CLPFusion: A Latent Diffusion Model Framework for Realistic Chinese Landscape Painting Style Transfer

ABSTRACT This study focuses on transforming real‐world scenery into Chinese landscape painting masterpieces through style transfer. Traditional methods using convolutional neural networks (CNNs) and generative adversarial networks (GANs) often yield inconsistent patterns and artifacts. The rise of d...

Full description

Saved in:
Bibliographic Details
Published inComputer animation and virtual worlds Vol. 36; no. 3
Main Authors Pan, Jiahui, Li, Frederick W. B., Yang, Bailin, Nan, Fangzhe
Format Journal Article
LanguageEnglish
Published Hoboken, USA John Wiley & Sons, Inc 01.05.2025
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract ABSTRACT This study focuses on transforming real‐world scenery into Chinese landscape painting masterpieces through style transfer. Traditional methods using convolutional neural networks (CNNs) and generative adversarial networks (GANs) often yield inconsistent patterns and artifacts. The rise of diffusion models (DMs) presents new opportunities for realistic image generation, but their inherent noise characteristics make it challenging to synthesize pure white or black images. Consequently, existing DM‐based methods struggle to capture the unique style and color information of Chinese landscape paintings. To overcome these limitations, we propose CLPFusion, a novel framework that leverages pre‐trained diffusion models for artistic style transfer. A key innovation is the Bidirectional State Space Models‐CrossAttention (BiSSM‐CA) module, which efficiently learns and retains the distinct styles of Chinese landscape paintings. Additionally, we introduce two latent space feature adjustment methods, Latent‐AdaIN and Latent‐WCT, to enhance style modulation during inference. Experiments demonstrate that CLPFusion produces more realistic and artistic Chinese landscape paintings than existing approaches, showcasing its effectiveness and uniqueness in the field. We propose CLPFusion, a diffusion‐based artistic style transfer framework that integrates Bidirectional State Space Models‐CrossAttention (BiSSM‐CA) with latent space feature adjustment (Latent‐AdaIN and Latent‐WCT). Our method effectively enhances style retention and color fidelity for Chinese landscape painting generation.
AbstractList This study focuses on transforming real‐world scenery into Chinese landscape painting masterpieces through style transfer. Traditional methods using convolutional neural networks (CNNs) and generative adversarial networks (GANs) often yield inconsistent patterns and artifacts. The rise of diffusion models (DMs) presents new opportunities for realistic image generation, but their inherent noise characteristics make it challenging to synthesize pure white or black images. Consequently, existing DM‐based methods struggle to capture the unique style and color information of Chinese landscape paintings. To overcome these limitations, we propose CLPFusion, a novel framework that leverages pre‐trained diffusion models for artistic style transfer. A key innovation is the Bidirectional State Space Models‐CrossAttention (BiSSM‐CA) module, which efficiently learns and retains the distinct styles of Chinese landscape paintings. Additionally, we introduce two latent space feature adjustment methods, Latent‐AdaIN and Latent‐WCT, to enhance style modulation during inference. Experiments demonstrate that CLPFusion produces more realistic and artistic Chinese landscape paintings than existing approaches, showcasing its effectiveness and uniqueness in the field.
ABSTRACT This study focuses on transforming real‐world scenery into Chinese landscape painting masterpieces through style transfer. Traditional methods using convolutional neural networks (CNNs) and generative adversarial networks (GANs) often yield inconsistent patterns and artifacts. The rise of diffusion models (DMs) presents new opportunities for realistic image generation, but their inherent noise characteristics make it challenging to synthesize pure white or black images. Consequently, existing DM‐based methods struggle to capture the unique style and color information of Chinese landscape paintings. To overcome these limitations, we propose CLPFusion, a novel framework that leverages pre‐trained diffusion models for artistic style transfer. A key innovation is the Bidirectional State Space Models‐CrossAttention (BiSSM‐CA) module, which efficiently learns and retains the distinct styles of Chinese landscape paintings. Additionally, we introduce two latent space feature adjustment methods, Latent‐AdaIN and Latent‐WCT, to enhance style modulation during inference. Experiments demonstrate that CLPFusion produces more realistic and artistic Chinese landscape paintings than existing approaches, showcasing its effectiveness and uniqueness in the field. We propose CLPFusion, a diffusion‐based artistic style transfer framework that integrates Bidirectional State Space Models‐CrossAttention (BiSSM‐CA) with latent space feature adjustment (Latent‐AdaIN and Latent‐WCT). Our method effectively enhances style retention and color fidelity for Chinese landscape painting generation.
