CLPFusion: A Latent Diffusion Model Framework for Realistic Chinese Landscape Painting Style Transfer
ABSTRACT This study focuses on transforming real‐world scenery into Chinese landscape painting masterpieces through style transfer. Traditional methods using convolutional neural networks (CNNs) and generative adversarial networks (GANs) often yield inconsistent patterns and artifacts. The rise of d...
Saved in:
Published in | Computer animation and virtual worlds Vol. 36; no. 3 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken, USA
John Wiley & Sons, Inc
01.05.2025
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | ABSTRACT
This study focuses on transforming real‐world scenery into Chinese landscape painting masterpieces through style transfer. Traditional methods using convolutional neural networks (CNNs) and generative adversarial networks (GANs) often yield inconsistent patterns and artifacts. The rise of diffusion models (DMs) presents new opportunities for realistic image generation, but their inherent noise characteristics make it challenging to synthesize pure white or black images. Consequently, existing DM‐based methods struggle to capture the unique style and color information of Chinese landscape paintings. To overcome these limitations, we propose CLPFusion, a novel framework that leverages pre‐trained diffusion models for artistic style transfer. A key innovation is the Bidirectional State Space Models‐CrossAttention (BiSSM‐CA) module, which efficiently learns and retains the distinct styles of Chinese landscape paintings. Additionally, we introduce two latent space feature adjustment methods, Latent‐AdaIN and Latent‐WCT, to enhance style modulation during inference. Experiments demonstrate that CLPFusion produces more realistic and artistic Chinese landscape paintings than existing approaches, showcasing its effectiveness and uniqueness in the field.
We propose CLPFusion, a diffusion‐based artistic style transfer framework that integrates Bidirectional State Space Models‐CrossAttention (BiSSM‐CA) with latent space feature adjustment (Latent‐AdaIN and Latent‐WCT). Our method effectively enhances style retention and color fidelity for Chinese landscape painting generation. |
---|---|
AbstractList | This study focuses on transforming real‐world scenery into Chinese landscape painting masterpieces through style transfer. Traditional methods using convolutional neural networks (CNNs) and generative adversarial networks (GANs) often yield inconsistent patterns and artifacts. The rise of diffusion models (DMs) presents new opportunities for realistic image generation, but their inherent noise characteristics make it challenging to synthesize pure white or black images. Consequently, existing DM‐based methods struggle to capture the unique style and color information of Chinese landscape paintings. To overcome these limitations, we propose CLPFusion, a novel framework that leverages pre‐trained diffusion models for artistic style transfer. A key innovation is the Bidirectional State Space Models‐CrossAttention (BiSSM‐CA) module, which efficiently learns and retains the distinct styles of Chinese landscape paintings. Additionally, we introduce two latent space feature adjustment methods, Latent‐AdaIN and Latent‐WCT, to enhance style modulation during inference. Experiments demonstrate that CLPFusion produces more realistic and artistic Chinese landscape paintings than existing approaches, showcasing its effectiveness and uniqueness in the field. ABSTRACT This study focuses on transforming real‐world scenery into Chinese landscape painting masterpieces