Global Dynamics of a Within‐Host Model for Immune Response With a Generic Distributed Delay

ABSTRACT Epidemics caused by infectious agents, including viruses, are a major threat to humanity, and understanding the underlying dynamics is essential for developing effective strategies to mitigate their impact. Elucidating viral behavior, like the absence of detectable infectious viruses during...

Full description

Saved in:
Bibliographic Details
Published inMathematical methods in the applied sciences Vol. 48; no. 12; pp. 12186 - 12206
Main Author Al‐Darabsah, Isam
Format Journal Article
LanguageEnglish
Published Freiburg Wiley Subscription Services, Inc 01.08.2025
Subjects
Online AccessGet full text
ISSN0170-4214
1099-1476
DOI10.1002/mma.11021

Cover

Loading…
Abstract ABSTRACT Epidemics caused by infectious agents, including viruses, are a major threat to humanity, and understanding the underlying dynamics is essential for developing effective strategies to mitigate their impact. Elucidating viral behavior, like the absence of detectable infectious viruses during the eclipse phase at the early stages of infection, highlights a key aspect of viral replication that is crucial for preventing and managing infectious diseases. This paper introduces a mathematical model of the immune response incorporating a delay distribution that accounts for the eclipse phase, the period between viral entry into a host cell, and the activation of immune cells for viral production. We perform a qualitative analysis of the model dynamics under a general delay distribution kernel with respect to the basic reproduction number. Specifically, we investigate the existence of a positive infection equilibrium, the global stability of the virus‐free equilibrium, the global attractivity of the infection equilibrium, and the persistence of infection. To understand the influence of time delay, we calibrate the model to CD8 +$$ {}^{+} $$ T cell (immune cells) clinical data on coronavirus disease 2019 (COVID‐19) patients from the literature using a variety of delay distributions: Dirac delta, uniform, and gamma. The uniform distribution seems to be the most appropriate model based on different statistical methods, such as the Akaike information criterion (AIC). Then, we conduct a global sensitivity analysis considering the three distributions to identify potential strategies for reducing the viral load when the infection cannot be eradicated. We find that the considered parameters affect the steady state of the viral load to varying extents, depending on the delay distribution. Finally, we modify the model into a treatment model that integrates two treatment strategies: antiviral and immune‐modulating treatments, to target viral replication and modulate the immune response. Using computational analysis, we study the impact of these interventions on viral load and immune cell density.
AbstractList ABSTRACT Epidemics caused by infectious agents, including viruses, are a major threat to humanity, and understanding the underlying dynamics is essential for developing effective strategies to mitigate their impact. Elucidating viral behavior, like the absence of detectable infectious viruses during the eclipse phase at the early stages of infection, highlights a key aspect of viral replication that is crucial for preventing and managing infectious diseases. This paper introduces a mathematical model of the immune response incorporating a delay distribution that accounts for the eclipse phase, the period between viral entry into a host cell, and the activation of immune cells for viral production. We perform a qualitative analysis of the model dynamics under a general delay distribution kernel with respect to the basic reproduction number. Specifically, we investigate the existence of a positive infection equilibrium, the global stability of the virus‐free equilibrium, the global attractivity of the infection equilibrium, and the persistence of infection. To understand the influence of time delay, we calibrate the model to CD8 +$$ {}^{+} $$ T cell (immune cells) clinical data on coronavirus disease 2019 (COVID‐19) patients from the literature using a variety of delay distributions: Dirac delta, uniform, and gamma. The uniform distribution seems to be the most appropriate model based on different statistical methods, such as the Akaike information criterion (AIC). Then, we conduct a global sensitivity analysis considering the three distributions to identify potential strategies for reducing the viral load when the infection cannot be eradicated. We find that the considered parameters affect the steady state of the viral load to varying extents, depending on the delay distribution. Finally, we modify the model into a treatment model that integrates two treatment strategies: antiviral and immune‐modulating treatments, to target viral replication and modulate the immune response. Using computational analysis, we study the impact of these interventions on viral load and immune cell density.