Author Yang, Bailin
Pan, Jiahui
Nan, Fangzhe
Li, Frederick W. B.
Author_xml – sequence: 1
  givenname: Jiahui
  orcidid: 0009-0008-9077-6326
  surname: Pan
  fullname: Pan, Jiahui
  organization: Zhejiang Gongshang University
– sequence: 2
  givenname: Frederick W. B.
  orcidid: 0000-0002-4283-4228
  surname: Li
  fullname: Li, Frederick W. B.
  organization: University of Durham
– sequence: 3
  givenname: Bailin
  surname: Yang
  fullname: Yang, Bailin
  email: ybl@zjgsu.edu.cn
  organization: Zhejiang Gongshang University
– sequence: 4
  givenname: Fangzhe
  surname: Nan
  fullname: Nan, Fangzhe
  organization: Zhejiang Gongshang University
BookMark eNp1kEFLwzAUx4NMcE4PfoOAJw_d0rRNGm-jOhUqDp3iLaTti2Z26Uw6x769dRVvnt7j8fv_H_yO0cA2FhA6C8k4JIROSvU15oQk0QEahknMgpjy18HfzsIjdOz9skMZDckQQZbPZxtvGnuJpzhXLdgWXxmt9zd831RQ45lTK9g27gPrxuFHULXxrSlx9m4seOhitvKlWgOeK2NbY9_wU7urAS-csl6DO0GHWtUeTn_nCD3PrhfZbZA_3Nxl0zwoqYijoOIJpURFlSgoDwutU84LqpTgacUI43EhGAcmoCSi4pBGjCaCs4hVUPCEx9EInfe9a9d8bsC3ctlsnO1eyojSVHR9PO2oi54qXeO9Ay3XzqyU28mQyB-LsrMo9xY7dtKzW1PD7n9QZtOXPvENaGx0XA
Cites_doi 10.1145/3422622
10.1109/ACCESS.2019.2952616
10.1109/ICCV.2017.244
10.1109/ICDSCA53499.2021.9650335
10.1109/CVPR.2016.265
10.1109/ICCV.2017.167
10.1007/s00521-022-07432-w
10.1609/aaai.v38i7.28570
10.3390/app14041430
10.1109/ACCESS.2020.3009470
10.1109/TVCG.2017.2774292
10.1109/CVPR52688.2022.01042
10.1109/CVPR52733.2024.00840
10.1088/1742-6596/1004/1/012026
10.1109/ACCESS.2023.3274666
10.48550/arXiv.2312.00752
10.48550/ARXIV.2406.07887
10.1145/3240508.3240655
10.1145/3618342
ContentType Journal Article
Copyright 2025 John Wiley & Sons Ltd.
2025 John Wiley & Sons, Ltd.
Copyright_xml – notice: 2025 John Wiley & Sons Ltd.
– notice: 2025 John Wiley & Sons, Ltd.
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1002/cav.70053
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList CrossRef
Computer and Information Systems Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Visual Arts
EISSN 1546-427X
EndPage n/a
ExternalDocumentID 10_1002_cav_70053
CAV70053
Genre researchArticle
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 62172366
– fundername: Zhejiang Provincial Natural Science Foundation of China
  funderid: LD24F020003
– fundername: Major Sci‐Tech Innovation Project of Hangzhou City
  funderid: 2022AIZD0110
GroupedDBID .3N
.4S
.DC
.GA
.Y3
05W
0R~
10A
1L6
1OC
29F
31~
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
6J9
702
7PT
8-0
8-1
8-3
8-4
8-5
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACPOU
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADMLS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUYR
AFBPY
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGYGG
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ARCSS
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EDO
EJD
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
HF~
HGLYW
HHY
HVGLF
HZ~
I-F
ITG
ITH
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N9A
NF~
O66
O9-
OIG
P2W
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
ROL
RX1
RYL
SUPJJ
TN5
TUS
UB1
V2E
V8K
W8V
W99
WBKPD
WIH
WIK
WQJ
WXSBR
WYISQ
WZISG
XG1
XV2
~IA
~WT
AAMMB
AAYXX
AEFGJ
AGXDD
AIDQK
AIDYY
CITATION
1OB
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c2943-d75220a3d9b271bff877b2aa978d60674b967e69ec09d7e8362597636deb75743
IEDL.DBID DR2
ISSN 1546-4261
IngestDate Sat Aug 23 13:08:53 EDT 2025
Thu Jul 03 08:38:42 EDT 2025