through style transfer. Traditional methods using convolutional neural networks (CNNs) and generative adversarial networks (GANs) often yield inconsistent patterns and artifacts. The rise of diffusion models (DMs) presents new opportunities for realistic image generation, but their inherent noise characteristics make it challenging to synthesize pure white or black images. Consequently, existing DM‐based methods struggle to capture the unique style and color information of Chinese landscape paintings. To overcome these limitations, we propose CLPFusion, a novel framework that leverages pre‐trained diffusion models for artistic style transfer. A key innovation is the Bidirectional State Space Models‐CrossAttention (BiSSM‐CA) module, which efficiently learns and retains the distinct styles of Chinese landscape paintings. Additionally, we introduce two latent space feature adjustment methods, Latent‐AdaIN and Latent‐WCT, to enhance style modulation during inference. Experiments demonstrate that CLPFusion produces more realistic and artistic Chinese landscape paintings than existing approaches, showcasing its effectiveness and uniqueness in the field. We propose CLPFusion, a diffusion‐based artistic style transfer framework that integrates Bidirectional State Space Models‐CrossAttention (BiSSM‐CA) with latent space feature adjustment (Latent‐AdaIN and Latent‐WCT). Our method effectively enhances style retention and color fidelity for Chinese landscape painting generation. |
Author | Yang, Bailin Pan, Jiahui Nan, Fangzhe Li, Frederick W. B. |
Author_xml | – sequence: 1 givenname: Jiahui orcidid: 0009-0008-9077-6326 surname: Pan fullname: Pan, Jiahui organization: Zhejiang Gongshang University – sequence: 2 givenname: Frederick W. B. orcidid: 0000-0002-4283-4228 surname: Li fullname: Li, Frederick W. B. organization: University of Durham – sequence: 3 givenname: Bailin surname: Yang fullname: Yang, Bailin email: ybl@zjgsu.edu.cn organization: Zhejiang Gongshang University – sequence: 4 givenname: Fangzhe surname: Nan fullname: Nan, Fangzhe organization: Zhejiang Gongshang University |
BookMark | eNp1kEFLwzAUx4NMcE4PfoOAJw_d0rRNGm-jOhUqDp3iLaTti2Z26Uw6x769dRVvnt7j8fv_H_yO0cA2FhA6C8k4JIROSvU15oQk0QEahknMgpjy18HfzsIjdOz9skMZDckQQZbPZxtvGnuJpzhXLdgWXxmt9zd831RQ45lTK9g27gPrxuFHULXxrSlx9m4seOhitvKlWgOeK2NbY9_wU7urAS-csl6DO0GHWtUeTn_nCD3PrhfZbZA_3Nxl0zwoqYijoOIJpURFlSgoDwutU84LqpTgacUI43EhGAcmoCSi4pBGjCaCs4hVUPCEx9EInfe9a9d8bsC3ctlsnO1eyojSVHR9PO2oi54qXeO9Ay3XzqyU28mQyB-LsrMo9xY7dtKzW1PD7n9QZtOXPvENaGx0XA |
Cites_doi | 10.1145/3422622 10.1109/ACCESS.2019.2952616 10.1109/ICCV.2017.244 10.1109/ICDSCA53499.2021.9650335 10.1109/CVPR.2016.265 10.1109/ICCV.2017.167 10.1007/s00521-022-07432-w 10.1609/aaai.v38i7.28570 10.3390/app14041430 10.1109/ACCESS.2020.3009470 10.1109/TVCG.2017.2774292 10.1109/CVPR52688.2022.01042 10.1109/CVPR52733.2024.00840 10.1088/1742-6596/1004/1/012026 10.1109/ACCESS.2023.3274666 10.48550/arXiv.2312.00752 10.48550/ARXIV.2406.07887 10.1145/3240508.3240655 10.1145/3618342 |
ContentType | Journal Article |
Copyright | 2025 John Wiley & Sons Ltd. 2025 John Wiley & Sons, Ltd. |
Copyright_xml | – notice: 2025 John Wiley & Sons Ltd. – notice: 2025 John Wiley & Sons, Ltd. |
DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
DOI | 10.1002/cav.70053 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
DatabaseTitleList | CrossRef Computer and Information Systems Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Visual Arts |
EISSN | 1546-427X |
EndPage | n/a |
ExternalDocumentID | 10_1002_cav_70053 CAV70053 |
