformations due to varying motion tendencies. In each stage, we first restore coarse, globally guided deformations based on the motion category, followed by enhancing detailed features. We observed that garments within the same sport category exhibit similar local wrinkles and that the degree of fit to the body varies significantly across different regions of the same garment. We introduce two specific clothing attributes: “looseness” and “deformity,” which relate to local wrinkles and have physical significance. A clothing attribute encoder perceives these attributes and constructs a clothing graph model to estimate detailed features. Our method effectively handles clothing deformations across various motion types, including extreme postures, with qualitative and quantitative analyses confirming its effectiveness.
Optimizing Wrinkle Details in Loose Garment Animations Through Garment Attribute Awareness. |
---|---|
AbstractList | ABSTRACT
Current AI animation generation methods excel in tight‐fitting clothing scenarios but struggle with deformation distortion and the gradual loss of wrinkles over extended simulations in loose‐fitting clothing. To address these issues, we propose a multi‐attribute‐aware Graph Network. This approach mitigates the gradual loss of wrinkles by dividing animation sequences into multiple stages based on motion categories, recognizing that identical body postures can cause different clothing deformations due to varying motion tendencies. In each stage, we first restore coarse, globally guided deformations based on the motion category, followed by enhancing detailed features. We observed that garments within the same sport category exhibit similar local wrinkles and that the degree of fit to the body varies significantly across different regions of the same garment. We introduce two specific clothing attributes: “looseness” and “deformity,” which relate to local wrinkles and have physical significance. A clothing attribute encoder perceives these attributes and constructs a clothing graph model to estimate detailed features. Our method effectively handles clothing deformations across various motion types, including extreme postures, with qualitative and quantitative analyses confirming its effectiveness.
Optimizing Wrinkle Details in Loose Garment Animations Through Garment Attribute Awareness. Current AI animation generation methods excel in tight‐fitting clothing scenarios but struggle with deformation distortion and the gradual loss of wrinkles over extended simulations in loose‐fitting clothing. To address these issues, we propose a multi‐attribute‐aware Graph Network. This approach mitigates the gradual loss of wrinkles by dividing animation sequences into multiple stages based on motion categories, recognizing that identical body postures can cause different clothing deformations due to varying motion tendencies. In each stage, we first restore coarse, globally guided deformations based on the motion category, followed by enhancing detailed features. We observed that garments within the same sport category exhibit similar local wrinkles and that the degree of fit to the body varies significantly across different regions of the same garment. We introduce two specific clothing attributes: “looseness” and “deformity,” which relate to local wrinkles and have physical significance. A clothing attribute encoder perceives these attributes and constructs a clothing graph model to estimate detailed features. Our method effectively handles clothing deformations across various motion types, including extreme postures, with qualitative and quantitative analyses confirming its effectiveness. |
