DTGS: Defocus‐Tolerant View Synthesis Using Gaussian Splatting

ABSTRACT Defocus blur poses a significant challenge for 3D reconstruction, as traditional methods often struggle to maintain detail and accuracy in blurred regions. Building upon the recent advancements in the 3DGS technique, we propose an architecture for 3D scene reconstruction from defocused blur...

Full description

Saved in:
Bibliographic Details
Published inComputer animation and virtual worlds Vol. 36; no. 3
Main Authors Dai, Xinying, Yao, Li
Format Journal Article
LanguageEnglish
Published Hoboken, USA John Wiley & Sons, Inc 01.05.2025
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract ABSTRACT Defocus blur poses a significant challenge for 3D reconstruction, as traditional methods often struggle to maintain detail and accuracy in blurred regions. Building upon the recent advancements in the 3DGS technique, we propose an architecture for 3D scene reconstruction from defocused blurry images. Due to the sparsity of point clouds initialized by SfM, we improve the scene representation by reasonably filling in new Gaussians where the Gaussian field is insufficient. During the optimization phase, we adjust the gradient field based on the depth values of the Gaussians and introduce perceptual loss in the objective function to reduce reconstruction bias caused by blurriness and enhance the realism of the rendered results. Experimental results on both synthetic and real datasets show that our method outperforms existing approaches in terms of reconstruction quality and robustness, even under challenging defocus blur conditions. This paper presents an architecture for 3D scene reconstruction from defocused blurry images. Due to the sparsity of point clouds initialized by SfM, we improve the scene representation by reasonably filling in new Gaussians where the Gaussian field is insufficient. During the optimization phase, we adjust the gradient field based on the depth values of the Gaussians and introduce perceptual loss in the objective function to reduce reconstruction bias caused by blurriness and enhance the realism of the rendered results.
AbstractList ABSTRACT Defocus blur poses a significant challenge for 3D reconstruction, as traditional methods often struggle to maintain detail and accuracy in blurred regions. Building upon the recent advancements in the 3DGS technique, we propose an architecture for 3D scene reconstruction from defocused blurry images. Due to the sparsity of point clouds initialized by SfM, we improve the scene representation by reasonably filling in new Gaussians where the Gaussian field is insufficient. During the optimization phase, we adjust the gradient field based on the depth values of the Gaussians and introduce perceptual loss in the objective function to reduce reconstruction bias caused by blurriness and enhance the realism of the rendered results. Experimental results on both synthetic and real datasets show that our method outperforms existing approaches in terms of reconstruction quality and robustness, even under challenging defocus blur conditions. This paper presents an architecture for 3D scene reconstruction from defocused blurry images. Due to the sparsity of point clouds initialized by SfM, we improve the scene representation by reasonably filling in new Gaussians where the Gaussian field is insufficient. During the optimization phase, we adjust the gradient field based on the depth values of the Gaussians and introduce perceptual loss in the objective function to reduce reconstruction bias caused by blurriness and enhance the realism of the rendered results.
Defocus blur poses a significant challenge for 3D reconstruction, as traditional methods often struggle to maintain detail and accuracy in blurred regions. Building upon the recent advancements in the 3DGS technique, we propose an architecture for 3D scene reconstruction from defocused blurry images. Due to the sparsity of point clouds initialized by SfM, we improve the scene representation by reasonably filling in new Gaussians where the Gaussian field is insufficient. During the optimization phase, we adjust the gradient field based on the depth values of the Gaussians and introduce perceptual loss in the objective function to reduce reconstruction bias caused by blurriness and enhance the realism of the rendered results. Experimental results on both synthetic and real datasets show that our method outperforms existing approaches in terms of reconstruction quality and robustness, even under challenging defocus blur conditions.
