DTGS: Defocus‐Tolerant View Synthesis Using Gaussian Splatting
ABSTRACT Defocus blur poses a significant challenge for 3D reconstruction, as traditional methods often struggle to maintain detail and accuracy in blurred regions. Building upon the recent advancements in the 3DGS technique, we propose an architecture for 3D scene reconstruction from defocused blur...
Saved in:
Published in | Computer animation and virtual worlds Vol. 36; no. 3 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Hoboken, USA
John Wiley & Sons, Inc
01.05.2025
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | ABSTRACT
Defocus blur poses a significant challenge for 3D reconstruction, as traditional methods often struggle to maintain detail and accuracy in blurred regions. Building upon the recent advancements in the 3DGS technique, we propose an architecture for 3D scene reconstruction from defocused blurry images. Due to the sparsity of point clouds initialized by SfM, we improve the scene representation by reasonably filling in new Gaussians where the Gaussian field is insufficient. During the optimization phase, we adjust the gradient field based on the depth values of the Gaussians and introduce perceptual loss in the objective function to reduce reconstruction bias caused by blurriness and enhance the realism of the rendered results. Experimental results on both synthetic and real datasets show that our method outperforms existing approaches in terms of reconstruction quality and robustness, even under challenging defocus blur conditions.
This paper presents an architecture for 3D scene reconstruction from defocused blurry images. Due to the sparsity of point clouds initialized by SfM, we improve the scene representation by reasonably filling in new Gaussians where the Gaussian field is insufficient. During the optimization phase, we adjust the gradient field based on the depth values of the Gaussians and introduce perceptual loss in the objective function to reduce reconstruction bias caused by blurriness and enhance the realism of the rendered results. |
---|---|
AbstractList | ABSTRACT
Defocus blur poses a significant challenge for 3D reconstruction, as traditional methods often struggle to maintain detail and accuracy in blurred regions. Building upon the recent advancements in the 3DGS technique, we propose an architecture for 3D scene reconstruction from defocused blurry images. Due to the sparsity of point clouds initialized by SfM, we improve the scene representation by reasonably filling in new Gaussians where the Gaussian field is insufficient. During the optimization phase, we adjust the gradient field based on the depth values of the Gaussians and introduce perceptual loss in the objective function to reduce reconstruction bias caused by blurriness and enhance the realism of the rendered results. Experimental results on both synthetic and real datasets show that our method outperforms existing approaches in terms of reconstruction quality and robustness, even under challenging defocus blur conditions.