Epidemics caused by infectious agents, including viruses, are a major threat to humanity, and understanding the underlying dynamics is essential for developing effective strategies to mitigate their impact. Elucidating viral behavior, like the absence of detectable infectious viruses during the eclipse phase at the early stages of infection, highlights a key aspect of viral replication that is crucial for preventing and managing infectious diseases. This paper introduces a mathematical model of the immune response incorporating a delay distribution that accounts for the eclipse phase, the period between viral entry into a host cell, and the activation of immune cells for viral production. We perform a qualitative analysis of the model dynamics under a general delay distribution kernel with respect to the basic reproduction number. Specifically, we investigate the existence of a positive infection equilibrium, the global stability of the virus‐free equilibrium, the global attractivity of the infection equilibrium, and the persistence of infection. To understand the influence of time delay, we calibrate the model to CD8 +$$ {}^{+} $$ T cell (immune cells) clinical data on coronavirus disease 2019 (COVID‐19) patients from the literature using a variety of delay distributions: Dirac delta, uniform, and gamma. The uniform distribution seems to be the most appropriate model based on different statistical methods, such as the Akaike information criterion (AIC). Then, we conduct a global sensitivity analysis considering the three distributions to identify potential strategies for reducing the viral load when the infection cannot be eradicated. We find that the considered parameters affect the steady state of the viral load to varying extents, depending on the delay distribution. Finally, we modify the model into a treatment model that integrates two treatment strategies: antiviral and immune‐modulating treatments, to target viral replication and modulate the immune response. Using computational analysis, we study the impact of these interventions on viral load and immune cell density.
Epidemics caused by infectious agents, including viruses, are a major threat to humanity, and understanding the underlying dynamics is essential for developing effective strategies to mitigate their impact. Elucidating viral behavior, like the absence of detectable infectious viruses during the eclipse phase at the early stages of infection, highlights a key aspect of viral replication that is crucial for preventing and managing infectious diseases. This paper introduces a mathematical model of the immune response incorporating a delay distribution that accounts for the eclipse phase, the period between viral entry into a host cell, and the activation of immune cells for viral production. We perform a qualitative analysis of the model dynamics under a general delay distribution kernel with respect to the basic reproduction number. Specifically, we investigate the existence of a positive infection equilibrium, the global stability of the virus‐free equilibrium, the global attractivity of the infection equilibrium, and the persistence of infection. To understand the influence of time delay, we calibrate the model to CD8 T cell (immune cells) clinical data on coronavirus disease 2019 (COVID‐19) patients from the literature using a variety of delay distributions: Dirac delta, uniform, and gamma. The uniform distribution seems to be the most appropriate model based on different statistical methods, such as the Akaike information criterion (AIC). Then, we conduct a global sensitivity analysis considering the three distributions to identify potential strategies for reducing the viral load when the infection cannot be eradicated. We find that the considered parameters affect the steady state of the viral load to varying extents, depending on the delay distribution. Finally, we modify the model into a treatment model that integrates two treatment strategies: antiviral and immune‐modulating treatments, to target viral replication and modulate the immune response. Using computational analysis, we study the impact of these interventions on viral load and immune cell density.