Author Dai, Xinying
Yao, Li
Author_xml – sequence: 1
  givenname: Xinying
  orcidid: 0009-0008-0245-2277
  surname: Dai
  fullname: Dai, Xinying
  email: xinying_dai@seu.edu.cn
  organization: Southeast University
– sequence: 2
  givenname: Li
  surname: Yao
  fullname: Yao, Li
  email: yao.li@seu.edu.cn
  organization: Southeast University
BookMark eNp10LtOwzAUBmALFYlSGHiDSEwMaY-dOBcmqhYKUiWGXsRmGecYUgWn2AlVNx6BZ-RJMASxMfnI-s5F_zHpmdogIWcUhhSAjZR8G6YAMT8gfcrjJIxZ-tD7qxN6RI6d23iaMAp9cjVdzhaXwRR1rVr3-f6xrCu00jTBusRdsNib5hld6YKVK81TMJOtc6U0wWJbyabxXyfkUMvK4envOyCrm-vl5Dac38_uJuN5qFge85AqhpRFLAf9WEQARcF5zKlOozRVTKHGNEOQID3Jk1jrwt9a0CTjgHGWsGhAzru5W1u_tugasalba_xKETGW5VkGAF5ddErZ2jmLWmxt-SLtXlAQ3wEJH5D4CcjbUWd3ZYX7_6GYjNddxxcKimfx
Cites_doi 10.1007/978-3-319-46475-6_43
10.1109/CVPR52688.2022.00540
10.1109/CVPR.2013.147
10.1109/ICCV48922.2021.01408
10.1145/3651301
10.1007/978-3-031-20047-2_42
10.1109/CVPR52688.2022.01256
10.1109/CVPR52733.2024.02029
10.1007/978-3-319-46487-9_31
10.1109/CVPR42600.2020.00281
10.1109/CVPR52688.2022.00541
10.1145/3528223.3530127
10.1145/3503250
10.1145/3592433
10.1109/CVPR.2011.5995521
10.1109/CVPR52688.2022.01257
10.1145/3687937
10.1109/CVPR.2016.445
10.1007/978-981-97-8508-7_21
10.1109/CVPR52688.2022.01786
10.1145/3681756.3697934
10.1109/ICCV48922.2021.01230
10.1109/CVPR52688.2022.00542
ContentType Journal Article
Copyright 2025 John Wiley & Sons Ltd.
2025 John Wiley & Sons, Ltd.
Copyright_xml – notice: 2025 John Wiley & Sons Ltd.
– notice: 2025 John Wiley & Sons, Ltd.
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1002/cav.70045
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Computer and Information Systems Abstracts
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Visual Arts
EISSN 1546-427X
EndPage n/a
ExternalDocumentID 10_1002_cav_70045
CAV70045
Genre researchArticle
GroupedDBID .3N
.4S
.DC
.GA
.Y3
05W
0R~
10A
1L6
1OC
29F
31~
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
6J9
702
7PT
8-0
8-1
8-3
8-4
8-5
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACPOU
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADMLS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUYR
AFBPY
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGYGG
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ARCSS
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EDO
EJD
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
HF~
HGLYW
HHY
HVGLF
HZ~
I-F
ITG
ITH
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N9A
NF~
O66
O9-
OIG
P2W
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
ROL
RX1
RYL
SUPJJ
TN5
TUS
UB1
V2E
V8K
W8V
W99
WBKPD
WIH
WIK
WQJ
WXSBR
WYISQ
WZISG
XG1
XV2
~IA
~WT
AAMMB
AAYXX
AEFGJ
AGXDD
AIDQK
AIDYY
CITATION
1OB
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c2945-1c2e123290fbd300dd55451f7377c2cefe78e0a0a329964ffd261d16850e48623
IEDL.DBID DR2
ISSN 1546-4261
IngestDate Sat Aug 23 12:21:55 EDT 2025
Thu Jul 03 08:44:34 EDT 2025
Wed Jun 25 09:40:24 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2945-1c2e123290fbd300dd55451f7377c2cefe78e0a0a329964ffd261d16850e48623
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0009-0008-0245-2277
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/cav.70045
PQID 3228988000
PQPubID 2034909
PageCount 9