This paper presents an architecture for 3D scene reconstruction from defocused blurry images. Due to the sparsity of point clouds initialized by SfM, we improve the scene representation by reasonably filling in new Gaussians where the Gaussian field is insufficient. During the optimization phase, we adjust the gradient field based on the depth values of the Gaussians and introduce perceptual loss in the objective function to reduce reconstruction bias caused by blurriness and enhance the realism of the rendered results. Defocus blur poses a significant challenge for 3D reconstruction, as traditional methods often struggle to maintain detail and accuracy in blurred regions. Building upon the recent advancements in the 3DGS technique, we propose an architecture for 3D scene reconstruction from defocused blurry images. Due to the sparsity of point clouds initialized by SfM, we improve the scene representation by reasonably filling in new Gaussians where the Gaussian field is insufficient. During the optimization phase, we adjust the gradient field based on the depth values of the Gaussians and introduce perceptual loss in the objective function to reduce reconstruction bias caused by blurriness and enhance the realism of the rendered results. Experimental results on both synthetic and real datasets show that our method outperforms existing approaches in terms of reconstruction quality and robustness, even under challenging defocus blur conditions. |
Author | Dai, Xinying Yao, Li |
Author_xml | – sequence: 1 givenname: Xinying orcidid: 0009-0008-0245-2277 surname: Dai fullname: Dai, Xinying email: xinying_dai@seu.edu.cn organization: Southeast University – sequence: 2 givenname: Li surname: Yao fullname: Yao, Li email: yao.li@seu.edu.cn organization: Southeast University |
BookMark | eNp10LtOwzAUBmALFYlSGHiDSEwMaY-dOBcmqhYKUiWGXsRmGecYUgWn2AlVNx6BZ-RJMASxMfnI-s5F_zHpmdogIWcUhhSAjZR8G6YAMT8gfcrjJIxZ-tD7qxN6RI6d23iaMAp9cjVdzhaXwRR1rVr3-f6xrCu00jTBusRdsNib5hld6YKVK81TMJOtc6U0wWJbyabxXyfkUMvK4envOyCrm-vl5Dac38_uJuN5qFge85AqhpRFLAf9WEQARcF5zKlOozRVTKHGNEOQID3Jk1jrwt9a0CTjgHGWsGhAzru5W1u_tugasalba_xKETGW5VkGAF5ddErZ2jmLWmxt-SLtXlAQ3wEJH5D4CcjbUWd3ZYX7_6GYjNddxxcKimfx |
Cites_doi | 10.1007/978-3-319-46475-6_43 10.1109/CVPR52688.2022.00540 10.1109/CVPR.2013.147 10.1109/ICCV48922.2021.01408 10.1145/3651301 10.1007/978-3-031-20047-2_42 10.1109/CVPR52688.2022.01256 10.1109/CVPR52733.2024.02029 10.1007/978-3-319-46487-9_31 10.1109/CVPR42600.2020.00281 10.1109/CVPR52688.2022.00541 10.1145/3528223.3530127 10.1145/3503250 10.1145/3592433 10.1109/CVPR.2011.5995521 10.1109/CVPR52688.2022.01257 10.1145/3687937 10.1109/CVPR.2016.445 10.1007/978-981-97-8508-7_21 10.1109/CVPR52688.2022.01786 10.1145/3681756.3697934 10.1109/ICCV48922.2021.01230 10.1109/CVPR52688.2022.00542 |
ContentType | Journal Article |
Copyright | 2025 John Wiley & Sons Ltd. 2025 John Wiley & Sons, Ltd. |
Copyright_xml | – notice: 2025 John Wiley & Sons Ltd. – notice: 2025 John Wiley & Sons, Ltd. |
DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
DOI | 10.1002/cav.70045 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Computer and Information Systems Abstracts CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Visual Arts |
EISSN | 1546-427X |
EndPage | n/a |
ExternalDocumentID | 10_1002_cav_70045 CAV70045 |
Genre | researchArticle |