Wed Jun 25 09:40:24 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2943-d75220a3d9b271bff877b2aa978d60674b967e69ec09d7e8362597636deb75743
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-4283-4228
0009-0008-9077-6326
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/cav.70053
PQID 3228987778
PQPubID 2034909
PageCount 9
ParticipantIDs proquest_journals_3228987778
crossref_primary_10_1002_cav_70053
wiley_primary_10_1002_cav_70053_CAV70053
PublicationCentury 2000
PublicationDate May/June 2025
2025-05-00
20250501
PublicationDateYYYYMMDD 2025-05-01
PublicationDate_xml – month: 05
  year: 2025
  text: May/June 2025
PublicationDecade 2020
PublicationPlace Hoboken, USA
PublicationPlace_xml – name: Hoboken, USA
– name: Chichester
PublicationTitle Computer animation and virtual worlds
PublicationYear 2025
Publisher John Wiley & Sons, Inc
Wiley Subscription Services, Inc
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley Subscription Services, Inc
References 2020; 8
2023; 42
2019; 7
2002; 14
2015; 37
2017; 30
2018; 1004
2023; 11
2021; 34
2023
2020; 63
2022
2021
2021; 139
2017; 24
2022; 34
2018
2017
2016
2024
2012; 25
2024; 14
2005; 17
2024; 38
Zhang Z. (e_1_2_11_23_1) 2024
e_1_2_11_10_1
e_1_2_11_32_1
Dhariwal P. (e_1_2_11_17_1) 2021; 34
e_1_2_11_14_1
e_1_2_11_12_1
e_1_2_11_11_1
e_1_2_11_33_1
e_1_2_11_7_1
e_1_2_11_29_1
e_1_2_11_28_1
e_1_2_11_27_1
e_1_2_11_4_1
e_1_2_11_26_1
e_1_2_11_3_1
Radford A. (e_1_2_11_21_1) 2021
Zhang L. (e_1_2_11_30_1) 2023
Zhu L. (e_1_2_11_34_1) 2024
Sohl‐Dickstein J. (e_1_2_11_18_1) 2015
Hong K. (e_1_2_11_2_1) 2023
Bin Y. (e_1_2_11_5_1) 2005; 17
Everaert M. N. (e_1_2_11_35_1) 2024
Li Y. (e_1_2_11_36_1) 2017; 30
e_1_2_11_25_1
e_1_2_11_24_1
e_1_2_11_9_1
e_1_2_11_22_1
Xue A. (e_1_2_11_13_1) 2021
e_1_2_11_15_1
Heusel M. (e_1_2_11_16_1) 2017; 30
Gu A. (e_1_2_11_31_1) 2022
Yeh J. W. (e_1_2_11_6_1) 2002; 14
e_1_2_11_37_1
e_1_2_11_19_1
Zhang Y. (e_1_2_11_20_1) 2023
Krizhevsky A. (e_1_2_11_8_1) 2012; 25
References_xml – volume: 63
  start-page: 139
  issue: 11
  year: 2020
  end-page: 144
  article-title: Generative Adversarial Networks
  publication-title: Communications of the ACM
– volume: 30
  start-page: 6626
  year: 2017
  end-page: 6637
  article-title: Gans Trained by a Two Time‐Scale Update Rule Converge to a Local Nash Equilibrium
  publication-title: Advances in Neural Information Processing Systems
– start-page: 10684
  year: 2022
  end-page: 10695
– start-page: 4025
  year: 2024
  end-page: 4034
– volume: 30
  start-page: 386
  year: 2017
  end-page: 396
  article-title: Universal Style Transfer via Feature Transforms
  publication-title: Advances in Neural Information Processing Systems
– start-page: 8795
  year: 2024
  end-page: 8805
– volume: 1004
  year: 2018
  article-title: Ink Wash Painting Style Rendering With Physically‐Based Ink Dispersion Model
  publication-title: Journal of Physics: Conference Series
– volume: 139
  start-page: 8748
  year: 2021
  end-page: 8763
– volume: 14
  start-page: 1430
  issue: 4
  year: 2024
  article-title: Paint‐CUT: A Generative Model for Chinese Landscape Painting Based on Shuffle Attentional Residual Block and Edge Enhancement
  publication-title: Applied Sciences
– volume: 14
  start-page: 1220
  issue: 6
  year: 2002
  end-page: 1224
  article-title: Non‐Photorealistic Rendering in Chinese Painting of Animals
  publication-title: Journal of System Simulation
– volume: 8
  start-page: 132002