ParticipantIDs proquest_journals_3228988000
crossref_primary_10_1002_cav_70045
wiley_primary_10_1002_cav_70045_CAV70045
PublicationCentury 2000
PublicationDate May/June 2025
2025-05-00
20250501
PublicationDateYYYYMMDD 2025-05-01
PublicationDate_xml – month: 05
  year: 2025
  text: May/June 2025
PublicationDecade 2020
PublicationPlace Hoboken, USA
PublicationPlace_xml – name: Hoboken, USA
– name: Chichester
PublicationTitle Computer animation and virtual worlds
PublicationYear 2025
Publisher John Wiley & Sons, Inc
Wiley Subscription Services, Inc
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley Subscription Services, Inc
References 2023; 42
2010; 33
2021; 65
2023
2022
2011
2023; 37
2021
2024; 7
2020
2016
2022; 41
2024; 43
2020; 33
2024
2013
Zhu Z. (e_1_2_8_49_1) 2024
e_1_2_8_24_1
Liu J. (e_1_2_8_30_1) 2024
Cheng P. (e_1_2_8_6_1) 2023
Zhao L. (e_1_2_8_13_1) 2024
Ma L. (e_1_2_8_4_1) 2022
e_1_2_8_3_1
e_1_2_8_9_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_22_1
e_1_2_8_45_1
Zhang Z. (e_1_2_8_51_1) 2024
e_1_2_8_17_1
Chi Y. (e_1_2_8_41_1) 2024
Liu L. (e_1_2_8_25_1) 2020; 33
e_1_2_8_36_1
e_1_2_8_15_1
e_1_2_8_38_1
Lee B. (e_1_2_8_10_1) 2024
Hu W. (e_1_2_8_29_1) 2023
Wu G. (e_1_2_8_39_1) 2024
Tai Y.‐W. (e_1_2_8_46_1) 2010; 33
e_1_2_8_32_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
Lee D. (e_1_2_8_5_1) 2023
Peng C. (e_1_2_8_12_1) 2024
Wang P. (e_1_2_8_8_1) 2023
Barron J. T. (e_1_2_8_28_1) 2023
e_1_2_8_48_1
e_1_2_8_2_1
Zhang Q. (e_1_2_8_19_1) 2022
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_23_1
e_1_2_8_44_1
Lee B. (e_1_2_8_7_1) 2024
e_1_2_8_18_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_16_1
Ye M. (e_1_2_8_37_1) 2024
Yu A. (e_1_2_8_26_1) 2021
Syed Waqas Z. (e_1_2_8_47_1) 2021
e_1_2_8_31_1
e_1_2_8_33_1
Barron J. T. (e_1_2_8_27_1) 2021
e_1_2_8_52_1
Yang Z. (e_1_2_8_40_1) 2024
e_1_2_8_50_1
References_xml – start-page: 12912
  year: 2022
  end-page: 12921
– start-page: 12861
  year: 2022
  end-page: 12870
– start-page: 293
  year: 2024
  end-page: 310
– volume: 7
  start-page: 1
  issue: 1
  year: 2024
  end-page: 15
  article-title: Deblur‐Gs: 3d Gaussian Splatting From Camera Motion Blurred Images
  publication-title: Proceedings of the ACM on Computer Graphics and Interactive Techniques
– volume: 37
  start-page: 2029
  year: 2023
  end-page: 2037
– start-page: 20331
  year: 2024
  end-page: 20341
– start-page: 1107
  year: 2013
  end-page: 1114
– start-page: 4104
  year: 2016
  end-page: 4113
– start-page: 1
  year: 2022
  end-page: 12
– start-page: 19595
  year: 2024
  end-page: 19604
– year: 2024
– start-page: 19774
  year: 2023
  end-page: 19783
– start-page: 4170
  year: 2023
  end-page: 4179
– start-page: 5481
  year: 2022
  end-page: 5490
– start-page: 5480
  year: 2022
  end-page: 5490
– start-page: 127
  year: 2024
  end-page: 143
– start-page: 736
  year: 2022
  end-page: 753
– start-page: 12386
  year: 2023
  end-page: 12396
– start-page: 233
  year: 2024
  end-page: 250
– volume: 33
  start-page: 1603
  issue: 8
  year: 2010
  end-page: 1618
  article-title: Richardson‐Lucy Deblurring for Scenes Under a Projective Motion Path
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– start-page: 1
  year: 2024
  end-page: 11
– start-page: 12902
  year: 2022
  end-page: 12911
– start-page: 501
  year: 2016