GroupedDBID | .3N .4S .DC .GA .Y3 05W 0R~ 10A 1L6 1OC 29F 31~ 33P 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 6J9 702 7PT 8-0 8-1 8-3 8-4 8-5 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACPOU ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADMLS ADNMO ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUYR AFBPY AFFPM AFGKR AFWVQ AFZJQ AGHNM AGQPQ AGYGG AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ARCSS ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS EDO EJD F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA HF~ HGLYW HHY HVGLF HZ~ I-F ITG ITH IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N9A NF~ O66 O9- OIG P2W P4D PQQKQ Q.N Q11 QB0 QRW R.K ROL RX1 RYL SUPJJ TN5 TUS UB1 V2E V8K W8V W99 WBKPD WIH WIK WQJ WXSBR WYISQ WZISG XG1 XV2 ~IA ~WT AAMMB AAYXX AEFGJ AGXDD AIDQK AIDYY CITATION 1OB 7SC 8FD JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c2945-1c2e123290fbd300dd55451f7377c2cefe78e0a0a329964ffd261d16850e48623 |
IEDL.DBID | DR2 |
ISSN | 1546-4261 |
IngestDate | Sat Aug 23 12:21:55 EDT 2025 Thu Jul 03 08:44:34 EDT 2025 Wed Jun 25 09:40:24 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2945-1c2e123290fbd300dd55451f7377c2cefe78e0a0a329964ffd261d16850e48623 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0009-0008-0245-2277 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/cav.70045 |
PQID | 3228988000 |
PQPubID | 2034909 |
PageCount | 9 |
ParticipantIDs | proquest_journals_3228988000 crossref_primary_10_1002_cav_70045 wiley_primary_10_1002_cav_70045_CAV70045 |
PublicationCentury | 2000 |
PublicationDate | May/June 2025 2025-05-00 20250501 |
PublicationDateYYYYMMDD | 2025-05-01 |
PublicationDate_xml | – month: 05 year: 2025 text: May/June 2025 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken, USA |
PublicationPlace_xml | – name: Hoboken, USA – name: Chichester |
PublicationTitle | Computer animation and virtual worlds |
PublicationYear | 2025 |
Publisher | John Wiley & Sons, Inc Wiley Subscription Services, Inc |
Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley Subscription Services, Inc |
References | 2023; 42 2010; 33 2021; 65 2023 2022 2011 2023; 37 2021 2024; 7 2020 2016 2022; 41 2024; 43 2020; 33 2024 2013 Zhu Z. (e_1_2_8_49_1) 2024 e_1_2_8_24_1 Liu J. (e_1_2_8_30_1) 2024 Cheng P. (e_1_2_8_6_1) 2023 Zhao L. (e_1_2_8_13_1) 2024 Ma L. (e_1_2_8_4_1) 2022 e_1_2_8_3_1 e_1_2_8_9_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_22_1 e_1_2_8_45_1 Zhang Z. (e_1_2_8_51_1) 2024 e_1_2_8_17_1 Chi Y. (e_1_2_8_41_1) 2024 Liu L. (e_1_2_8_25_1) 2020; 33 e_1_2_8_36_1 e_1_2_8_15_1 e_1_2_8_38_1 Lee B. (e_1_2_8_10_1) 2024 Hu W. (e_1_2_8_29_1) 2023 Wu G. (e_1_2_8_39_1) 2024 Tai Y.‐W. (e_1_2_8_46_1) 2010; 33 e_1_2_8_32_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_53_1 Lee D. (e_1_2_8_5_1) 2023 Peng C. (e_1_2_8_12_1) 2024 Wang P. (e_1_2_8_8_1) 2023 Barron J. T. (e_1_2_8_28_1) 2023 e_1_2_8_48_1 e_1_2_8_2_1 Zhang Q. (e_1_2_8_19_1) 2022 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_23_1 e_1_2_8_44_1 Lee B. (e_1_2_8_7_1) 2024 e_1_2_8_18_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_16_1 Ye M. (e_1_2_8_37_1) 2024 Yu A. (e_1_2_8_26_1) 2021 Syed Waqas Z. (e_1_2_8_47_1) 2021 e_1_2_8_31_1 e_1_2_8_33_1 Barron J. T. (e_1_2_8_27_1) 2021 e_1_2_8_52_1 Yang Z. (e_1_2_8_40_1) 2024 e_1_2_8_50_1 |