Genre | researchArticle |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 62172366 – fundername: Zhejiang Provincial Natural Science Foundation of China funderid: LD24F020003 – fundername: Major Sci‐Tech Innovation Project of Hangzhou City funderid: 2022AIZD0110 |
GroupedDBID | .3N .4S .DC .GA .Y3 05W 0R~ 10A 1L6 1OC 29F 31~ 33P 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 6J9 702 7PT 8-0 8-1 8-3 8-4 8-5 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACPOU ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADMLS ADNMO ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUYR AFBPY AFFPM AFGKR AFWVQ AFZJQ AGHNM AGQPQ AGYGG AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ARCSS ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS EDO EJD F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA HF~ HGLYW HHY HVGLF HZ~ I-F ITG ITH IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N9A NF~ O66 O9- OIG P2W P4D PQQKQ Q.N Q11 QB0 QRW R.K ROL RX1 RYL SUPJJ TN5 TUS UB1 V2E V8K W8V W99 WBKPD WIH WIK WQJ WXSBR WYISQ WZISG XG1 XV2 ~IA ~WT AAMMB AAYXX AEFGJ AGXDD AIDQK AIDYY CITATION 1OB 7SC 8FD JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c2943-d75220a3d9b271bff877b2aa978d60674b967e69ec09d7e8362597636deb75743 |
IEDL.DBID | DR2 |
ISSN | 1546-4261 |
IngestDate | Sat Aug 23 13:08:53 EDT 2025 Thu Jul 03 08:38:42 EDT 2025 Wed Jun 25 09:40:24 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2943-d75220a3d9b271bff877b2aa978d60674b967e69ec09d7e8362597636deb75743 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-4283-4228 0009-0008-9077-6326 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/cav.70053 |
PQID | 3228987778 |
PQPubID | 2034909 |
PageCount | 9 |
ParticipantIDs | proquest_journals_3228987778 crossref_primary_10_1002_cav_70053 wiley_primary_10_1002_cav_70053_CAV70053 |
PublicationCentury | 2000 |
PublicationDate | May/June 2025 2025-05-00 20250501 |
PublicationDateYYYYMMDD | 2025-05-01 |
PublicationDate_xml | – month: 05 year: 2025 text: May/June 2025 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken, USA |
PublicationPlace_xml | – name: Hoboken, USA – name: Chichester |
PublicationTitle | Computer animation and virtual worlds |
PublicationYear | 2025 |
Publisher | John Wiley & Sons, Inc Wiley Subscription Services, Inc |
Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley Subscription Services, Inc |
References | 2020; 8 2023; 42 2019; 7 2002; 14 2015; 37 2017; 30 2018; 1004 2023; 11 2021; 34 2023 2020; 63 2022 2021 2021; 139 2017; 24 2022; 34 2018 2017 2016 2024 2012; 25 2024; 14 2005; 17 2024; 38 Zhang Z. (e_1_2_11_23_1) 2024 e_1_2_11_10_1 e_1_2_11_32_1 Dhariwal P. (e_1_2_11_17_1) 2021; 34 e_1_2_11_14_1 e_1_2_11_12_1 e_1_2_11_11_1 e_1_2_11_33_1 e_1_2_11_7_1 e_1_2_11_29_1 e_1_2_11_28_1 e_1_2_11_27_1 e_1_2_11_4_1 e_1_2_11_26_1 e_1_2_11_3_1 Radford A. (e_1_2_11_21_1) 2021 Zhang L. (e_1_2_11_30_1) 2023 Zhu L. (e_1_2_11_34_1) 2024 Sohl‐Dickstein J. (e_1_2_11_18_1) 2015 Hong K. (e_1_2_11_2_1) 2023 Bin Y. (e_1_2_11_5_1) 2005; 17 Everaert M. N. (e_1_2_11_35_1) 2024 Li Y. (e_1_2_11_36_1) 2017; 30 e_1_2_11_25_1 e_1_2_11_24_1 e_1_2_11_9_1 e_1_2_11_22_1 Xue A. (e_1_2_11_13_1) 2021 e_1_2_11_15_1 Heusel M. (e_1_2_11_16_1) 2017; 30 Gu A. (e_1_2_11_31_1) 2022 Yeh J. W. (e_1_2_11_6_1) 2002; 14 e_1_2_11_37_1 e_1_2_11_19_1 Zhang Y. (e_1_2_11_20_1) 2023 Krizhevsky A. (e_1_2_11_8_1) 2012; 25 |