  end-page: 518
– volume: 41
  start-page: 1
  issue: 4
  year: 2022
  end-page: 15
  article-title: Instant Neural Graphics Primitives With a Multiresolution Hash Encoding
  publication-title: ACM Transactions on Graphics
– start-page: 2737
  year: 2020
  end-page: 2746
– start-page: 145
  year: 2024
  end-page: 163
– start-page: 3709
  year: 2024
  end-page: 3718
– start-page: 14821
  year: 2021
  end-page: 14831
– start-page: 5752
  year: 2021
  end-page: 5761
– start-page: 20310
  year: 2024
  end-page: 20320
– start-page: 21476
  year: 2024
  end-page: 21485
– volume: 65
  start-page: 99
  issue: 1
  year: 2021
  end-page: 106
  article-title: Nerf: Representing Scenes as Neural Radiance Fields for View Synthesis
  publication-title: Communications of the ACM
– start-page: 694
  year: 2016
  end-page: 711
– start-page: 19697
  year: 2023
  end-page: 19705
– year: 2023
– start-page: 5855
  year: 2021
  end-page: 5864
– volume: 43
  start-page: 1
  issue: 6
  year: 2024
  end-page: 13
  article-title: Gaussian Opacity Fields: Efficient Adaptive Surface Reconstruction in Unbounded Scenes
  publication-title: ACM Transactions on Graphics
– start-page: 233
  year: 2011
  end-page: 240
– volume: 33
  start-page: 15651
  year: 2020
  end-page: 15663
  article-title: Neural Sparse Voxel Fields
  publication-title: Advances in Neural Information Processing Systems
– start-page: 12528
  year: 2021
  end-page: 12537
– start-page: 5501
  year: 2022
  end-page: 5510
– start-page: 326
  year: 2024
  end-page: 342
– volume: 42
  start-page: 131
  issue: 4
  year: 2023
  end-page: 139
  article-title: 3d Gaussian Splatting for Real‐Time Radiance Field Rendering
  publication-title: ACM Transactions on Graphics
– start-page: 18409
  year: 2022
  end-page: 18418
– start-page: 14346
  year: 2021
  end-page: 14355
– start-page: 1
  year: 2024
  end-page: 2
– start-page: 162
  year: 2024
  end-page: 179
– ident: e_1_2_8_52_1
  doi: 10.1007/978-3-319-46475-6_43
– volume: 33
  start-page: 15651
  year: 2020
  ident: e_1_2_8_25_1
  article-title: Neural Sparse Voxel Fields
  publication-title: Advances in Neural Information Processing Systems
– ident: e_1_2_8_32_1
  doi: 10.1109/CVPR52688.2022.00540
– start-page: 12861
  volume-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
  year: 2022
  ident: e_1_2_8_4_1
– ident: e_1_2_8_45_1
  doi: 10.1109/CVPR.2013.147
– ident: e_1_2_8_24_1
  doi: 10.1109/ICCV48922.2021.01408
– ident: e_1_2_8_14_1
  doi: 10.1145/3651301
– ident: e_1_2_8_33_1
  doi: 10.1007/978-3-031-20047-2_42
– start-page: 127
  volume-title: European Conference on Computer Vision
  year: 2024
  ident: e_1_2_8_10_1
– start-page: 20331
  volume-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
  year: 2024
  ident: e_1_2_8_40_1
– ident: e_1_2_8_22_1
  doi: 10.1109/CVPR52688.2022.01256
– ident: e_1_2_8_38_1
  doi: 10.1109/CVPR52733.2024.02029
– start-page: 293
  volume-title: European Conference on Computer Vision
  year: 2024
  ident: e_1_2_8_12_1
– volume: 33
  start-page: 1603
  issue: 8
  year: 2010
  ident: e_1_2_8_46_1
  article-title: Richardson‐Lucy Deblurring for Scenes Under a Projective Motion Path
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– ident: e_1_2_8_53_1
  doi: 10.1007/978-3-319-46487-9_31