References_xml | – start-page: 12912 year: 2022 end-page: 12921 – start-page: 12861 year: 2022 end-page: 12870 – start-page: 293 year: 2024 end-page: 310 – volume: 7 start-page: 1 issue: 1 year: 2024 end-page: 15 article-title: Deblur‐Gs: 3d Gaussian Splatting From Camera Motion Blurred Images publication-title: Proceedings of the ACM on Computer Graphics and Interactive Techniques – volume: 37 start-page: 2029 year: 2023 end-page: 2037 – start-page: 20331 year: 2024 end-page: 20341 – start-page: 1107 year: 2013 end-page: 1114 – start-page: 4104 year: 2016 end-page: 4113 – start-page: 1 year: 2022 end-page: 12 – start-page: 19595 year: 2024 end-page: 19604 – year: 2024 – start-page: 19774 year: 2023 end-page: 19783 – start-page: 4170 year: 2023 end-page: 4179 – start-page: 5481 year: 2022 end-page: 5490 – start-page: 5480 year: 2022 end-page: 5490 – start-page: 127 year: 2024 end-page: 143 – start-page: 736 year: 2022 end-page: 753 – start-page: 12386 year: 2023 end-page: 12396 – start-page: 233 year: 2024 end-page: 250 – volume: 33 start-page: 1603 issue: 8 year: 2010 end-page: 1618 article-title: Richardson‐Lucy Deblurring for Scenes Under a Projective Motion Path publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence – start-page: 1 year: 2024 end-page: 11 – start-page: 12902 year: 2022 end-page: 12911 – start-page: 501 year: 2016 end-page: 518 – volume: 41 start-page: 1 issue: 4 year: 2022 end-page: 15 article-title: Instant Neural Graphics Primitives With a Multiresolution Hash Encoding publication-title: ACM Transactions on Graphics – start-page: 2737 year: 2020 end-page: 2746 – start-page: 145 year: 2024 end-page: 163 – start-page: 3709 year: 2024 end-page: 3718 – start-page: 14821 year: 2021 end-page: 14831 – start-page: 5752 year: 2021 end-page: 5761 – start-page: 20310 year: 2024 end-page: 20320 – start-page: 21476 year: 2024 end-page: 21485 – volume: 65 start-page: 99 issue: 1 year: 2021 end-page: 106 article-title: Nerf: Representing Scenes as Neural Radiance Fields for View Synthesis publication-title: Communications of the ACM – start-page: 694 year: 2016 end-page: 711 – start-page: 19697 year: 2023 end-page: 19705 – year: 2023 – start-page: 5855 year: 2021 end-page: 5864 – volume: 43 start-page: 1 issue: 6 year: 2024 end-page: 13 article-title: Gaussian Opacity Fields: Efficient Adaptive Surface Reconstruction in Unbounded Scenes publication-title: ACM Transactions on Graphics – start-page: 233 year: 2011 end-page: 240 – volume: 33 start-page: 15651 year: 2020 end-page: 15663 article-title: Neural Sparse Voxel Fields publication-title: Advances in Neural Information Processing Systems – start-page: 12528 year: 2021 end-page: 12537 – start-page: 5501 year: 2022 end-page: 5510 – start-page: 326 year: 2024 end-page: 342 – volume: 42 start-page: 131 issue: 4 year: 2023 end-page: 139 article-title: 3d Gaussian Splatting for Real‐Time Radiance Field Rendering publication-title: ACM Transactions on Graphics – start-page: 18409 year: 2022 end-page: 18418 – start-page: 14346 year: 2021 end-page: 14355 – start-page: 1 year: 2024 end-page: 2 – start-page: 162 year: 2024 end-page: 179 – ident: e_1_2_8_52_1 doi: 10.1007/978-3-319-46475-6_43 – volume: 33 start-page: 15651 year: 2020 ident: e_1_2_8_25_1 article-title: Neural Sparse Voxel Fields publication-title: Advances in Neural Information Processing Systems – ident: e_1_2_8_32_1 doi: 10.1109/CVPR52688.2022.00540 – start-page: 12861 volume-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition year: 2022 ident: e_1_2_8_4_1 – ident: e_1_2_8_45_1 doi: 10.1109/CVPR.2013.147 – ident: e_1_2_8_24_1 doi: 10.1109/ICCV48922.2021.01408 – ident: e_1_2_8_14_1 doi: 10.1145/3651301 – ident: e_1_2_8_33_1 doi: 10.1007/978-3-031-20047-2_42 – start-page: 127 volume-title: European Conference on Computer Vision year: 2024 