Author Al‐Darabsah, Isam
Author_xml – sequence: 1
  givenname: Isam
  orcidid: 0000-0002-8412-2624
  surname: Al‐Darabsah
  fullname: Al‐Darabsah, Isam
  email: imaldarabsah@just.edu.jo
  organization: Jordan University of Science and Technology
BookMark eNp10EFLwzAUB_AgE9ymB79BwJOHbkmaNu1xbLoNNgRRPElJ01fMaJOZtEhvfgQ_o5_Eunr19N7h938P_hM0MtYAQteUzCghbF7XckYpYfQMjSlJ04ByEY_QmFBBAs4ov0AT7w-EkIRSNkav68rmssKrzshaK49tiSV-0c2bNt-fXxvrG7y3BVS4tA5v67o1gB_BH63xcHI9X4MBpxVead84nbcNFHgFlewu0XkpKw9Xf3OKnu_vnpabYPew3i4Xu0CxlNMAVCy4TCKex6pQkMqQ5CpRoiiFTCEmRZmHoqQhY4qRVEb9ThMhOSdSCZBFOEU3w92js-8t-CY72NaZ_mXWh1ISsSiOe3U7KOWs9w7K7Oh0LV2XUZL9tpf17WWn9no7H-yHrqD7H2b7_WJI_AC813Mv
Cites_doi 10.1007/s00285‐013‐0720‐4
10.1515/9780691187655
10.1007/s12250‐010‐3135‐z
10.3934/cpaa.2022121
10.1016/S0362‐546X(01)00678‐2
10.1016/j.mbs.2015.05.001
10.1016/j.cmpb.2021.106412
10.1007/s11538‐010‐9503‐x
10.1007/s00285‐017‐1199‐1
10.1016/j.apm.2022.03.043
10.1007/s00285‐002‐0191‐5
10.1371/journal.pcbi.1008752
10.1016/j.jtbi.2008.05.031
10.1080/17513758.2018.1498984
10.1137/130930145
10.1016/s0025‐5564(98)10027‐5
10.1007/s00285‐018‐1241‐y
10.1016/j.cnsns.2020.105584
10.1007/978-1-4612-4342-7
10.1137/15M1031965
10.1038/srep10371
10.1016/j.jtbi.2008.04.011
10.1016/j.matcom.2016.10.002
10.1002/1873‐3468.12095
10.1001/jama.2020.17023
10.1016/j.apm.2022.02.008
10.3934/mbe.2009.6.603
10.1007/978-3-319-56433-3
10.1016/j.mbs.2020.108438
10.1016/0025‐5564(93)90043‐a
10.1080/22221751.2020.1770129
10.1007/s00285‐022‐01849‐6
10.1002/jmv.26504
10.1111/imr.12687
10.1016/S0025‐5564(02)00108‐6
10.1001/jama.2020.16747
10.1016/j.apm.2023.11.010
10.1016/j.arcontrol.2020.09.006
10.3390/v7102875
10.1007/s11071‐020‐05825‐x
10.1093/bioinformatics/btp358
10.1007/s00430‐020‐00693‐z
10.1098/rsif.2023.0187
10.1016/j.jde.2015.12.038
10.3934/mbe.2020159
10.3934/mbe.2008.5.389
10.1137/16M1097092
10.1007/978-3-642-93107-9
10.1128/JVI.01623‐05
10.1016/j.tibs.2010.10.002
10.3390/v9060126
10.1002/cpa.3160380607
ContentType Journal Article
Copyright 2025 John Wiley & Sons Ltd.
2025 John Wiley & Sons, Ltd.
Copyright_xml – notice: 2025 John Wiley & Sons Ltd.
– notice: 2025 John Wiley & Sons, Ltd.
DBID AAYXX
CITATION
7TB
8FD
FR3
JQ2
KR7
DOI 10.1002/mma.11021
DatabaseName CrossRef
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
DatabaseTitle CrossRef
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
DatabaseTitleList
Civil Engineering Abstracts
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Mathematics
EISSN 1099-1476
EndPage 12206
ExternalDocumentID 10_1002_mma_11021
MMA11021
Genre researchArticle
GrantInformation_xml – fundername: Jordan University of Science and Technology through the Faculty Member Research
  funderid: 20230324
GroupedDBID -~X
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
31~
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHQN
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCZN
ACGFS
ACIWK
ACPOU
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AIDQK
AIDYY
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMVHM
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CO8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F00
F01
F04
F5P
FEDTE
G-S
G.N
GBZZK
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M6O
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
NF~
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RX1
RYL
SAMSI
SUPJJ
UB1
V2E
W8V
W99
WBKPD
WH7
WIB
WIH
WIK
WOHZO
WQJ
WXSBR
WYISQ
XBAML
XG1
XPP
XV2
ZZTAW
~02
~IA
~WT
AAYXX
CITATION
7TB
8FD
FR3
JQ2
KR7
ID FETCH-LOGICAL-c2941-ec674a854b6cdce9a30bc8c7df7a9e60dfb37f1322c209a57f1187a440ac7ead3
IEDL.DBID DR2
ISSN 0170-4214
IngestDate Tue Jul 29 16:34:25 EDT 2025
Wed Jul 16 16:43:54 EDT 2025
Thu Jul 10 07:11:38 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2941-ec674a854b6cdce9a30bc8c7df7a9e60dfb37f1322c209a57f1187a440ac7ead3
Notes Funding
This work is supported by Jordan University of Science and Technology through the Faculty Member Research Grant (grant number 20230324).