Author | Zhan, Jiamei Zhang, Peng Fei, Bo Lv, Youlong Wei, Meng Wang, Kexin |
Author_xml | – sequence: 1 givenname: Peng surname: Zhang fullname: Zhang, Peng organization: Donghua University – sequence: 2 givenname: Bo orcidid: 0009-0001-5180-9016 surname: Fei fullname: Fei, Bo organization: Donghua University – sequence: 3 givenname: Meng surname: Wei fullname: Wei, Meng organization: Donghua University – sequence: 4 givenname: Jiamei surname: Zhan fullname: Zhan, Jiamei organization: Donghua University – sequence: 5 givenname: Kexin surname: Wang fullname: Wang, Kexin organization: Donghua University – sequence: 6 givenname: Youlong orcidid: 0000-0001-7201-8603 surname: Lv fullname: Lv, Youlong email: lvyoulong@dhu.edu.cn organization: Donghua University |
BookMark | eNp1kL1OwzAUhS1UJNrCwBtEYmJIazuOnbBFFS1IARZ-ulmO41CXNi6O06obj8Az8iS4BLEx3aur75yrcwagV5taAXCO4AhBiMdSbEcMQsSOQB_FhIYEs3nvb6foBAyaZulRihHsg3k-nQl7r9xVkBvTqK-Pz6l2Ttevgb-vVe2CrNZr4bSpgxftFsFdu3LaY5lzVhetO0iynbAqmFmxWQTea2fs2yk4rsSqUWe_cwieptePk5swf5jdTrI8lDglLKQlkRWlEcZxkRYyjjETqWQlIjShSEmaEFkmVLBUsapgLGIqVgmmrCSkQhWJhuCi891Y896qxvGlaW3tX_IIpRGFcRpTT112lLSmaayq-Mb6VHbPEeSH4rgvjv8U59lxx-70Su3_B_kke-4U30vLcxY |
Cites_doi | 10.1111/cgf.12851 10.1145/2766907 10.1145/3478513.3480479 10.1145/3386569.3392396 10.1145/3355089.3356512 10.1007/978-3-7091-6874-5_13 10.1145/3528233.3530709 10.1109/CVPR52729.2023.01627 10.1145/3550454.3555485 10.1145/3478513.3480497 10.1007/978-3-030-58565-5_21 10.1109/CVPR46437.2021.01159 10.1109/CVPR52688.2022.00797 10.1145/3596711.3596800 10.1145/3550454.3555491 10.1109/TPAMI.2022.3168569 10.1109/CVPR42600.2020.00650 10.1145/1507149.1507157 10.1111/cgf.14651 10.1111/cgf.13643 10.1002/cav.1770 10.1002/cav.1557 10.1145/280814.280821 10.1111/cgf.14937 10.1109/CVPR42600.2020.00739 10.1145/3072959.2990496 10.1145/2366145.2366218 10.1109/ICCV48922.2021.00542 10.1002/cav.1811 10.1145/1576246.1531393 10.1145/3414685.3417763 10.1109/ICCV.2019.00883 10.1016/j.cagd.2007.07.004 10.1109/tpami.2020.3010886 10.1145/3326362 10.1145/3451262 |
ContentType | Journal Article |
Copyright | 2025 John Wiley & Sons Ltd. 2025 John Wiley & Sons, Ltd. |
Copyright_xml | – notice: 2025 John Wiley & Sons Ltd. – notice: 2025 John Wiley & Sons, Ltd. |
DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
DOI | 10.1002/cav.70017 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
DatabaseTitleList | CrossRef Computer and Information Systems Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Visual Arts |
EISSN | 1546-427X |
EndPage | n/a |
ExternalDocumentID | 10_1002_cav_70017 CAV70017 |
Genre | article |
GrantInformation_xml | – fundername: The Fundamental Research Funds for the Central Universities funderid: 2232024G‐14 – fundername: National Key R∖D Program of China funderid: 2019YFB1706300 |
