Global Dynamics of a Within‐Host Model for Immune Response With a Generic Distributed Delay
ABSTRACT Epidemics caused by infectious agents, including viruses, are a major threat to humanity, and understanding the underlying dynamics is essential for developing effective strategies to mitigate their impact. Elucidating viral behavior, like the absence of detectable infectious viruses during...
Saved in:
Published in | Mathematical methods in the applied sciences Vol. 48; no. 12; pp. 12186 - 12206 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Freiburg
Wiley Subscription Services, Inc
01.08.2025
|
Subjects | |
Online Access | Get full text |
ISSN | 0170-4214 1099-1476 |
DOI | 10.1002/mma.11021 |
Cover
Loading…
Abstract | ABSTRACT
Epidemics caused by infectious agents, including viruses, are a major threat to humanity, and understanding the underlying dynamics is essential for developing effective strategies to mitigate their impact. Elucidating viral behavior, like the absence of detectable infectious viruses during the eclipse phase at the early stages of infection, highlights a key aspect of viral replication that is crucial for preventing and managing infectious diseases. This paper introduces a mathematical model of the immune response incorporating a delay distribution that accounts for the eclipse phase, the period between viral entry into a host cell, and the activation of immune cells for viral production. We perform a qualitative analysis of the model dynamics under a general delay distribution kernel with respect to the basic reproduction number. Specifically, we investigate the existence of a positive infection equilibrium, the global stability of the virus‐free equilibrium, the global attractivity of the infection equilibrium, and the persistence of infection. To understand the influence of time delay, we calibrate the model to CD8
+$$ {}^{+} $$ T cell (immune cells) clinical data on coronavirus disease 2019 (COVID‐19) patients from the literature using a variety of delay distributions: Dirac delta, uniform, and gamma. The uniform distribution seems to be the most appropriate model based on different statistical methods, such as the Akaike information criterion (AIC). Then, we conduct a global sensitivity analysis considering the three distributions to identify potential strategies for reducing the viral load when the infection cannot be eradicated. We find that the considered parameters affect the steady state of the viral load to varying extents, depending on the delay distribution. Finally, we modify the model into a treatment model that integrates two treatment strategies: antiviral and immune‐modulating treatments, to target viral replication and modulate the immune response. Using computational analysis, we study the impact of these interventions on viral load and immune cell density. |
---|---|
AbstractList | ABSTRACT
Epidemics caused by infectious agents, including viruses, are a major threat to humanity, and understanding the underlying dynamics is essential for developing effective strategies to mitigate their impact. Elucidating viral behavior, like the absence of detectable infectious viruses during the eclipse phase at the early stages of infection, highlights a key aspect of viral replication that is crucial for preventing and managing infectious diseases. This paper introduces a mathematical model of the immune response incorporating a delay distribution that accounts for the eclipse phase, the period between viral entry into a host cell, and the activation of immune cells for viral production. We perform a qualitative analysis of the model dynamics under a general delay distribution kernel with respect to the basic reproduction number. Specifically, we investigate the existence of a positive infection equilibrium, the global stability of the virus‐free equilibrium, the global attractivity of the infection equilibrium, and the persistence of infection. To understand the influence of time delay, we calibrate the model to CD8