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-8412-2624
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/mma.11021
PQID 3229052566
PQPubID 1016386
PageCount 21
ParticipantIDs proquest_journals_3229052566
crossref_primary_10_1002_mma_11021
wiley_primary_10_1002_mma_11021_MMA11021
PublicationCentury 2000
PublicationDate August 2025
2025-08-00
20250801
PublicationDateYYYYMMDD 2025-08-01
PublicationDate_xml – month: 08
  year: 2025
  text: August 2025
PublicationDecade 2020
PublicationPlace Freiburg
PublicationPlace_xml – name: Freiburg
PublicationTitle Mathematical methods in the applied sciences
PublicationYear 2025
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2018; 285
2019; 13
2020; 17
2020; 324
2014; 69
2008; 5
2022; 21
2001; 47
2017; 9
2020; 328
1978
1998; 152
2016; 260
2020; 209
2023; 20
2010; 25
2002; 180
1978; 21
2020; 50
2020; 9
2003; 46
2018; 78
2018; 77
2010; 72
2016; 590
2009; 25
2015; 5
2024; 126
2009
2007
1996
1993
2004
2020; 101
2003
2011; 36
2017; 133
2021; 93
2016; 15
2021; 95
2015; 7
2021; 91
2023; 86
1995; 84
2015; 270
2006; 80
2021; 211
2021; 17
2018
2017
2009; 6
2014; 74
2022; 108
1993; 114
2008; 254
2022; 106
1985; 38
Hale J. K. (e_1_2_11_44_1) 1978; 21
e_1_2_11_32_1
e_1_2_11_55_1
e_1_2_11_30_1
e_1_2_11_36_1
e_1_2_11_51_1
e_1_2_11_13_1
e_1_2_11_34_1
e_1_2_11_11_1
e_1_2_11_29_1
e_1_2_11_6_1
e_1_2_11_27_1
e_1_2_11_4_1
Kuang Y. (e_1_2_11_43_1) 1993
e_1_2_11_2_1
McDonagh M. (e_1_2_11_53_1) 1995; 84
e_1_2_11_60_1
e_1_2_11_20_1
e_1_2_11_45_1
e_1_2_11_47_1
e_1_2_11_24_1
e_1_2_11_41_1
e_1_2_11_62_1
e_1_2_11_8_1
e_1_2_11_22_1
e_1_2_11_17_1
Erneux T. (e_1_2_11_46_1) 2009
e_1_2_11_59_1
e_1_2_11_38_1
e_1_2_11_19_1
e_1_2_11_50_1
e_1_2_11_10_1
e_1_2_11_31_1
e_1_2_11_56_1
e_1_2_11_58_1
e_1_2_11_14_1
e_1_2_11_35_1
e_1_2_11_52_1
e_1_2_11_12_1
e_1_2_11_33_1
e_1_2_11_54_1
e_1_2_11_7_1
Balachandran B. (e_1_2_11_15_1) 2009
e_1_2_11_28_1
e_1_2_11_5_1
e_1_2_11_26_1
e_1_2_11_3_1
e_1_2_11_49_1
Mitchell M. G. (e_1_2_11_64_1) 2018
e_1_2_11_61_1
Baron S. (e_1_2_11_63_1) 1996
e_1_2_11_21_1
e_1_2_11_25_1
e_1_2_11_40_1
e_1_2_11_9_1
e_1_2_11_23_1
e_1_2_11_42_1
e_1_2_11_18_1
e_1_2_11_16_1
e_1_2_11_37_1
e_1_2_11_39_1
Churchill R. (e_1_2_11_48_1) 2004
Burnham K. (e_1_2_11_57_1) 2007
References_xml – volume: 324
  start-page: 1292
  issue: 13
  year: 2020
  end-page: 1295
  article-title: Corticosteroids in COVID‐19 ARDS: Evidence and Hope During the Pandemic
  publication-title: JAMA
– year: 2009
– volume: 69
  start-page: 875
  issue: 4
  year: 2014
  end-page: 904
  article-title: Threshold Dynamics in an SEIRS Model With Latency and Temporary Immunity
  publication-title: Journal of Mathematical Biology
– volume: 20
  issue: 205
  year: 2023
  article-title: Modelling the Viral Dynamics of the Sars‐Cov‐2 Delta and Omicron Variants in Different Cell Types
  publication-title: Journal of the Royal Society Interface
– volume: 21
  start-page: 3755
  issue: 11
  year: 2022
  end-page: 3775
  article-title: Dynamics of a Periodic West Nile Virus Model With Mosquito Demographics
  publication-title: Communications on Pure and Applied Mathematics
– volume: 15
  start-page: 1844
  issue: 4
  year: 2016
  end-page: 1873
  article-title: Stability of Systems With Stochastic delays and Applications to Genetic Regulatory Networks
  publication-title: SIAM Journal on Applied Dynamical Systems
– volume: 80
  start-page: 7590
  issue: 15
  year: 2006
  end-page: 7599
  article-title: Kinetics of Influenza a Virus Infection in Humans
  publication-title: Journal of Virology
– volume: 91
  start-page: 74
  year: 2021
  end-page: 92
  article-title: A Time‐Delayed SVEIR Model for Imperfect Vaccine With a Generalized Nonmonotone Incidence and Application to Measles
  publication-title: Applied Mathematical Modelling
– volume: 74
  start-page: 898
  issue: 3
  year: 2014
  end-page: 917
  article-title: Modeling HIV‐1 Virus Dynamics With Both Virus‐to‐Cell Infection and Cell‐to‐Cell Transmission
  publication-title: SIAM Journal on Applied Mathematics
– volume: 17
  issue: 3
  year: 2021