References_xml | – volume: 63 start-page: 139 issue: 11 year: 2020 end-page: 144 article-title: Generative Adversarial Networks publication-title: Communications of the ACM – volume: 30 start-page: 6626 year: 2017 end-page: 6637 article-title: Gans Trained by a Two Time‐Scale Update Rule Converge to a Local Nash Equilibrium publication-title: Advances in Neural Information Processing Systems – start-page: 10684 year: 2022 end-page: 10695 – start-page: 4025 year: 2024 end-page: 4034 – volume: 30 start-page: 386 year: 2017 end-page: 396 article-title: Universal Style Transfer via Feature Transforms publication-title: Advances in Neural Information Processing Systems – start-page: 8795 year: 2024 end-page: 8805 – volume: 1004 year: 2018 article-title: Ink Wash Painting Style Rendering With Physically‐Based Ink Dispersion Model publication-title: Journal of Physics: Conference Series – volume: 139 start-page: 8748 year: 2021 end-page: 8763 – volume: 14 start-page: 1430 issue: 4 year: 2024 article-title: Paint‐CUT: A Generative Model for Chinese Landscape Painting Based on Shuffle Attentional Residual Block and Edge Enhancement publication-title: Applied Sciences – volume: 14 start-page: 1220 issue: 6 year: 2002 end-page: 1224 article-title: Non‐Photorealistic Rendering in Chinese Painting of Animals publication-title: Journal of System Simulation – volume: 8 start-page: 132002 year: 2020 end-page: 132011 article-title: Detail‐Preserving Cyclegan‐Adain Framework for Image‐to‐Ink Painting Translation publication-title: IEEE Access – start-page: 7814 year: 2024 end-page: 7822 – year: 2024 – start-page: 1501 year: 2017 end-page: 1510 – volume: 7 start-page: 163719 year: 2019 end-page: 163728 article-title: Convolutional Neural Network Style Transfer Towards Chinese Paintings publication-title: IEEE Access – volume: 34 start-page: 18075 issue: 20 year: 2022 end-page: 18096 article-title: Contour‐Enhanced CycleGAN Framework for Style Transfer From Scenery Photos to Chinese Landscape Paintings publication-title: Neural Computing and Applications – start-page: 22758 year: 2023 end-page: 22767 – year: 2023 article-title: Mamba: Linear‐Time Sequence Modeling With Selective State Spaces publication-title: CoRR – start-page: 3863 year: 2021 end-page: 3871 – start-page: 10146 year: 2023 end-page: 10156 – start-page: 38 year: 2021 end-page: 41 – start-page: 2223 year: 2017 end-page: 2232 – volume: 37 start-page: 2256 year: 2015 end-page: 2265 – volume: 25 start-page: 1106 year: 2012 end-page: 1114 article-title: Imagenet Classification With Deep Convolutional Neural Networks publication-title: Advances in Neural Information Processing Systems – start-page: 2414 year: 2016 end-page: 2423 – year: 2024 article-title: An Empirical Study of Mamba‐Based Language Models publication-title: CoRR – volume: 24 start-page: 3019 issue: 12 year: 2017 end-page: 3031 article-title: Animated Construction of Chinese Brush Paintings publication-title: IEEE Transactions on Visualization and Computer Graphics – volume: 34 start-page: 8780 year: 2021 end-page: 8794 article-title: Diffusion Models Beat Gans on Image Synthesis publication-title: Advances in Neural Information Processing Systems – year: 2022 – year: 2023 – volume: 42 start-page: 1 issue: 6 year: 2023 end-page: 14 article-title: Prospect: Prompt Spectrum for Attribute‐Aware Personalization of Diffusion Models publication-title: ACM Transactions on Graphics – volume: 17 start-page: 2305 issue: 9 year: 2005 end-page: 2309 article-title: Simulation of Diffusion Effect Based on Physically Modeling of Paper in Chinese Ink Wash Drawing publication-title: Journal of System Simulation – volume: 38 start-page: 7396 issue: 7 year: 2024 end-page: 7404 article-title: Artbank: Artistic Style Transfer With Pre‐Trained Diffusion Model and Implicit Style Prompt Bank publication-title: Proceedings of the AAAI Conference on Artificial Intelligence – start-page: 3836 year: 2023 end-page: 3847 – volume: 11 start-page: 60844 year: 2023 end-page: 60852 article-title: TwinGAN: Twin Generative Adversarial Network for Chinese Landscape Painting Style Transfer publication-title: IEEE Access – start-page: 1172 year: 2018 end-page: 1180 – ident: e_1_2_11_10_1 doi: 10.1145/3422622 – start-page: 8748 volume-title: International Conference on Machine Learning year: 2021 ident: e_1_2_11_21_1 – ident: e_1_2_11_24_1 doi: 10.1109/ACCESS.2019.2952616 – start-page: 22758 volume-title: Proceedings of the IEEE/CVF International Conference on Computer Vision year: 2023 ident: e_1_2_11_2_1 – start-page: 10146 volume-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition year: 2023 ident: e_1_2_11_20_1 – volume-title: International Conference on Learning Representations year: 2022 ident: e_1_2_11_31_1 – volume: 30 start-page: 6626 year: 2017 ident: e_1_2_11_16_1 article-title: Gans Trained by a Two Time‐Scale Update Rule Converge to a Local Nash Equilibrium publication-title: Advances in Neural Information Processing Systems – start-page: 2256 volume-title: International Conference on Machine Learning year: 2015 ident: e_1_2_11_18_1 – ident: e_1_2_11_9_1 doi: 10.1109/ICCV.2017.244 – ident: e_1_2_11_25_1 doi: 10.1109/ICDSCA53499.2021.9650335 – volume-title: Proceedings of the 41st International Conference on Machine Learning year: 2024 ident: e_1_2_11_34_1 – ident: e_1_2_11_7_1 doi: 10.1109/CVPR.2016.265 – volume: 30 start-page: 386 year: 2017 ident: e_1_2_11_36_1 article-title: Universal Style Transfer via Feature Transforms publication-title: Advances in Neural Information Processing Systems – ident: e_1_2_11_26_1 doi: 10.1109/ICCV.2017.167 – ident: e_1_2_11_11_1 doi: 10.1007/s00521-022-07432-w – ident: e_1_2_11_29_1 doi: 10.1609/aaai.v38i7.28570 – volume: 14 start-page: 1220 issue: 6 year: 2002 ident: e_1_2_11_6_1 article-title: Non‐Photorealistic Rendering in Chinese Painting of Animals publication-title: Journal of System Simulation – start-page: 3863 volume-title: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision year: 2021 ident: e_1_2_11_13_1 – ident: e_1_2_11_27_1 doi: 10.3390/app14041430 – ident: e_1_2_11_12_1 doi: 10.1109/ACCESS.2020.3009470 – start-page: 7814 volume-title: Proceedings of the Thirty‐Third International Joint Conference on Artificial Intelligence year: 2024 ident: e_1_2_11_23_1 – ident: e_1_2_11_4_1 doi: 10.1109/TVCG.2017.2774292 – ident: e_1_2_11_19_1 doi: 10.1109/CVPR52688.2022.01042 – ident: e_1_2_11_37_1 doi: 10.1109/CVPR52733.2024.00840 – ident: e_1_2_11_3_1 doi: 10.1088/1742-6596/1004/1/012026 – ident: e_1_2_11_14_1 doi: 10.1109/ACCESS.2023.3274666 – start-page: 4025 volume-title: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision year: 2024 ident: e_1_2_11_35_1 – ident: e_1_2_11_32_1 doi: 10.48550/arXiv.2312.00752 – ident: e_1_2_11_33_1 doi: 10.48550/ARXIV.2406.07887 – ident: e_1_2_11_15_1 doi: 10.1145/3240508.3240655 – volume: 25 start-page: 1106 year: 2012 ident: e_1_2_11_8_1 article-title: Imagenet Classification With Deep Convolutional Neural Networks publication-title: Advances in Neural Information Processing Systems – volume: 34 start-page: 8780 year: 2021 ident: e_1_2_11_17_1 article-title: Diffusion Models Beat Gans on Image Synthesis publication-title: Advances in Neural Information Processing Systems – ident: e_1_2_11_28_1 doi: 10.1145/3618342 – start-page: 3836 volume-title: Proceedings of the IEEE/CVF International Conference on Computer Vision year: 2023 ident: e_1_2_11_30_1 – volume: 17 start-page: 2305 issue: 9 year: 2005 ident: e_1_2_11_5_1 article-title: Simulation of Diffusion Effect Based on Physically Modeling of Paper in Chinese Ink Wash Drawing publication-title: Journal of System Simulation – ident: e_1_2_11_22_1 |