  year: 2020
  end-page: 132011
  article-title: Detail‐Preserving Cyclegan‐Adain Framework for Image‐to‐Ink Painting Translation
  publication-title: IEEE Access
– start-page: 7814
  year: 2024
  end-page: 7822
– year: 2024
– start-page: 1501
  year: 2017
  end-page: 1510
– volume: 7
  start-page: 163719
  year: 2019
  end-page: 163728
  article-title: Convolutional Neural Network Style Transfer Towards Chinese Paintings
  publication-title: IEEE Access
– volume: 34
  start-page: 18075
  issue: 20
  year: 2022
  end-page: 18096
  article-title: Contour‐Enhanced CycleGAN Framework for Style Transfer From Scenery Photos to Chinese Landscape Paintings
  publication-title: Neural Computing and Applications
– start-page: 22758
  year: 2023
  end-page: 22767
– year: 2023
  article-title: Mamba: Linear‐Time Sequence Modeling With Selective State Spaces
  publication-title: CoRR
– start-page: 3863
  year: 2021
  end-page: 3871
– start-page: 10146
  year: 2023
  end-page: 10156
– start-page: 38
  year: 2021
  end-page: 41
– start-page: 2223
  year: 2017
  end-page: 2232
– volume: 37
  start-page: 2256
  year: 2015
  end-page: 2265
– volume: 25
  start-page: 1106
  year: 2012
  end-page: 1114
  article-title: Imagenet Classification With Deep Convolutional Neural Networks
  publication-title: Advances in Neural Information Processing Systems
– start-page: 2414
  year: 2016
  end-page: 2423
– year: 2024
  article-title: An Empirical Study of Mamba‐Based Language Models
  publication-title: CoRR
– volume: 24
  start-page: 3019
  issue: 12
  year: 2017
  end-page: 3031
  article-title: Animated Construction of Chinese Brush Paintings
  publication-title: IEEE Transactions on Visualization and Computer Graphics
– volume: 34
  start-page: 8780
  year: 2021
  end-page: 8794
  article-title: Diffusion Models Beat Gans on Image Synthesis
  publication-title: Advances in Neural Information Processing Systems
– year: 2022
– year: 2023
– volume: 42
  start-page: 1
  issue: 6
  year: 2023
  end-page: 14
  article-title: Prospect: Prompt Spectrum for Attribute‐Aware Personalization of Diffusion Models
  publication-title: ACM Transactions on Graphics
– volume: 17
  start-page: 2305
  issue: 9
  year: 2005
  end-page: 2309
  article-title: Simulation of Diffusion Effect Based on Physically Modeling of Paper in Chinese Ink Wash Drawing
  publication-title: Journal of System Simulation
– volume: 38
  start-page: 7396
  issue: 7
  year: 2024
  end-page: 7404
  article-title: Artbank: Artistic Style Transfer With Pre‐Trained Diffusion Model and Implicit Style Prompt Bank
  publication-title: Proceedings of the AAAI Conference on Artificial Intelligence
– start-page: 3836
  year: 2023
  end-page: 3847
– volume: 11
  start-page: 60844
  year: 2023
  end-page: 60852
  article-title: TwinGAN: Twin Generative Adversarial Network for Chinese Landscape Painting Style Transfer
  publication-title: IEEE Access
– start-page: 1172
  year: 2018
  end-page: 1180
– ident: e_1_2_11_10_1
  doi: 10.1145/3422622
– start-page: 8748
  volume-title: International Conference on Machine Learning
  year: 2021
  ident: e_1_2_11_21_1
– ident: e_1_2_11_24_1
  doi: 10.1109/ACCESS.2019.2952616
– start-page: 22758
  volume-title: Proceedings of the IEEE/CVF International Conference on Computer Vision
  year: 2023
  ident: e_1_2_11_2_1
– start-page: 10146
  volume-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