GroupedDBID | .3N .4S .DC .GA .Y3 05W 0R~ 10A 1L6 1OC 29F 31~ 33P 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 6J9 702 7PT 8-0 8-1 8-3 8-4 8-5 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACPOU ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADMLS ADNMO ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUYR AFBPY AFFPM AFGKR AFWVQ AFZJQ AGHNM AGQPQ AGYGG AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ARCSS ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS EDO EJD F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA HF~ HGLYW HHY HVGLF HZ~ I-F ITG ITH IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N9A NF~ O66 O9- OIG P2W P4D PQQKQ Q.N Q11 QB0 QRW R.K ROL RX1 RYL SUPJJ TN5 TUS UB1 V2E V8K W8V W99 WBKPD WIH WIK WQJ WXSBR WYISQ WZISG XG1 XV2 ~IA ~WT 1OB AAMMB AAYXX AEFGJ AGXDD AIDQK AIDYY CITATION 7SC 8FD JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c2947-6d4cf663225b9bc5527a9c7d146861ec684cd86a79e7fb7737e5e8267d44f1f43 |
IEDL.DBID | DR2 |
ISSN | 1546-4261 |
IngestDate | Wed Aug 13 04:10:15 EDT 2025 Tue Aug 05 12:05:26 EDT 2025 Wed Apr 23 09:40:30 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2947-6d4cf663225b9bc5527a9c7d146861ec684cd86a79e7fb7737e5e8267d44f1f43 |
Notes | Funding This work is supported by the Fundamental Research Funds for the Central Universities (2232024G‐14), and National Key R∖D Program of China (2019YFB1706300). ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-7201-8603 0009-0001-5180-9016 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/cav.70017 |
PQID | 3193605956 |
PQPubID | 2034909 |
PageCount | 14 |
ParticipantIDs | proquest_journals_3193605956 crossref_primary_10_1002_cav_70017 wiley_primary_10_1002_cav_70017_CAV70017 |
PublicationCentury | 2000 |
PublicationDate | March/April 2025 2025-03-00 20250301 |
PublicationDateYYYYMMDD | 2025-03-01 |
PublicationDate_xml | – month: 03 year: 2025 text: March/April 2025 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken, USA |
PublicationPlace_xml | – name: Hoboken, USA – name: Chichester |
PublicationTitle | Computer animation and virtual worlds |
PublicationYear | 2025 |
Publisher | John Wiley & Sons, Inc Wiley Subscription Services, Inc |
Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley Subscription Services, Inc |
References | 2023; 42 2015; 34 2018; 29 2021; 4 2021; 42 2017; 36 2017; 28 2013; 24 2009 2020; 39 2022; 45 2019; 38 2022; 41 2023; 2 2022; 44 2021; 40 2007; 24 2012; 31 2016; 35 e_1_2_10_23_1 Li Y. (e_1_2_10_20_1) 2021; 42 e_1_2_10_24_1 e_1_2_10_21_1 e_1_2_10_22_1 Wang T. Y. (e_1_2_10_30_1) 2019; 38 e_1_2_10_2_1 e_1_2_10_4_1 e_1_2_10_18_1 e_1_2_10_3_1 e_1_2_10_19_1 e_1_2_10_6_1 e_1_2_10_16_1 e_1_2_10_5_1 e_1_2_10_17_1 e_1_2_10_38_1 e_1_2_10_8_1 e_1_2_10_14_1 e_1_2_10_37_1 e_1_2_10_7_1 e_1_2_10_15_1 e_1_2_10_36_1 e_1_2_10_12_1 e_1_2_10_35_1 e_1_2_10_9_1 e_1_2_10_13_1 e_1_2_10_34_1 e_1_2_10_10_1 e_1_2_10_33_1 e_1_2_10_11_1 e_1_2_10_32_1 e_1_2_10_31_1 e_1_2_10_29_1 e_1_2_10_27_1 e_1_2_10_28_1 e_1_2_10_25_1 e_1_2_10_26_1 |