+$$ {}^{+} $$ T cell (immune cells) clinical data on coronavirus disease 2019 (COVID‐19) patients from the literature using a variety of delay distributions: Dirac delta, uniform, and gamma. The uniform distribution seems to be the most appropriate model based on different statistical methods, such as the Akaike information criterion (AIC). Then, we conduct a global sensitivity analysis considering the three distributions to identify potential strategies for reducing the viral load when the infection cannot be eradicated. We find that the considered parameters affect the steady state of the viral load to varying extents, depending on the delay distribution. Finally, we modify the model into a treatment model that integrates two treatment strategies: antiviral and immune‐modulating treatments, to target viral replication and modulate the immune response. Using computational analysis, we study the impact of these interventions on viral load and immune cell density. Epidemics caused by infectious agents, including viruses, are a major threat to humanity, and understanding the underlying dynamics is essential for developing effective strategies to mitigate their impact. Elucidating viral behavior, like the absence of detectable infectious viruses during the eclipse phase at the early stages of infection, highlights a key aspect of viral replication that is crucial for preventing and managing infectious diseases. This paper introduces a mathematical model of the immune response incorporating a delay distribution that accounts for the eclipse phase, the period between viral entry into a host cell, and the activation of immune cells for viral production. We perform a qualitative analysis of the model dynamics under a general delay distribution kernel with respect to the basic reproduction number. Specifically, we investigate the existence of a positive infection equilibrium, the global stability of the virus‐free equilibrium, the global attractivity of the infection equilibrium, and the persistence of infection. To understand the influence of time delay, we calibrate the model to CD8 +$$ {}^{+} $$ T cell (immune cells) clinical data on coronavirus disease 2019 (COVID‐19) patients from the literature using a variety of delay distributions: Dirac delta, uniform, and gamma. The uniform distribution seems to be the most appropriate model based on different statistical methods, such as the Akaike information criterion (AIC). Then, we conduct a global sensitivity analysis considering the three distributions to identify potential strategies for reducing the viral load when the infection cannot be eradicated. We find that the considered parameters affect the steady state of the viral load to varying extents, depending on the delay distribution. Finally, we modify the model into a treatment model that integrates two treatment strategies: antiviral and immune‐modulating treatments, to target viral replication and modulate the immune response. Using computational analysis, we study the impact of these interventions on viral load and immune cell density. Epidemics caused by infectious agents, including viruses, are a major threat to humanity, and understanding the underlying dynamics is essential for developing effective strategies to mitigate their impact. Elucidating viral behavior, like the absence of detectable infectious viruses during the eclipse phase at the early stages of infection, highlights a key aspect of viral replication that is crucial for preventing and managing infectious diseases. This paper introduces a mathematical model of the immune response incorporating a delay distribution that accounts for the eclipse phase, the period between viral entry into a host cell, and the activation of immune cells for viral production. We perform a qualitative analysis of the model dynamics under a general delay distribution kernel with respect to the basic reproduction number. Specifically, we investigate the existence of a positive infection equilibrium, the global stability of the virus‐free equilibrium, the global attractivity of the infection equilibrium, and the persistence of infection. To understand the influence of time delay, we calibrate the model to CD8 T cell (immune cells) clinical data on coronavirus disease 2019 (COVID‐19) patients from the literature using a variety of delay distributions: Dirac delta, uniform, and gamma. The uniform distribution seems to be the