ident: e_1_2_8_10_1 – start-page: 20331 volume-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition year: 2024 ident: e_1_2_8_40_1 – ident: e_1_2_8_22_1 doi: 10.1109/CVPR52688.2022.01256 – ident: e_1_2_8_38_1 doi: 10.1109/CVPR52733.2024.02029 – start-page: 293 volume-title: European Conference on Computer Vision year: 2024 ident: e_1_2_8_12_1 – volume: 33 start-page: 1603 issue: 8 year: 2010 ident: e_1_2_8_46_1 article-title: Richardson‐Lucy Deblurring for Scenes Under a Projective Motion Path publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence – ident: e_1_2_8_53_1 doi: 10.1007/978-3-319-46487-9_31 – ident: e_1_2_8_48_1 doi: 10.1109/CVPR42600.2020.00281 – ident: e_1_2_8_36_1 doi: 10.1109/CVPR52688.2022.00541 – start-page: 145 volume-title: European Conference on Computer Vision year: 2024 ident: e_1_2_8_49_1 – ident: e_1_2_8_23_1 doi: 10.1145/3528223.3530127 – ident: e_1_2_8_15_1 – ident: e_1_2_8_9_1 – ident: e_1_2_8_2_1 doi: 10.1145/3503250 – start-page: 326 volume-title: European Conference on Computer Vision year: 2024 ident: e_1_2_8_51_1 – ident: e_1_2_8_42_1 – start-page: 5752 volume-title: Proceedings of the IEEE/CVF International Conference on Computer Vision year: 2021 ident: e_1_2_8_26_1 – ident: e_1_2_8_34_1 – ident: e_1_2_8_3_1 doi: 10.1145/3592433 – ident: e_1_2_8_44_1 doi: 10.1109/CVPR.2011.5995521 – start-page: 4170 volume-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition year: 2023 ident: e_1_2_8_8_1 – start-page: 19697 volume-title: Proceedings of the IEEE/CVF International Conference on Computer Vision year: 2023 ident: e_1_2_8_28_1 – start-page: 1 volume-title: ACM SIGGRAPH 2024 Conference Papers year: 2024 ident: e_1_2_8_30_1 – ident: e_1_2_8_11_1 – start-page: 5855 volume-title: Proceedings of the IEEE/CVF International Conference on Computer Vision year: 2021 ident: e_1_2_8_27_1 – ident: e_1_2_8_31_1 doi: 10.1109/CVPR52688.2022.01257 – start-page: 19595 volume-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition year: 2024 ident: e_1_2_8_41_1 – ident: e_1_2_8_50_1 doi: 10.1145/3687937 – start-page: 2029 volume-title: Proceedings of the AAAI Conference on Artificial Intelligence year: 2023 ident: e_1_2_8_6_1 – start-page: 233 volume-title: European Conference on Computer Vision year: 2024 ident: e_1_2_8_13_1 – start-page: 162 volume-title: European Conference on Computer Vision year: 2024 ident: e_1_2_8_37_1 – ident: e_1_2_8_17_1 doi: 10.1109/CVPR.2016.445 – ident: e_1_2_8_43_1 doi: 10.1007/978-981-97-8508-7_21 – ident: e_1_2_8_16_1 – ident: e_1_2_8_35_1 doi: 10.1109/CVPR52688.2022.01786 – ident: e_1_2_8_20_1 doi: 10.1145/3681756.3697934 – start-page: 20310 volume-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition year: 2024 ident: e_1_2_8_39_1 – ident: e_1_2_8_18_1 doi: 10.1109/ICCV48922.2021.01230 – start-page: 1 volume-title: SIGGRAPH Asia 2022 Conference Papers year: 2022 ident: e_1_2_8_19_1 – ident: e_1_2_8_21_1 doi: 10.1109/CVPR52688.2022.00542 – start-page: 12386 volume-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition year: 2023 ident: e_1_2_8_5_1 – start-page: 3709 volume-title: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision year: 2024 ident: e_1_2_8_7_1 – start-page: 14821 volume-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition year: 2021 ident: e_1_2_8_47_1 – start-page: 19774 volume-title: Proceedings of the IEEE/CVF International Conference on Computer Vision year: 2023 ident: e_1_2_8_29_1 |