  year: 2023
  ident: e_1_2_11_20_1
– volume-title: International Conference on Learning Representations
  year: 2022
  ident: e_1_2_11_31_1
– volume: 30
  start-page: 6626
  year: 2017
  ident: e_1_2_11_16_1
  article-title: Gans Trained by a Two Time‐Scale Update Rule Converge to a Local Nash Equilibrium
  publication-title: Advances in Neural Information Processing Systems
– start-page: 2256
  volume-title: International Conference on Machine Learning
  year: 2015
  ident: e_1_2_11_18_1
– ident: e_1_2_11_9_1
  doi: 10.1109/ICCV.2017.244
– ident: e_1_2_11_25_1
  doi: 10.1109/ICDSCA53499.2021.9650335
– volume-title: Proceedings of the 41st International Conference on Machine Learning
  year: 2024
  ident: e_1_2_11_34_1
– ident: e_1_2_11_7_1
  doi: 10.1109/CVPR.2016.265
– volume: 30
  start-page: 386
  year: 2017
  ident: e_1_2_11_36_1
  article-title: Universal Style Transfer via Feature Transforms
  publication-title: Advances in Neural Information Processing Systems
– ident: e_1_2_11_26_1
  doi: 10.1109/ICCV.2017.167
– ident: e_1_2_11_11_1
  doi: 10.1007/s00521-022-07432-w
– ident: e_1_2_11_29_1
  doi: 10.1609/aaai.v38i7.28570
– volume: 14
  start-page: 1220
  issue: 6
  year: 2002
  ident: e_1_2_11_6_1
  article-title: Non‐Photorealistic Rendering in Chinese Painting of Animals
  publication-title: Journal of System Simulation
– start-page: 3863
  volume-title: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision
  year: 2021
  ident: e_1_2_11_13_1
– ident: e_1_2_11_27_1
  doi: 10.3390/app14041430
– ident: e_1_2_11_12_1
  doi: 10.1109/ACCESS.2020.3009470
– start-page: 7814
  volume-title: Proceedings of the Thirty‐Third International Joint Conference on Artificial Intelligence
  year: 2024
  ident: e_1_2_11_23_1
– ident: e_1_2_11_4_1
  doi: 10.1109/TVCG.2017.2774292
– ident: e_1_2_11_19_1
  doi: 10.1109/CVPR52688.2022.01042
– ident: e_1_2_11_37_1
  doi: 10.1109/CVPR52733.2024.00840
– ident: e_1_2_11_3_1
  doi: 10.1088/1742-6596/1004/1/012026
– ident: e_1_2_11_14_1
  doi: 10.1109/ACCESS.2023.3274666
– start-page: 4025
  volume-title: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision
  year: 2024
  ident: e_1_2_11_35_1
– ident: e_1_2_11_32_1
  doi: 10.48550/arXiv.2312.00752
– ident: e_1_2_11_33_1
  doi: 10.48550/ARXIV.2406.07887
– ident: e_1_2_11_15_1
  doi: 10.1145/3240508.3240655
– volume: 25
  start-page: 1106
  year: 2012
  ident: e_1_2_11_8_1
  article-title: Imagenet Classification With Deep Convolutional Neural Networks
  publication-title: Advances in Neural Information Processing Systems
– volume: 34
  start-page: 8780
  year: 2021
  ident: e_1_2_11_17_1
  article-title: Diffusion Models Beat Gans on Image Synthesis
  publication-title: Advances in Neural Information Processing Systems
– ident: e_1_2_11_28_1
  doi: 10.1145/3618342
– start-page: 3836
  volume-title: Proceedings of the IEEE/CVF International Conference on Computer Vision
  year: 2023
  ident: e_1_2_11_30_1
– volume: 17
  start-page: 2305
  issue: 9
  year: 2005
  ident: e_1_2_11_5_1
  article-title: Simulation of Diffusion Effect Based on Physically Modeling of Paper in Chinese Ink Wash Drawing
  publication-title: Journal of System Simulation
– ident: e_1_2_11_22_1
SSID ssj0026210
Score 2.371445
Snippet ABSTRACT This study focuses on transforming real‐world scenery into Chinese landscape painting masterpieces through style transfer. Traditional methods using...