most appropriate model based on different statistical methods, such as the Akaike information criterion (AIC). Then, we conduct a global sensitivity analysis considering the three distributions to identify potential strategies for reducing the viral load when the infection cannot be eradicated. We find that the considered parameters affect the steady state of the viral load to varying extents, depending on the delay distribution. Finally, we modify the model into a treatment model that integrates two treatment strategies: antiviral and immune‐modulating treatments, to target viral replication and modulate the immune response. Using computational analysis, we study the impact of these interventions on viral load and immune cell density. |
Author | Al‐Darabsah, Isam |
Author_xml | – sequence: 1 givenname: Isam orcidid: 0000-0002-8412-2624 surname: Al‐Darabsah fullname: Al‐Darabsah, Isam email: imaldarabsah@just.edu.jo organization: Jordan University of Science and Technology |
BookMark | eNp10EFLwzAUB_AgE9ymB79BwJOHbkmaNu1xbLoNNgRRPElJ01fMaJOZtEhvfgQ_o5_Eunr19N7h938P_hM0MtYAQteUzCghbF7XckYpYfQMjSlJ04ByEY_QmFBBAs4ov0AT7w-EkIRSNkav68rmssKrzshaK49tiSV-0c2bNt-fXxvrG7y3BVS4tA5v67o1gB_BH63xcHI9X4MBpxVead84nbcNFHgFlewu0XkpKw9Xf3OKnu_vnpabYPew3i4Xu0CxlNMAVCy4TCKex6pQkMqQ5CpRoiiFTCEmRZmHoqQhY4qRVEb9ThMhOSdSCZBFOEU3w92js-8t-CY72NaZ_mXWh1ISsSiOe3U7KOWs9w7K7Oh0LV2XUZL9tpf17WWn9no7H-yHrqD7H2b7_WJI_AC813Mv |
Cites_doi | 10.1007/s00285‐013‐0720‐4 10.1515/9780691187655 10.1007/s12250‐010‐3135‐z 10.3934/cpaa.2022121 10.1016/S0362‐546X(01)00678‐2 10.1016/j.mbs.2015.05.001 10.1016/j.cmpb.2021.106412 10.1007/s11538‐010‐9503‐x 10.1007/s00285‐017‐1199‐1 10.1016/j.apm.2022.03.043 10.1007/s00285‐002‐0191‐5 10.1371/journal.pcbi.1008752 10.1016/j.jtbi.2008.05.031 10.1080/17513758.2018.1498984 10.1137/130930145 10.1016/s0025‐5564(98)10027‐5 10.1007/s00285‐018‐1241‐y 10.1016/j.cnsns.2020.105584 10.1007/978-1-4612-4342-7 10.1137/15M1031965 10.1038/srep10371 10.1016/j.jtbi.2008.04.011 10.1016/j.matcom.2016.10.002 10.1002/1873‐3468.12095 10.1001/jama.2020.17023 10.1016/j.apm.2022.02.008 10.3934/mbe.2009.6.603 10.1007/978-3-319-56433-3 10.1016/j.mbs.2020.108438 10.1016/0025‐5564(93)90043‐a 10.1080/22221751.2020.1770129 10.1007/s00285‐022‐01849‐6 10.1002/jmv.26504 10.1111/imr.12687 10.1016/S0025‐5564(02)00108‐6 10.1001/jama.2020.16747 10.1016/j.apm.2023.11.010 10.1016/j.arcontrol.2020.09.006 10.3390/v7102875 10.1007/s11071‐020‐05825‐x 10.1093/bioinformatics/btp358 10.1007/s00430‐020‐00693‐z 10.1098/rsif.2023.0187 10.1016/j.jde.2015.12.038 10.3934/mbe.2020159 10.3934/mbe.2008.5.389 10.1137/16M1097092 10.1007/978-3-642-93107-9 10.1128/JVI.01623‐05 10.1016/j.tibs.2010.10.002 10.3390/v9060126 10.1002/cpa.3160380607 |
ContentType | Journal Article |
Copyright | 2025 John Wiley & Sons Ltd. 2025 John Wiley & Sons, Ltd. |
Copyright_xml | – notice: 2025 John Wiley & Sons Ltd. – notice: 2025 John Wiley & Sons, Ltd. |
DBID | AAYXX CITATION 7TB 8FD FR3 JQ2 KR7 |
DOI | 10.1002/mma.11021 |
DatabaseName | CrossRef Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Civil Engineering Abstracts |
DatabaseTitle | CrossRef Civil Engineering Abstracts Engineering Research Database Technology Research Database Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection |
DatabaseTitleList | Civil Engineering Abstracts CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) Mathematics |
EISSN | 1099-1476 |
EndPage | 12206 |
ExternalDocumentID | 10_1002_mma_11021 MMA11021 |
Genre | researchArticle |
GrantInformation_xml | – fundername: Jordan University of Science and Technology through the Faculty Member Research funderid: 20230324 |
GroupedDBID | -~X .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 31~ 33P 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHQN AAMMB AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ABPVW ACAHQ ACBWZ ACCZN ACGFS ACIWK ACPOU ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEFGJ AEIGN AEIMD AENEX AEUYR AEYWJ AFBPY AFFPM AFGKR AFWVQ AFZJQ AGHNM AGQPQ AGXDD AGYGG AHBTC AIDQK AIDYY AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMVHM AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CO8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS EJD F00 F01 F04 F5P FEDTE G-S G.N GBZZK GNP GODZA H.T H.X HBH HF~ HGLYW HHY HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M6O MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 NF~ O66 O9- OIG P2P P2W P2X P4D PALCI Q.N Q11 QB0 QRW R.K RIWAO RJQFR ROL RX1 RYL SAMSI SUPJJ UB1 V2E W8V W99 WBKPD WH7 WIB WIH WIK WOHZO WQJ WXSBR WYISQ XBAML XG1 XPP XV2 ZZTAW ~02 ~IA ~WT AAYXX CITATION 7TB 8FD FR3 JQ2 KR7 |