SSID | ssj0026210 |
Score | 2.3712747 |
Snippet | ABSTRACT
Defocus blur poses a significant challenge for 3D reconstruction, as traditional methods often struggle to maintain detail and accuracy in blurred... Defocus blur poses a significant challenge for 3D reconstruction, as traditional methods often struggle to maintain detail and accuracy in blurred regions.... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Index Database Publisher |
SubjectTerms | 3d gaussian splatting defocus blur graphics Image reconstruction novel view synthesis rendering |
Title | DTGS: Defocus‐Tolerant View Synthesis Using Gaussian Splatting |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcav.70045 https://www.proquest.com/docview/3228988000 |
Volume | 36 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB6KJz34FqtVgnjwknaz2bz0Ymlti6AH-6AHIWx2N1AsbTGJoid_gr_RX-LupmlVEMRbCLtLMpnHN5uZbwFOA4vbAZeZqgITJoncyIw4Z6YViJgw5gpf8xbc3LqdPrkeOsMSXBS9MDk_xGLDTVmG9tfKwGmU1JakoYw-VRU3u2owV7VaChDdLaijsItzJgKHuKZKEwpWIYRri5nfY9ESYH6FqTrOtDbgvnjCvLzkoZqlUZW9_iBv_OcrbML6HH8a9VxhtqAkJtuwNhglWX432YHLZq_dPTeaIp6yLPl4e-9Nx0KGtNQYjMSz0X2ZSNCYjBJDlxsYbZolqhPT6M7GVFdR70K_ddVrdMz5QQsmwwFxTIthoaBVgOKI2whxLkGGY8We7XkMMxELzxeIIiqHBC6JYy4Fyi3Xd5AgMiWy92BlMp2IfTBs6ns2FU4k_QTxLUa5JbhUE8dX__eoW4aTQuThLOfTCHPmZBxKcYRaHGWoFB8jnJtUEkrP4wfS2yBUhjMt1d8XCBv1gb44-PvQQ1jF6mxfXcxYgZX0MRNHEnCk0bHWrE9XQtAK |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8JAEJ4gHtSDbyOK2hgPXorbd2s8SEBABQ7yCBfTbHe3CZEAsVSjJ3-Cv9Ff4u6WgpqYGG_NZttsp_P4Zjv7DcCJp1HDozxTFWBCNQM7UANKiap5LDQJsZkreQsaTbvWMW96Vi8DF-lZmIQfYrbhJixD-mth4GJD-mzOGkrwU0GQs1sLsCg6esuE6m5GHqXbesJFYJm2KhKFlFcI6WezW79HoznE_ApUZaSprMF9usakwOShEE-CAnn9Qd_435dYh9UpBFWKic5sQIYNN2Gl24_iZDTagstyu9o6V8osHJE4-nh7b48GjEe1idLts2el9TLkuDHqR4qsOFCqOI7EYUylNR5gWUi9DZ3KVbtUU6e9FlSie6alakRnAl15KAyogRClHGdYWugYjkN0wkLmuAxhhPkUzzbDkHKJUs12LcRMnhUZO5AdjoZsFxQDu46BmRVwV2G6GsFUY5RriuWKX3zYzsFxKnN_nFBq-Al5su5zcfhSHDnIp1_Dn1pV5HPn43rc4SCUg1Mp1t8f4JeKXXmx9_epR7BUazfqfv26ebsPy7po9StrG_OQnTzG7IDjj0lwKNXsE2fm1CU |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JS8NAFH64gOjBXaxrEA9e0k6SySTRi2Jt64rYhR6EMJmZQFHaYhpFT_4Ef6O_xJlJUxcQxFsIk5B8ecv3Jm--AdgNLO4EXFaqikyYOCKRGXHOTCsQMWaMCF_rFlxekVoTn7Xd9hgc5GthMn2I0YSb8gwdr5WD93lc-hQNZfSxqLTZ3XGYxAT5yqTLNyPtKJvYmRSBi4mp6oRcVgjZpdGl35PRJ8P8ylN1oqnMwW3-iFl_yV0xHURF9vJDvfGf7zAPs0MCahxlFrMAY6K7CDOtTpJmZ5MlOCw3qvV9oyziHkuT99e3Ru9eyJw2MFod8WTUn7uSNSadxND9BkaVpolaimnU-_dUt1EvQ7Ny0jiumcOdFkxmB9g1LWYLxa0CFEfcQYhzyTJcK_Ycz2M2E7HwfIEoonJIQHAccwkot4jvIoFlTeSswES31xWrYDjU9xwq3EgGCuxbjHJLcGknrq9-8FFSgJ0c8rCfCWqEmXSyHUo4Qg1HATbyjxEOfSoJZejxAxluECrAnkb19xuEx0ctfbD296HbMHVdroQXp1fn6zBtq31-dWPjBkwMHlKxKcnHINrSRvYBJ_nS3Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=DTGS%3A+Defocus%E2%80%90Tolerant+View+Synthesis+Using+Gaussian+Splatting&rft.jtitle=Computer+animation+and+virtual+worlds&rft.au=Dai%2C+Xinying&rft.au=Yao%2C+Li&rft.date=2025-05-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=1546-4261&rft.eissn=1546-427X&rft.volume=36&rft.issue=3&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fcav.70045&rft.externalDBID=10.1002%252Fcav.70045&rft.externalDocID=CAV70045 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1546-4261&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1546-4261&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1546-4261&client=summon |