References_xml | – volume: 28 issue: 3–4 year: 2017 article-title: Automatic 3D Garment Positioning Based on Surface Metric publication-title: Computer Animation and Virtual Worlds – volume: 44 start-page: 181 issue: 1 year: 2022 end-page: 195 article-title: GarNet++: Improving Fast and Accurate Static 3D Cloth Draping by Curvature Loss publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence – volume: 41 start-page: 1 year: 2022 end-page: 12 article-title: Motion Guided Deep Dynamic 3D Garments publication-title: ACM Transactions on Graphics – volume: 42 issue: 7 year: 2023 article-title: D‐Cloth: Skinning‐Based Cloth Dynamic Prediction With a Three‐Stage Network publication-title: Computer Graphics Forum – volume: 36 start-page: 1 year: 2017 article-title: Quasi‐Newton Methods for Real‐Time Simulation of Hyperelastic Materials publication-title: ACM Transactions on Graphics – volume: 31 start-page: 1 year: 2012 end-page: 10 article-title: Smooth Skinning Decomposition With Rigid Bones publication-title: ACM Transactions on Graphics – volume: 38 start-page: 355 year: 2019 end-page: 366 article-title: Learning‐Based Animation of Clothing for Virtual Try‐On publication-title: Computer Graphics Forum – volume: 42 start-page: 231 issue: 1 year: 2023 end-page: 244 article-title: Detail‐Aware Deep Clothing Animations Infused With Multi‐Source Attributes publication-title: Computer Graphics Forum – volume: 24 start-page: 428 year: 2007 end-page: 442 article-title: Principal Curvatures From the Integral Invariant Viewpoint publication-title: Computer Aided Geometric Design – volume: 29 issue: 3–4 year: 2018 article-title: A Fast Garment Fitting Algorithm Using Skeleton‐Based Error Metric publication-title: Computer Animation and Virtual Worlds – volume: 2 start-page: 851 year: 2023 end-page: 866 – volume: 39 start-page: 1 issue: 6 year: 2020 end-page: 15 article-title: P‐Cloth: Interactive Complex Cloth Simulation on Multi‐GPU Systems Using Dynamic Matrix Assembly and Pipelined Implicit Integrators publication-title: ACM Transactions on Graphics (TOG) – volume: 41 start-page: 1 issue: 6 year: 2022 end-page: 14 article-title: Neural Cloth Simulation publication-title: ACM Transactions on Graphics (TOG) – volume: 42 start-page: 1 year: 2021 end-page: 20 article-title: DiffCloth: Differentiable Cloth Simulation With Dry Frictional Contact publication-title: ACM Transactions on Graphics – volume: 38 start-page: 1 issue: 6 year: 2019 end-page: 12 article-title: Learning an Intrinsic Garment Space for Interactive Authoring of Garment Animation publication-title: ACM Transactions on Graphics (TOG) – volume: 24 start-page: 565 issue: 6 year: 2013 end-page: 576 article-title: Human Motion Reconstruction From Sparse 3D Motion Sensors Using Kernel CCA‐Based Regression publication-title: Computer Animation and Virtual Worlds – volume: 39 issue: 4 year: 2020 article-title: Projective Dynamics With Dry Frictional Contact publication-title: ACM Transactions on Graphics – volume: 38 start-page: 1 year: 2019 end-page: 12 article-title: Dynamic Graph CNN for Learning on Point Clouds publication-title: ACM Transactions on Graphics – volume: 35 start-page: 511 year: 2016 end-page: 521 article-title: CAMA: Contact‐Aware Matrix Assembly With Unified Collision Handling for GPU‐Based Cloth Simulation publication-title: Computer Graphics Forum – volume: 45 start-page: 1581 issue: 