ID | FETCH-LOGICAL-c2941-ec674a854b6cdce9a30bc8c7df7a9e60dfb37f1322c209a57f1187a440ac7ead3 |
IEDL.DBID | DR2 |
ISSN | 0170-4214 |
IngestDate | Tue Jul 29 16:34:25 EDT 2025 Wed Jul 16 16:43:54 EDT 2025 Thu Jul 10 07:11:38 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2941-ec674a854b6cdce9a30bc8c7df7a9e60dfb37f1322c209a57f1187a440ac7ead3 |
Notes | Funding This work is supported by Jordan University of Science and Technology through the Faculty Member Research Grant (grant number 20230324). ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-8412-2624 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/mma.11021 |
PQID | 3229052566 |
PQPubID | 1016386 |
PageCount | 21 |
ParticipantIDs | proquest_journals_3229052566 crossref_primary_10_1002_mma_11021 wiley_primary_10_1002_mma_11021_MMA11021 |
PublicationCentury | 2000 |
PublicationDate | August 2025 2025-08-00 20250801 |
PublicationDateYYYYMMDD | 2025-08-01 |
PublicationDate_xml | – month: 08 year: 2025 text: August 2025 |
PublicationDecade | 2020 |
PublicationPlace | Freiburg |
PublicationPlace_xml | – name: Freiburg |
PublicationTitle | Mathematical methods in the applied sciences |
PublicationYear | 2025 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2018; 285 2019; 13 2020; 17 2020; 324 2014; 69 2008; 5 2022; 21 2001; 47 2017; 9 2020; 328 1978 1998; 152 2016; 260 2020; 209 2023; 20 2010; 25 2002; 180 1978; 21 2020; 50 2020; 9 2003; 46 2018; 78 2018; 77 2010; 72 2016; 590 2009; 25 2015; 5 2024; 126 2009 2007 1996 1993 2004 2020; 101 2003 2011; 36 2017; 133 2021; 93 2016; 15 2021; 95 2015; 7 2021; 91 2023; 86 1995; 84 2015; 270 2006; 80 2021; 211 2021; 17 2018 2017 2009; 6 2014; 74 2022; 108 1993; 114 2008; 254 2022; 106 1985; 38 Hale J. K. (e_1_2_11_44_1) 1978; 21 e_1_2_11_32_1 e_1_2_11_55_1 e_1_2_11_30_1 e_1_2_11_36_1 e_1_2_11_51_1 e_1_2_11_13_1 e_1_2_11_34_1 e_1_2_11_11_1 e_1_2_11_29_1 e_1_2_11_6_1 e_1_2_11_27_1 e_1_2_11_4_1 Kuang Y. (e_1_2_11_43_1) 1993 e_1_2_11_2_1 McDonagh M. (e_1_2_11_53_1) 1995; 84 e_1_2_11_60_1 e_1_2_11_20_1 e_1_2_11_45_1 e_1_2_11_47_1 e_1_2_11_24_1 e_1_2_11_41_1 e_1_2_11_62_1 e_1_2_11_8_1 e_1_2_11_22_1 e_1_2_11_17_1 Erneux T. (e_1_2_11_46_1) 2009 e_1_2_11_59_1 e_1_2_11_38_1 e_1_2_11_19_1 e_1_2_11_50_1 e_1_2_11_10_1 e_1_2_11_31_1 e_1_2_11_56_1 e_1_2_11_58_1 e_1_2_11_14_1 e_1_2_11_35_1 e_1_2_11_52_1 e_1_2_11_12_1 e_1_2_11_33_1 e_1_2_11_54_1 e_1_2_11_7_1 Balachandran B. (e_1_2_11_15_1) 2009 e_1_2_11_28_1 e_1_2_11_5_1 e_1_2_11_26_1 e_1_2_11_3_1 e_1_2_11_49_1 Mitchell M. G. (e_1_2_11_64_1) 2018 e_1_2_11_61_1 Baron S. (e_1_2_11_63_1) 1996 e_1_2_11_21_1 e_1_2_11_25_1 e_1_2_11_40_1 e_1_2_11_9_1 e_1_2_11_23_1 e_1_2_11_42_1 e_1_2_11_18_1 e_1_2_11_16_1 e_1_2_11_37_1 e_1_2_11_39_1 Churchill R. (e_1_2_11_48_1) 2004 Burnham K. (e_1_2_11_57_1) 2007 |
References_xml | – volume: 324 start-page: 1292 issue: 13 year: 2020 end-page: 1295 article-title: Corticosteroids in COVID‐19 ARDS: Evidence and Hope During the Pandemic publication-title: JAMA – year: 2009 – volume: 69 start-page: 875 issue: 4 year: 2014 end-page: 904 article-title: Threshold Dynamics in an SEIRS Model With Latency and Temporary Immunity publication-title: Journal of Mathematical Biology – volume: 20 issue: 205 year: 2023 article-title: Modelling the Viral Dynamics of the Sars‐Cov‐2 Delta and Omicron Variants in Different Cell Types publication-title: Journal of the Royal Society Interface – volume: 21 start-page: 3755 issue: 11 year: 2022 end-page: 3775 article-title: Dynamics of a Periodic West Nile Virus Model With Mosquito Demographics publication-title: Communications on Pure and Applied Mathematics – volume: 15 start-page: 1844 issue: 4 year: 2016 end-page: 1873 article-title: Stability of Systems With Stochastic delays and Applications to Genetic Regulatory Networks publication-title: SIAM Journal on Applied Dynamical Systems – volume: 80 start-page: 7590 issue: 15 year: 2006 end-page: 7599 article-title: Kinetics of Influenza a Virus Infection in Humans publication-title: Journal of Virology – volume: 91 start-page: 74 year: 2021 end-page: 92 article-title: A Time‐Delayed SVEIR Model for Imperfect Vaccine With a Generalized Nonmonotone Incidence and Application to Measles publication-title: Applied Mathematical Modelling – volume: 74 start-page: 898 issue: 3 year: 2014 end-page: 917 article-title: Modeling HIV‐1 Virus Dynamics With Both Virus‐to‐Cell Infection and Cell‐to‐Cell Transmission publication-title: SIAM Journal on Applied Mathematics – volume: 17 issue: 3 year: 2021 article-title: Success of Prophylactic Antiviral Therapy for Sars‐Cov‐2: Predicted Critical Efficacies and Impact of Different Drug‐Specific Mechanisms of Action publication-title: PLoS Computational Biology – volume: 46 start-page: 425 issue: 5 year: 2003 end-page: 444 article-title: A Mathematical Model of Cell‐to‐Cell Spread of HIV‐1 That Includes a Time Delay publication-title: Journal of Mathematical Biology – volume: 101 start-page: 1281 issue: 2 year: 2020 end-page: 1300 article-title: Threshold Dynamics of a Time‐Delayed Epidemic Model for Continuous Imperfect‐Vaccine With a Generalized Nonmonotone Incidence Rate publication-title: Nonlinear Dynamics – volume: 86 start-page: 20 issue: 2 year: 2023 article-title: A Simple in‐Host Model for Covid‐19 With Treatments: Model Prediction and Calibration publication-title: Journal of Mathematical Biology – year: 2018 – volume: 254 start-page: 439 issue: 2 year: 2008 end-page: 451 article-title: Modeling Amantadine Treatment of Influenza a Virus In Vitro publication-title: Journal of Theoretical Biology – volume: 7 start-page: 5274 issue: 10 year: 2015 end-page: 5304 article-title: Modeling Influenza Virus Infection: A Roadmap for Influenza Research publication-title: Viruses – volume: 50 start-page: 448 year: 2020 end-page: 456 article-title: In‐Host Mathematical Modelling of COVID‐19 in Humans publication-title: Annual Reviews in Control – volume: 133 start-page: 206 year: 2017 end-page: 222 article-title: The Logistic Growth Model as an Approximating Model for Viral Load Measurements of Influenza A Virus publication-title: Mathematics and Computers in Simulation – volume: 211 year: 2021 article-title: Computational Simulations to Dissect the Cell Immune Response Dynamics for Severe and Critical Cases of SARS‐CoV‐2 Infection publication-title: Computer Methods and Programs in Biomedicine – volume: 209 start-page: 657 year: 2020 end-page: 668 article-title: Assessing SARS‐CoV‐2 RNA Levels and Lymphocyte/T Cell Counts in COVID‐19 Patients Revealed Initial Immune Status as a Major Determinant of Disease Severity publication-title: Medical Microbiology and Immunology – volume: 72 start-page: 1492 year: 2010 end-page: 1505 article-title: Global Dynamics of an In‐Host Viral Model With Intracellular Delay publication-title: Bulletin of Mathematical Biology – volume: 260 start-page: 6176 issue: 7 year: 2016 end-page: 6200 article-title: A Differential Equation With State‐Dependent Delay From Cell Population Biology publication-title: Journal of Difference Equations – volume: 5 start-page: 10371 issue: 1 year: 2015 article-title: A Method to Determine the Duration of the Eclipse Phase for In Vitro Infection With a Highly Pathogenic SHIV Strain publication-title: Scientific Reports – volume: 108 start-page: 469 year: 2022 end-page: 488 article-title: A Periodic Dengue Model With Diapause Effect and Control Measures publication-title: Applied Mathematical Modelling – volume: 36 start-page: 159 issue: 3 year: 2011 end-page: 169 article-title: How Viruses Hijack Cell Regulation publication-title: Trends in Biochemical Sciences – year: 2004 – volume: 9 start-page: 126 issue: 6 year: 2017 article-title: Bacterial Virus Ontology; Coordinating Across Databases publication-title: Viruses – volume: 47 start-page: 6169 issue: 9 year: 2001 end-page: 6179 article-title: Robust Persistence for Semidynamical Systems publication-title: Nonlinear Analysis: Theory Methods & Applications – year: 1993 – volume: 13 start-page: 47 issue: sup1 year: 2019 end-page: 73 article-title: The Effect