This study focuses on transforming real‐world scenery into Chinese landscape painting masterpieces through style transfer. Traditional methods using...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Index Database
Publisher
SubjectTerms Artificial neural networks
Chinese landscape painting
Diffusion models
Generative adversarial networks
Image processing
Landscape art
State space models
style transfer
Title CLPFusion: A Latent Diffusion Model Framework for Realistic Chinese Landscape Painting Style Transfer
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcav.70053
https://www.proquest.com/docview/3228987778
Volume 36
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwEA-yJ33wW5xOCeKDL91H1iaNPo1pGTJlTDf2IJSkSWE4qqytoH-9l3TdVBDEl1JCLzS5y90v4fI7hM45IcJjKnIUI8JxdaQcwT0GD-ZzwiIIMea-89097Y3c24k3WUNX5V2Ygh9ieeBmVob112aBC5k2VqShkXirM2ND4H9NrpYBRMMldRShpGAi8FzqmG1CySrUJI2l5PdYtAKYX2GqjTPBFnoq_7BIL3mu55msRx8_yBv_OYRttLnAn7hTGMwOWtPJLtoYT9O8aE33kO72B0FuTtEucQf3AYwmGb6exrFtw6Z62gwHZVIXBtSLh9rwKEKX2NTj1qkGsUSlJrkKD8TUVqPAD9n7TGMbHGM930ej4Oax23MW1RiciHC3DcoEqNYUbcUlYS0Zxz5jkgijVAW7IOZKTpmmXEdNrpj222ZnBd6LKi2ZB0DlAFWSl0QfIuzHlBIFWE5S7qomhz5AWgN41VzFrVYVnZV6CV8L0o2woFcmIcxZaOesimqlxsLFuktDcE8-NxSHfhVd2Kn_vYOw2xnbl6O_f3qM1okpAGwzHmuoks1zfQKoJJOn1vw-Adct29I
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwED-mPqgPfovzM4gPvnQfWZs04suYjqlTxtzGXqS0TQrDUcV2gv71XtJ1foAgvpQSeqHJXXK_C5ffAZwISn2Hy9CSnPqWrUJp-cLh-OCuoDxEF6PvO9_esVbfvh46wwKc53dhMn6I2YGbXhlmv9YLXB9Ilz9ZQ0P_tcS1Ec3Bgq7obQKq7ow8ijKacRE4NrN0oJDzClVoeSb63Rt9QsyvQNV4muYqPOT_mCWYPJYmaVAK33_QN_53EGuwMoWgpJ7ZzDoUVLwBy4NRMslak01QjXanOdEHaWekTtqIR-OUXIyiyLQRXUBtTJp5XhdB4Eu6SlMpYpdEl-RWiUKxWCY6v4p0_JEpSEHu07exIsY_RuplC_rNy16jZU0LMlghFXYN9YloreLXpAgorwZR5HIeUF_rVWIgxO1AMK6YUGFFSK7cmg6ucANjUgXcQayyDfPxU6x2gLgRY1QinAuYsGVFYB8orRC_KiGjarUIx7livOeMd8PLGJaph3PmmTkrwn6uMm-69BIPdyhXaJZDtwinZu5_78Br1AfmZffvnx7BYqt32_baV3c3e7BEdT1gkwC5D_Ppy0QdIEhJg0Njix-g3d_t
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwED_8ANEHv8X5GcQHXzq7rE0afRqbxY8pQ93wQShtk8Jw1GE7Qf96L-k6P0AQX0oJvdDk7nK_hMvvAA4FpaHLZWxJTkPLUbG0QuFyfHBPUB5jiNH3na9v2HnXuXxwH6bgtLwLU_BDTA7ctGeY9Vo7-FAmx5-koXH4WuXahqZh1mG2p026dTvhjqKMFlQErsMsvU8oaYVsejwR_R6MPhHmV5xqAo2_BI_lLxb5JU_VUR5V4_cf7I3_HMMyLI4BKGkUFrMCUypdhYVePxsVrdkaqGa744_0MdoJaZA2otE0J61-kpg2osunDYhfZnURhL3kVmkiReyS6ILcKlMolspMZ1eRTtg35SjIXf42UMREx0S9rEPXP7tvnlvjcgxWTIVTR20iVrPDuhQR5bUoSTzOIxpqrUrcBnEnEowrJlRsC8mVV9dbK1y-mFQRdxGpbMBM-pyqTSBewhiVCOYiJhxpC-wDpRWiVyVkUqtV4KDUSzAsWDeCgl-ZBjhngZmzCuyUGgvGjpcFuD55QnMcehU4MlP_ewdBs9EzL1t__3Qf5jotP2hf3FxtwzzVxYBN9uMOzOQvI7WLCCWP9owlfgAzXN6l
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=CLPFusion%3A+A+Latent+Diffusion+Model+Framework+for+Realistic+Chinese+Landscape+Painting+Style+Transfer&rft.jtitle=Computer+animation+and+virtual+worlds&rft.au=Pan%2C+Jiahui&rft.au=Li%2C+Frederick+W.+B&rft.au=Yang%2C+Bailin&rft.au=Nan%2C+Fangzhe&rft.date=2025-05-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1546-4261&rft.eissn=1546-427X&rft.volume=36&rft.issue=3&rft_id=info:doi/10.1002%2Fcav.70053&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1546-4261&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1546-4261&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1546-4261&client=summon