2 year: 2022 end-page: 1593 article-title: Deepcloth: Neural Garment Representation for Shape and Style Editing publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence – volume: 4 start-page: 1 issue: 1 year: 2021 end-page: 19 article-title: HeterSkinNet: A Heterogeneous Network for Skin Weights Prediction publication-title: Proceedings of the ACM on Computer Graphics and Interactive Techniques – volume: 34 start-page: 1 year: 2015 end-page: 9 article-title: Air Meshes for Robust Collision Handling publication-title: ACM Transactions on Graphics – volume: 40 start-page: 1 year: 2021 end-page: 15 article-title: Dynamic Neural Garments publication-title: ACM Transactions on Graphics – start-page: 1 year: 2009 end-page: 12 – ident: e_1_2_10_19_1 doi: 10.1111/cgf.12851 – ident: e_1_2_10_17_1 doi: 10.1145/2766907 – ident: e_1_2_10_27_1 doi: 10.1145/3478513.3480479 – volume: 42 start-page: 1 year: 2021 ident: e_1_2_10_20_1 article-title: DiffCloth: Differentiable Cloth Simulation With Dry Frictional Contact publication-title: ACM Transactions on Graphics – ident: e_1_2_10_21_1 doi: 10.1145/3386569.3392396 – volume: 38 start-page: 1 issue: 6 year: 2019 ident: e_1_2_10_30_1 article-title: Learning an Intrinsic Garment Space for Interactive Authoring of Garment Animation publication-title: ACM Transactions on Graphics (TOG) doi: 10.1145/3355089.3356512 – ident: e_1_2_10_18_1 doi: 10.1007/978-3-7091-6874-5_13 – ident: e_1_2_10_10_1 doi: 10.1145/3528233.3530709 – ident: e_1_2_10_38_1 doi: 10.1109/CVPR52729.2023.01627 – ident: e_1_2_10_12_1 doi: 10.1145/3550454.3555485 – ident: e_1_2_10_11_1 doi: 10.1145/3478513.3480497 – ident: e_1_2_10_23_1 doi: 10.1007/978-3-030-58565-5_21 – ident: e_1_2_10_24_1 doi: 10.1109/CVPR46437.2021.01159 – ident: e_1_2_10_28_1 doi: 10.1109/CVPR52688.2022.00797 – ident: e_1_2_10_36_1 doi: 10.1145/3596711.3596800 – ident: e_1_2_10_29_1 doi: 10.1145/3550454.3555491 – ident: e_1_2_10_31_1 doi: 10.1109/TPAMI.2022.3168569 – ident: e_1_2_10_8_1 doi: 10.1109/CVPR42600.2020.00650 – ident: e_1_2_10_33_1 doi: 10.1145/1507149.1507157 – ident: e_1_2_10_35_1 doi: 10.1111/cgf.14651 – ident: e_1_2_10_34_1 doi: 10.1111/cgf.13643 – ident: e_1_2_10_2_1 doi: 10.1002/cav.1770 – ident: e_1_2_10_4_1 doi: 10.1002/cav.1557 – ident: e_1_2_10_5_1 doi: 10.1145/280814.280821 – ident: e_1_2_10_32_1 doi: 10.1111/cgf.14937 – ident: e_1_2_10_22_1 doi: 10.1109/CVPR42600.2020.00739 – ident: e_1_2_10_6_1 doi: 10.1145/3072959.2990496 – ident: e_1_2_10_9_1 doi: 10.1145/2366145.2366218 – ident: e_1_2_10_26_1 doi: 10.1109/ICCV48922.2021.00542 – ident: e_1_2_10_3_1 doi: 10.1002/cav.1811 – ident: e_1_2_10_15_1 doi: 10.1145/1576246.1531393 – ident: e_1_2_10_16_1 doi: 10.1145/3414685.3417763 – ident: e_1_2_10_7_1 doi: 10.1109/ICCV.2019.00883 – ident: e_1_2_10_37_1 doi: 10.1016/j.cagd.2007.07.004 – ident: e_1_2_10_25_1 doi: 10.1109/tpami.2020.3010886 – ident: e_1_2_10_14_1 doi: 10.1145/3326362 – ident: e_1_2_10_13_1 doi: 10.1145/3451262 |
SSID | ssj0026210 |
Score | 2.3661246 |
Snippet | ABSTRACT
Current AI animation generation methods excel in tight‐fitting clothing scenarios but struggle with deformation distortion and the gradual loss of... Current AI animation generation methods excel in tight‐fitting clothing scenarios but struggle with deformation distortion and the gradual loss of wrinkles... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Index Database Publisher |