of Delay in Viral Production in Within‐Host Models during Early Infection publication-title: Journal of Biological Dynamics – volume: 126 start-page: 526 year: 2024 end-page: 542 article-title: Numerical Assessment of the Impact of Hemozoin on the Dynamics of a Within‐Host Malaria Model publication-title: Applied Mathematical Modelling – volume: 254 start-page: 178 issue: 1 year: 2008 end-page: 196 article-title: A Methodology for Performing Global Uncertainty and Sensitivity Analysis in Systems Biology publication-title: Journal of Theoretical Biology – volume: 324 start-page: 1330 issue: 13 year: 2020 end-page: 1341 article-title: Association Between Administration of Systemic Corticosteroids and Mortality Among Critically Ill Patients With Covid‐19: A Meta‐Analysis publication-title: JAMA – volume: 25 start-page: 281 year: 2010 end-page: 293 article-title: Strategies for Antiviral Screening Targeting Early Steps of Virus Infection publication-title: Virologica Sinica – volume: 78 start-page: 145 issue: 1 year: 2018 end-page: 170 article-title: A Stage‐Structured Mathematical Model for Fish Stock With Harvesting publication-title: SIAM Journal on Applied Mathematics – volume: 328 year: 2020 article-title: Modeling the Viral Dynamics of Sars‐Cov‐2 Infection publication-title: Mathematical Biosciences – volume: 38 start-page: 733 year: 1985 end-page: 753 article-title: Differential Equation Models of Some Parasitic Infections: Methods for the Study of Asymptotic Behavior publication-title: Communications on Pure and Applied Mathematics – year: 2007 – year: 2003 – year: 1996 – volume: 106 start-page: 325 year: 2022 end-page: 342 article-title: Dynamical Analysis and Optimal Control of an Age‐Since Infection HIV Model at Individuals and Population Levels publication-title: Applied Mathematical Modelling – volume: 77 start-page: 1035 issue: 4 year: 2018 end-page: 1057 article-title: Multiscale Model Within‐Host and Between‐Host for Viral Infectious Diseases publication-title: Journal of Mathematical Biology – volume: 590 start-page: 1972 issue: 13 year: 2016 end-page: 1986 article-title: Multiscale Modeling of Virus Replication and Spread publication-title: FEBS Letters – volume: 25 start-page: 1923 issue: 15 year: 2009 end-page: 1929 article-title: Structural and Practical Identifiability Analysis of Partially Observed Dynamical Models by Exploiting the Profile Likelihood publication-title: Bioinformatics – volume: 77 start-page: 343 issue: 2 year: 2018 end-page: 376 article-title: A Periodic Disease Transmission Model With Asymptomatic Carriage and Latency Periods publication-title: Journal of Mathematical Biology – volume: 95 year: 2021 article-title: Stability Analysis in COVID‐19 Within‐Host Model With Immune Response publication-title: Communications in Nonlinear Science and Numerical Simulation – volume: 152 start-page: 143 issue: 2 year: 1998 end-page: 163 article-title: Influence of Delayed Viral Production on Viral Dynamics in HIV‐1 Infected Patients publication-title: Mathematical Biosciences – volume: 21 start-page: 11 year: 1978 end-page: 41 article-title: Phase Space for Retarded Equations With Infinite Delay publication-title: Fako de l'Funkcialaj Ekvacioj Japana Matematika Societo – volume: 9 start-page: 1123 issue: 1 year: 2020 end-page: 1130 article-title: Profiling Serum Cytokines in COVID‐19 Patients Reveals IL‐6 and IL‐10 Are Disease Severity Predictors publication-title: Emerging Microbes & Infections – volume: 84 start-page: 514 issue: 4 year: 1995 article-title: The Survival and Turnover of Mature and Immature CD8+ T Cells publication-title: Immunology – volume: 114 start-page: 81 issue: 1 year: 1993 end-page: 125 article-title: Dynamics of HIV Infection of CD4+ T Cells publication-title: Mathematical Biosciences – volume: 270 start-page: 183 year: 2015 end-page: 191 article-title: Global Dynamics of a Delayed Within‐Host Viral Infection Model With Both Virus‐to‐Cell and Cell‐to‐Cell Transmissions publication-title: Mathematical Biosciences – volume: 93 start-page: 1070 issue: 2 year: 2021 end-page: 1077 article-title: The Dynamics of Immune Response in Covid‐19 Patients With Different Illness Severity publication-title: Journal of Medical