SSID | ssj0026210 |
Score | 2.371445 |
Snippet | ABSTRACT
This study focuses on transforming real‐world scenery into Chinese landscape painting masterpieces through style transfer. Traditional methods using... This study focuses on transforming real‐world scenery into Chinese landscape painting masterpieces through style transfer. Traditional methods using... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Index Database Publisher |
SubjectTerms | Artificial neural networks Chinese landscape painting Diffusion models Generative adversarial networks Image processing Landscape art State space models style transfer |
Title | CLPFusion: A Latent Diffusion Model Framework for Realistic Chinese Landscape Painting Style Transfer |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcav.70053 https://www.proquest.com/docview/3228987778 |
Volume | 36 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwEA-yJ33wW5xOCeKDL91H1iaNPo1pGTJlTDf2IJSkSWE4qqytoH-9l3TdVBDEl1JCLzS5y90v4fI7hM45IcJjKnIUI8JxdaQcwT0GD-ZzwiIIMea-89097Y3c24k3WUNX5V2Ygh9ieeBmVob112aBC5k2VqShkXirM2ND4H9NrpYBRMMldRShpGAi8FzqmG1CySrUJI2l5PdYtAKYX2GqjTPBFnoq_7BIL3mu55msRx8_yBv_OYRttLnAn7hTGMwOWtPJLtoYT9O8aE33kO72B0FuTtEucQf3AYwmGb6exrFtw6Z62gwHZVIXBtSLh9rwKEKX2NTj1qkGsUSlJrkKD8TUVqPAD9n7TGMbHGM930ej4Oax23MW1RiciHC3DcoEqNYUbcUlYS0Zxz5jkgijVAW7IOZKTpmmXEdNrpj222ZnBd6LKi2ZB0DlAFWSl0QfIuzHlBIFWE5S7qomhz5AWgN41VzFrVYVnZV6CV8L0o2woFcmIcxZaOesimqlxsLFuktDcE8-NxSHfhVd2Kn_vYOw2xnbl6O_f3qM1okpAGwzHmuoks1zfQKoJJOn1vw-Adct29I |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwED-mPqgPfovzM4gPvnQfWZs04suYjqlTxtzGXqS0TQrDUcV2gv71XtJ1foAgvpQSeqHJXXK_C5ffAZwISn2Hy9CSnPqWrUJp-cLh-OCuoDxEF6PvO9_esVbfvh46wwKc53dhMn6I2YGbXhlmv9YLXB9Ilz9ZQ0P_tcS1Ec3Bgq7obQKq7ow8ijKacRE4NrN0oJDzClVoeSb63Rt9QsyvQNV4muYqPOT_mCWYPJYmaVAK33_QN_53EGuwMoWgpJ7ZzDoUVLwBy4NRMslak01QjXanOdEHaWekTtqIR-OUXIyiyLQRXUBtTJp5XhdB4Eu6SlMpYpdEl-RWiUKxWCY6v4p0_JEpSEHu07exIsY_RuplC_rNy16jZU0LMlghFXYN9YloreLXpAgorwZR5HIeUF_rVWIgxO1AMK6YUGFFSK7cmg6ucANjUgXcQayyDfPxU6x2gLgRY1QinAuYsGVFYB8orRC_KiGjarUIx7livOeMd8PLGJaph3PmmTkrwn6uMm-69BIPdyhXaJZDtwinZu5_78Br1AfmZffvnx7BYqt32_baV3c3e7BEdT1gkwC5D_Ppy0QdIEhJg0Njix-g3d_t |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwED_8ANEHv8X5GcQHXzq7rE0afRqbxY8pQ93wQShtk8Jw1GE7Qf96L-k6P0AQX0oJvdDk7nK_hMvvAA4FpaHLZWxJTkPLUbG0QuFyfHBPUB5jiNH3na9v2HnXuXxwH6bgtLwLU_BDTA7ctGeY9Vo7-FAmx5-koXH4WuXahqZh1mG2p026dTvhjqKMFlQErsMsvU8oaYVsejwR_R6MPhHmV5xqAo2_BI_lLxb5JU_VUR5V4_cf7I3_HMMyLI4BKGkUFrMCUypdhYVePxsVrdkaqGa744_0MdoJaZA2otE0J61-kpg2osunDYhfZnURhL3kVmkiReyS6ILcKlMolspMZ1eRTtg35SjIXf42UMREx0S9rEPXP7tvnlvjcgxWTIVTR20iVrPDuhQR5bUoSTzOIxpqrUrcBnEnEowrJlRsC8mVV9dbK1y-mFQRdxGpbMBM-pyqTSBewhiVCOYiJhxpC-wDpRWiVyVkUqtV4KDUSzAsWDeCgl-ZBjhngZmzCuyUGgvGjpcFuD55QnMcehU4MlP_ewdBs9EzL1t__3Qf5jotP2hf3FxtwzzVxYBN9uMOzOQvI7WLCCWP9owlfgAzXN6l |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=CLPFusion%3A+A+Latent+Diffusion+Model+Framework+for+Realistic+Chinese+Landscape+Painting+Style+Transfer&rft.jtitle=Computer+animation+and+virtual+worlds&rft.au=Pan%2C+Jiahui&rft.au=Li%2C+Frederick+W.+B&rft.au=Yang%2C+Bailin&rft.au=Nan%2C+Fangzhe&rft.date=2025-05-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1546-4261&rft.eissn=1546-427X&rft.volume=36&rft.issue=3&rft_id=info:doi/10.1002%2Fcav.70053&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1546-4261&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1546-4261&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1546-4261&client=summon |