SubjectTerms | Animation clothing attributes Deformation effects garment deformation prediction garment dynamics Garments motion driven animation Qualitative analysis |
Title | LFGarNet: Loose‐Fitting Garment Animation With Multi‐Attribute‐Aware Graph Network |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcav.70017 https://www.proquest.com/docview/3193605956 |
Volume | 36 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LSgMxFA2lK134FqtVgrhwM32kaTKjq6HYFqldiK1dCEOSuYNFaKUzVXDlJ_iNfol5dOoDBHE3hGSYuclJzk3uPUHoROMLanUINJAS7aDEtOYJEFQDT-j1WdZJ4psE56s-6w7o5ag5KqDzPBfG6UMsN9wMMux8bQAuZFr9FA1V4qliDk1NJrmJ1TKE6HopHUUYcUoETco84ybkqkI1Ul22_L4WfRLMrzTVrjPtdXSXf6ELL3mozDNZUS8_xBv_-QsbaG3BP3HoBswmKsBkC60Ox-nclabbaNRrd8SsD9kZ7k2nKby_vrXHNjwa63Kzm4jDydilPOLbcXaPbRavrhZm7v4s0yR8FjPAHaOHjfsu1nwHDdoXN62ut7iAwVMkoNxjMVWJpiQa8zKQyoi1iUDx2KRrsToo5lMV-0zwAHgiOW9waIL2V3hMaVJPaGMXFSfTCewhzAASCkwxJRWVjPhAa1KTv8BXnDRUXELHeVdEj05nI3KKyiTSZoqsmUqonHdStIBaGuk5pKF9Mu3nldCptfbvL4ha4dA-7P-96gFaIebOXxt3VkbFbDaHQ01EMnlkR9wH8ina_g |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9tAEB5ROFAO5VEqUh5dVRy4OI_NZtdGXCwgSamTA4I0l8ryrsdqhOSgxGklTvwEfiO_hH3EASpVQr1Zq13Lnt1vd2Z25huAQ40vrDcw0EDKtIGSsrqXYMI08BJ9PssGzXyT4Nzr8-41uxi2hktwUubCOH6IhcPNIMPu1wbgxiFde2YNVcnvqrk1Fe9gxVT0Nsz5Z5cL8ijKqeMiaDHuGUOh5BWq09pi6OvT6FnFfKmo2pOmvQ4_y290ASY31Vkhq-ruL_rG__2JDfgwV0FJ6NbMJixhvgVrg9F05lqnH2EYtTvJpI_FMYnG4yk-3j-0RzZCmuh241AkYT5yWY_kx6j4RWwir-4WFq6ElhkS_kkmSDqGEpv0Xbj5Nly3z69Ou968BoOnaMCEx1OmMq2VaNjLQCrD15YESqQmY4s3UHGfqdTniQhQZFKIpsAWapNFpIxljYw1P8FyPs5xBwhHzBhyxZVUTHLqI6tLrf8FvhK0qdIKfC3nIr51VBuxI1WmsRZTbMVUgb1yluI52qax3kaa2izTpl4Fjqy4__2C-DQc2IfPb-_6BVa7V70ojr71v-_Ce2pKANswtD1YLiYz3Nd6SSEP7PJ7AqQ-3xo |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fa9swED_SFEb30O5fabp0E2MPe3HqKIpkt0-mrZNtWRilyfJQMJZ8ZqGQlMTpoE_9CP2M_STVnzjpBoOxNyMkY5_0091Jd78D-KjxhX4TQw2kXDsoGfO9FFOmgZdq_SybNA9MgvO3Pu8O2JdRe1SB4zIXxvFDrA7cDDLsfm0Afp3lh2vSUJXeNMylqdiATcb90NRtOD1fcUdRTh0VQZtxz_gJJa2QTw9XQ39XRmsL86mdahVNvAOX5Se6-JKrxqKQDXX7B3vjf_7DC9heGqAkcivmJVRw8gqeD8fzhWudv4ZRL-6ksz4WR6Q3nc7x4e4-Htv4aKLbzXEiiSZjl_NIfoyLn8Sm8epuUeEKaJkh0a90hqRjCLFJ3wWbv4FBfHZx0vWWFRg8RUMmPJ4xlWubRINehlIZtrY0VCIz-Vq8iYoHTGUBT0WIIpdCtAS2UTssImMsb-astQvVyXSCe0A4Ys6QK66kYpLTAJkvtfUXBkrQlspq8KGciuTaEW0kjlKZJlpMiRVTDerlJCVLrM0TvYm0tFOmHb0afLLS_vsLkpNoaB_2_73re3j2_TROep_7X9_CFjX1f20MWh2qxWyBB9ooKeQ7u_geAS1u3ck |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=LFGarNet+%3A+Loose%E2%80%90Fitting+Garment+Animation+With+Multi%E2%80%90Attribute%E2%80%90Aware+Graph+Network&rft.jtitle=Computer+animation+and+virtual+worlds&rft.au=Zhang%2C+Peng&rft.au=Fei%2C+Bo&rft.au=Wei%2C+Meng&rft.au=Zhan%2C+Jiamei&rft.date=2025-03-01&rft.issn=1546-4261&rft.eissn=1546-427X&rft.volume=36&rft.issue=2&rft_id=info:doi/10.1002%2Fcav.70017&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_cav_70017 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1546-4261&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1546-4261&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1546-4261&client=summon |