Virology – volume: 6 start-page: 603 issue: 3 year: 2009 article-title: Global Stability for an SEIR Epidemiological Model With Varying Infectivity and Infinite Delay publication-title: Mathematical Biosciences and Engineering – volume: 17 start-page: 2853 issue: 4 year: 2020 end-page: 2861 article-title: The Within‐Host Viral Kinetics of SARS‐CoV‐2 publication-title: Mathematical Biosciences and Engineering – year: 2017 – year: 1978 – volume: 5 start-page: 389 issue: 2 year: 2008 end-page: 402 article-title: Seir Epidemiological Model With Varying Infectivity and Infinite Delay publication-title: Mathematical Biosciences and Engineering – volume: 285 start-page: 81 issue: 1 year: 2018 end-page: 96 article-title: Mathematical Modeling of Within‐Host Zika Virus Dynamics publication-title: Immunological Reviews – volume: 180 start-page: 29 issue: 1‐2 year: 2002 end-page: 48 article-title: Reproduction Numbers and Sub‐Threshold Endemic Equilibria for Compartmental Models of Disease Transmission publication-title: Mathematical Biosciences – ident: e_1_2_11_4_1 doi: 10.1007/s00285‐013‐0720‐4 – ident: e_1_2_11_50_1 doi: 10.1515/9780691187655 – ident: e_1_2_11_28_1 doi: 10.1007/s12250‐010‐3135‐z – ident: e_1_2_11_10_1 doi: 10.3934/cpaa.2022121 – ident: e_1_2_11_52_1 doi: 10.1016/S0362‐546X(01)00678‐2 – ident: e_1_2_11_7_1 doi: 10.1016/j.mbs.2015.05.001 – ident: e_1_2_11_36_1 doi: 10.1016/j.cmpb.2021.106412 – ident: e_1_2_11_2_1 doi: 10.1007/s11538‐010‐9503‐x – ident: e_1_2_11_12_1 doi: 10.1007/s00285‐017‐1199‐1 – ident: e_1_2_11_11_1 doi: 10.1016/j.apm.2022.03.043 – volume-title: Delay Differential Equations: With Applications in Population Dynamics year: 1993 ident: e_1_2_11_43_1 – ident: e_1_2_11_32_1 doi: 10.1007/s00285‐002‐0191‐5 – ident: e_1_2_11_22_1 doi: 10.1371/journal.pcbi.1008752 – volume-title: Delay Differential Equations year: 2009 ident: e_1_2_11_15_1 – ident: e_1_2_11_31_1 doi: 10.1016/j.jtbi.2008.05.031 – ident: e_1_2_11_34_1 doi: 10.1080/17513758.2018.1498984 – ident: e_1_2_11_8_1 doi: 10.1137/130930145 – ident: e_1_2_11_9_1 doi: 10.1016/s0025‐5564(98)10027‐5 – ident: e_1_2_11_37_1 doi: 10.1007/s00285‐018‐1241‐y – ident: e_1_2_11_21_1 doi: 10.1016/j.cnsns.2020.105584 – ident: e_1_2_11_45_1 doi: 10.1007/978-1-4612-4342-7 – ident: e_1_2_11_14_1 doi: 10.1137/15M1031965 – ident: e_1_2_11_33_1 doi: 10.1038/srep10371 – ident: e_1_2_11_61_1 doi: 10.1016/j.jtbi.2008.04.011 – ident: e_1_2_11_39_1 doi: 10.1016/j.matcom.2016.10.002 – ident: e_1_2_11_40_1 doi: 10.1002/1873‐3468.12095 – ident: e_1_2_11_60_1 doi: 10.1001/jama.2020.17023 – volume-title: Applied Delay Differential Equations year: 2009 ident: e_1_2_11_46_1 – volume-title: Complex Variables and Applications year: 2004 ident: e_1_2_11_48_1 – volume: 21 start-page: 11 year: 1978 ident: e_1_2_11_44_1 article-title: Phase Space for Retarded Equations With Infinite Delay publication-title: Fako de l'Funkcialaj Ekvacioj Japana Matematika Societo – ident: e_1_2_11_23_1 doi: 10.1016/j.apm.2022.02.008 – ident: e_1_2_11_5_1 doi: 10.3934/mbe.2009.6.603 – volume-title: Medical Microbiology year: 1996 ident: e_1_2_11_63_1 – ident: e_1_2_11_16_1 doi: 10.1007/978-3-319-56433-3 – ident: e_1_2_11_18_1 doi: 10.1016/j.mbs.2020.108438 – ident: e_1_2_11_29_1 doi: 10.1016/0025‐5564(93)90043‐a – ident: e_1_2_11_55_1 doi: 10.1080/22221751.2020.1770129 – ident: e_1_2_11_17_1 – ident: e_1_2_11_41_1 doi: 10.1007/s00285‐022‐01849‐6 – ident: e_1_2_11_38_1 doi: 10.1002/jmv.26504 – volume-title: Model Selection and Multimodel Inference: A Practical Information‐Theoretic Approach year: 2007 ident: e_1_2_11_57_1 – ident: e_1_2_11_25_1 doi: 10.1111/imr.12687 – ident: e_1_2_11_47_1 doi: 10.1016/S0025‐5564(02)00108‐6 – ident: e_1_2_11_59_1 doi: 10.1001/jama.2020.16747 – ident: e_1_2_11_24_1 doi: 10.1016/j.apm.2023.11.010 – ident: e_1_2_11_20_1 doi: 10.1016/j.arcontrol.2020.09.006 – ident: e_1_2_11_35_1 doi: 10.3390/v7102875 – ident: e_1_2_11_3_1 doi: 10.1007/s11071‐020‐05825‐x – ident: e_1_2_11_58_1 doi: 10.1093/bioinformatics/btp358 – ident: e_1_2_11_49_1 doi: 10.1007/s11071‐020‐05825‐x – ident: e_1_2_11_56_1 doi: 10.1007/s00430‐020‐00693‐z – ident: e_1_2_11_54_1 doi: 10.1098/rsif.2023.0187 – ident: e_1_2_11_13_1 doi: 10.1016/j.jde.2015.12.038 – ident: e_1_2_11_19_1 doi: 10.3934/mbe.2020159 – ident: e_1_2_11_6_1 doi: 10.3934/mbe.2008.5.389 – volume: 84 start-page: 514 issue: 4 year: 1995 ident: e_1_2_11_53_1 article-title: The Survival and Turnover of Mature and Immature CD8+ T Cells publication-title: Immunology – ident: e_1_2_11_62_1 doi: 10.1137/16M1097092 – ident: e_1_2_11_42_1 doi: 10.1007/978-3-642-93107-9 – volume-title: Molecular Pathology and the Dynamics of Disease year: 2018 ident: e_1_2_11_64_1 – ident: e_1_2_11_30_1 doi: 10.1128/JVI.01623‐05 – ident: e_1_2_11_26_1 doi: 10.1016/j.tibs.2010.10.002 – ident: e_1_2_11_27_1 doi: 10.3390/v9060126 – ident: e_1_2_11_51_1 doi: 10.1002/cpa.3160380607 |
SSID | ssj0008112 |
Score | 2.3862917 |
Snippet | ABSTRACT
Epidemics caused by infectious agents, including viruses, are a major threat to humanity, and understanding the underlying dynamics is essential for... Epidemics caused by infectious agents, including viruses, are a major threat to humanity, and understanding the underlying dynamics is essential for developing... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 12186 |
SubjectTerms | COVID-19 distributed delay Equilibrium global dynamics Health services Immune response Immune system Infections Lymphocytes Qualitative analysis Replication Sensitivity analysis Statistical methods Time lag Viruses within‐host modeling |
Title | Global Dynamics of a Within‐Host Model for Immune Response With a Generic Distributed Delay |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmma.11021 https://www.proquest.com/docview/3229052566 |
Volume | 48 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ27TsMwFIaPEBMMXAqIcpOFGGAI5OImtpgQpSpIZUAgGECRr6KiTREJA0w8As_Ik2A7SQtISIjNg2MlsU_82zn-foAdXxKmMJWexJx6OGGxRzjFntSaEV9LX3K7D9k7j7tX-OymdTMFh_VZmJIPMd5ws5Hhvtc2wBnPDybQ0OGQ2Rx2d4g8iGLLzW9fTNBRJHB_Oi0exsNhgGuqkB8ejK_8PhdNBOZXmermmc483NZ3WKaXPOw_F3xfvP6AN_7zERZgrtKf6KgcMIswpbIGzPbG8Na8AYtVvOdot4JS7y3BXWkOgNqlg32ORhoxdN0v7vvZx9t7d5QXyPqqDZBRwejUnjpR6KJMwFWunqnumusL1La0Xmu0pSRqqwF7WYarzsnlcderrBk8EVIceErECWakhXkspFCURT4XRCRSJ4yq2JeaR4m2K10R-pS1TDkgCcPYZyIxgzdagelslKlVQIxqa3pNOGchJlxxQgQ1izIZa2LkUdCE7bqT0seSwJGWrOUwNS8wdS-wCRt196VVEOZpZFn2LaPp4ibsun74vYG01ztyhbW_V12HmdC6Abt0wA2YLp6e1aaRKAXfcmPxE6BZ4lk |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV27TsMwFL2qYAAG3ojytBADDIEkdRNbYqkoqDzCgECwoMhPUQEtImGAiU_gG_kSbCdpAQkJsXlwrMTXNz7XvvccgE1fEqYwlZ7EnHo4ZpFHOMWe1JoRX0tfcnsOmZxFnUt8fN28rsFeVQtT8EMMDtysZ7j_tXVweyC9O2QNfXhgNondVpGPYgM0bOjVPh-SR5HA3XVaghgPhwGueIX8cHfw6PfdaAgxvwJVt9McTsFN9Y5FgsndznPOd8TrD_rG_37ENEyWEBS1ijUzAzXVm4WJZMDfms3CTOnyGdoqeam35-Cm0AdA7ULEPkN9jRi66ua33d7H23unn-XISqvdIwOE0ZEtPFHovMjBVa6f6e6G6wrUtoS9VmtLSdRW9-xlHi4PDy72O16pzuCJkOLAUyKKMSNNzCMhhaKs4XNBRCx1zKiKfKl5I9Y22BWhT1nTtAMSM4x9JmKzfhsLMNLr99QiIEa11b0mnLMQE644IYKauExGmhiEFNRho7JS-liQcKQF3XKYmglM3QTWYaWyX1r6YZY2LJ1908C6qA5bzhC_D5AmScs1lv7edR3GOhfJaXp6dHayDOOhFQd22YErMJI_PatVg1hyvuYW5ifUO-Z4 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LSsQwFL2IgujCtzg-g7jQRbXtZNoEV-I4jI8REUUXSskTB8cZsXWhKz_Bb_RLTNJ2RgVB3GVxG9rce5uT5OYcgA1fEqYwlZ7EnHo4ZpFHOMWe1JoRX0tfcrsP2TqNmpf46Lp2PQS75V2YnB-iv-FmM8P9r22CP0q9MyANfXhgtobdXiIfwZFBEhYRnQ-4o0jgjjotP4yHwwCXtEJ-uNN_9PtkNECYX3Gqm2gak3BTvmJeX3K__ZzxbfH6g73xn98wBRMFAEV7ecRMw5DqzsB4q8_ems7AdJHwKdosWKm3ZuE2VwdA9VzCPkU9jRi6amd37e7H23uzl2bICqt1kIHB6NBeO1HoPK_AVc7OmLvu2gLVLV2vVdpSEtVVh73MwWXj4GK_6RXaDJ4IKQ48JaIYM1LDPBJSKMqqPhdExFLHjKrIl5pXY22XuiL0KauZdkBihrHPRGyitzoPw91eVy0AYlRb1WvCOQsx4YoTIqhZlclIE4OPggqsl05KHnMKjiQnWw4TM4CJG8AKLJfuS4osTJOqJbOvGVAXVWDT-eH3DpJWa881Fv9uugajZ_VGcnJ4erwEY6FVBnalgcswnD09qxUDVzK-6sLyEztP5Sc |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Global+Dynamics+of+a+Within%E2%80%90Host+Model+for+Immune+Response+With+a+Generic+Distributed+Delay&rft.jtitle=Mathematical+methods+in+the+applied+sciences&rft.au=Al%E2%80%90Darabsah%2C+Isam&rft.date=2025-08-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0170-4214&rft.eissn=1099-1476&rft.volume=48&rft.issue=12&rft.spage=12186&rft.epage=12206&rft_id=info:doi/10.1002%2Fmma.11021&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0170-4214&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0170-4214&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0170-4214&client=summon |