– ident: e_1_2_8_48_1
  doi: 10.1109/CVPR42600.2020.00281
– ident: e_1_2_8_36_1
  doi: 10.1109/CVPR52688.2022.00541
– start-page: 145
  volume-title: European Conference on Computer Vision
  year: 2024
  ident: e_1_2_8_49_1
– ident: e_1_2_8_23_1
  doi: 10.1145/3528223.3530127
– ident: e_1_2_8_15_1
– ident: e_1_2_8_9_1
– ident: e_1_2_8_2_1
  doi: 10.1145/3503250
– start-page: 326
  volume-title: European Conference on Computer Vision
  year: 2024
  ident: e_1_2_8_51_1
– ident: e_1_2_8_42_1
– start-page: 5752
  volume-title: Proceedings of the IEEE/CVF International Conference on Computer Vision
  year: 2021
  ident: e_1_2_8_26_1
– ident: e_1_2_8_34_1
– ident: e_1_2_8_3_1
  doi: 10.1145/3592433
– ident: e_1_2_8_44_1
  doi: 10.1109/CVPR.2011.5995521
– start-page: 4170
  volume-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
  year: 2023
  ident: e_1_2_8_8_1
– start-page: 19697
  volume-title: Proceedings of the IEEE/CVF International Conference on Computer Vision
  year: 2023
  ident: e_1_2_8_28_1
– start-page: 1
  volume-title: ACM SIGGRAPH 2024 Conference Papers
  year: 2024
  ident: e_1_2_8_30_1
– ident: e_1_2_8_11_1
– start-page: 5855
  volume-title: Proceedings of the IEEE/CVF International Conference on Computer Vision
  year: 2021
  ident: e_1_2_8_27_1
– ident: e_1_2_8_31_1
  doi: 10.1109/CVPR52688.2022.01257
– start-page: 19595
  volume-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
  year: 2024
  ident: e_1_2_8_41_1
– ident: e_1_2_8_50_1
  doi: 10.1145/3687937
– start-page: 2029
  volume-title: Proceedings of the AAAI Conference on Artificial Intelligence
  year: 2023
  ident: e_1_2_8_6_1
– start-page: 233
  volume-title: European Conference on Computer Vision
  year: 2024
  ident: e_1_2_8_13_1
– start-page: 162
  volume-title: European Conference on Computer Vision
  year: 2024
  ident: e_1_2_8_37_1
– ident: e_1_2_8_17_1
  doi: 10.1109/CVPR.2016.445
– ident: e_1_2_8_43_1
  doi: 10.1007/978-981-97-8508-7_21
– ident: e_1_2_8_16_1
– ident: e_1_2_8_35_1
  doi: 10.1109/CVPR52688.2022.01786
– ident: e_1_2_8_20_1
  doi: 10.1145/3681756.3697934
– start-page: 20310
  volume-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
  year: 2024
  ident: e_1_2_8_39_1
– ident: e_1_2_8_18_1
  doi: 10.1109/ICCV48922.2021.01230
– start-page: 1
  volume-title: SIGGRAPH Asia 2022 Conference Papers
  year: 2022
  ident: e_1_2_8_19_1
– ident: e_1_2_8_21_1
  doi: 10.1109/CVPR52688.2022.00542
– start-page: 12386
  volume-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
  year: 2023
  ident: e_1_2_8_5_1
– start-page: 3709
  volume-title: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision
  year: 2024
  ident: e_1_2_8_7_1
– start-page: 14821
  volume-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
  year: 2021
  ident: e_1_2_8_47_1
– start-page: 19774
  volume-title: Proceedings of the IEEE/CVF International Conference on Computer Vision
  year: 2023
  ident: e_1_2_8_29_1
SSID ssj0026210
Score 2.3712747
Snippet ABSTRACT Defocus blur poses a significant challenge for 3D reconstruction, as traditional methods often struggle to maintain detail and accuracy in blurred...
Defocus blur poses a significant challenge for 3D reconstruction, as traditional methods often struggle to maintain detail and accuracy in blurred regions....
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Index Database
Publisher
SubjectTerms 3d gaussian splatting
defocus blur
graphics
Image reconstruction
novel view synthesis
rendering
Title DTGS: Defocus‐Tolerant View Synthesis Using Gaussian Splatting
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcav.70045
https://www.proquest.com/docview/3228988000
Volume 36
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB6KJz34FqtVgnjwknaz2bz0Ymlti6AH-6AHIWx2N1AsbTGJoid_gr_RX-LupmlVEMRbCLtLMpnHN5uZbwFOA4vbAZeZqgITJoncyIw4Z6YViJgw5gpf8xbc3LqdPrkeOsMSXBS9MDk_xGLDTVmG9tfKwGmU1JakoYw-VRU3u2owV7VaChDdLaijsItzJgKHuKZKEwpWIYRri5nfY9ESYH6FqTrOtDbgvnjCvLzkoZqlUZW9_iBv_OcrbML6HH8a9VxhtqAkJtuwNhglWX432YHLZq_dPTeaIp6yLPl4e-9Nx0KGtNQYjMSz0X2ZSNCYjBJDlxsYbZolqhPT6M7GVFdR70K_ddVrdMz5QQsmwwFxTIthoaBVgOKI2whxLkGGY8We7XkMMxELzxeIIiqHBC6JYy4Fyi3Xd5AgMiWy92BlMp2IfTBs6ns2FU4k_QTxLUa5JbhUE8dX__eoW4aTQuThLOfTCHPmZBxKcYRaHGWoFB8jnJtUEkrP4wfS2yBUhjMt1d8XCBv1gb44-PvQQ1jF6mxfXcxYgZX0MRNHEnCk0bHWrE9XQtAK
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8JAEJ4gHtSDbyOK2hgPXorbd2s8SEBABQ7yCBfTbHe3CZEAsVSjJ3-Cv9Ff4u6WgpqYGG_NZttsp_P4Zjv7DcCJp1HDozxTFWBCNQM7UANKiap5LDQJsZkreQsaTbvWMW96Vi8DF-lZmIQfYrbhJixD-mth4GJD-mzOGkrwU0GQs1sLsCg6esuE6m5GHqXbesJFYJm2KhKFlFcI6WezW79HoznE_ApUZaSprMF9usakwOShEE-CAnn9Qd_435dYh9UpBFWKic5sQIYNN2Gl24_iZDTagstyu9o6V8osHJE4-nh7b48GjEe1idLts2el9TLkuDHqR4qsOFCqOI7EYUylNR5gWUi9DZ3KVbtUU6e9FlSie6alakRnAl15KAyogRClHGdYWugYjkN0wkLmuAxhhPkUzzbDkHKJUs12LcRMnhUZO5AdjoZsFxQDu46BmRVwV2G6GsFUY5RriuWKX3zYzsFxKnN_nFBq-Al5su5zcfhSHDnIp1_Dn1pV5HPn43rc4SCUg1Mp1t8f4JeKXXmx9_epR7BUazfqfv26ebsPy7po9StrG_OQnTzG7IDjj0lwKNXsE2fm1CU
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JS8NAFH64gOjBXaxrEA9e0k6SySTRi2Jt64rYhR6EMJmZQFHaYhpFT_4Ef6O_xJlJUxcQxFsIk5B8ecv3Jm--AdgNLO4EXFaqikyYOCKRGXHOTCsQMWaMCF_rFlxekVoTn7Xd9hgc5GthMn2I0YSb8gwdr5WD93lc-hQNZfSxqLTZ3XGYxAT5yqTLNyPtKJvYmRSBi4mp6oRcVgjZpdGl35PRJ8P8ylN1oqnMwW3-iFl_yV0xHURF9vJDvfGf7zAPs0MCahxlFrMAY6K7CDOtTpJmZ5MlOCw3qvV9oyziHkuT99e3Ru9eyJw2MFod8WTUn7uSNSadxND9BkaVpolaimnU-_dUt1EvQ7Ny0jiumcOdFkxmB9g1LWYLxa0CFEfcQYhzyTJcK_Ycz2M2E7HwfIEoonJIQHAccwkot4jvIoFlTeSswES31xWrYDjU9xwq3EgGCuxbjHJLcGknrq9-8FFSgJ0c8rCfCWqEmXSyHUo4Qg1HATbyjxEOfSoJZejxAxluECrAnkb19xuEx0ctfbD296HbMHVdroQXp1fn6zBtq31-dWPjBkwMHlKxKcnHINrSRvYBJ_nS3Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=DTGS%3A+Defocus%E2%80%90Tolerant+View+Synthesis+Using+Gaussian+Splatting&rft.jtitle=Computer+animation+and+virtual+worlds&rft.au=Dai%2C+Xinying&rft.au=Yao%2C+Li&rft.date=2025-05-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=1546-4261&rft.eissn=1546-427X&rft.volume=36&rft.issue=3&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fcav.70045&rft.externalDBID=10.1002%252Fcav.70045&rft.externalDocID=CAV70045
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1546-4261&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1546-4261&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1546-4261&client=summon