  article-title: Success of Prophylactic Antiviral Therapy for Sars‐Cov‐2: Predicted Critical Efficacies and Impact of Different Drug‐Specific Mechanisms of Action
  publication-title: PLoS Computational Biology
– volume: 46
  start-page: 425
  issue: 5
  year: 2003
  end-page: 444
  article-title: A Mathematical Model of Cell‐to‐Cell Spread of HIV‐1 That Includes a Time Delay
  publication-title: Journal of Mathematical Biology
– volume: 101
  start-page: 1281
  issue: 2
  year: 2020
  end-page: 1300
  article-title: Threshold Dynamics of a Time‐Delayed Epidemic Model for Continuous Imperfect‐Vaccine With a Generalized Nonmonotone Incidence Rate
  publication-title: Nonlinear Dynamics
– volume: 86
  start-page: 20
  issue: 2
  year: 2023
  article-title: A Simple in‐Host Model for Covid‐19 With Treatments: Model Prediction and Calibration
  publication-title: Journal of Mathematical Biology
– year: 2018
– volume: 254
  start-page: 439
  issue: 2
  year: 2008
  end-page: 451
  article-title: Modeling Amantadine Treatment of Influenza a Virus In Vitro
  publication-title: Journal of Theoretical Biology
– volume: 7
  start-page: 5274
  issue: 10
  year: 2015
  end-page: 5304
  article-title: Modeling Influenza Virus Infection: A Roadmap for Influenza Research
  publication-title: Viruses
– volume: 50
  start-page: 448
  year: 2020
  end-page: 456
  article-title: In‐Host Mathematical Modelling of COVID‐19 in Humans
  publication-title: Annual Reviews in Control
– volume: 133
  start-page: 206
  year: 2017
  end-page: 222
  article-title: The Logistic Growth Model as an Approximating Model for Viral Load Measurements of Influenza A Virus
  publication-title: Mathematics and Computers in Simulation
– volume: 211
  year: 2021
  article-title: Computational Simulations to Dissect the Cell Immune Response Dynamics for Severe and Critical Cases of SARS‐CoV‐2 Infection
  publication-title: Computer Methods and Programs in Biomedicine
– volume: 209
  start-page: 657
  year: 2020
  end-page: 668
  article-title: Assessing SARS‐CoV‐2 RNA Levels and Lymphocyte/T Cell Counts in COVID‐19 Patients Revealed Initial Immune Status as a Major Determinant of Disease Severity
  publication-title: Medical Microbiology and Immunology
– volume: 72
  start-page: 1492
  year: 2010
  end-page: 1505
  article-title: Global Dynamics of an In‐Host Viral Model With Intracellular Delay
  publication-title: Bulletin of Mathematical Biology
– volume: 260
  start-page: 6176
  issue: 7
  year: 2016
  end-page: 6200
  article-title: A Differential Equation With State‐Dependent Delay From Cell Population Biology
  publication-title: Journal of Difference Equations
– volume: 5
  start-page: 10371
  issue: 1
  year: 2015
  article-title: A Method to Determine the Duration of the Eclipse Phase for In Vitro Infection With a Highly Pathogenic SHIV Strain
  publication-title: Scientific Reports
– volume: 108
  start-page: 469
  year: 2022
  end-page: 488
  article-title: A Periodic Dengue Model With Diapause Effect and Control Measures
  publication-title: Applied Mathematical Modelling
– volume: 36
  start-page: 159
  issue: 3
  year: 2011
  end-page: 169
  article-title: How Viruses Hijack Cell Regulation
  publication-title: Trends in Biochemical Sciences
– year: 2004
– volume: 9
  start-page: 126
  issue: 6
  year: 2017
  article-title: Bacterial Virus Ontology; Coordinating Across Databases
  publication-title: Viruses
– volume: 47
  start-page: 6169
  issue: 9
  year: 2001
  end-page: 6179
  article-title: Robust Persistence for Semidynamical Systems
  publication-title: Nonlinear Analysis: Theory Methods & Applications
– year: 1993
– volume: 13
  start-page: 47
  issue: sup1
  year: 2019
  end-page: 73
  article-title: The Effect of Delay in Viral Production in Within‐Host Models during Early Infection
  publication-title: Journal of Biological Dynamics
– volume: 126
  start-page: 526
  year: 2024
  end-page: 542
  article-title: Numerical Assessment of the Impact of Hemozoin on the Dynamics of a Within‐Host Malaria Model
  publication-title: Applied Mathematical Modelling
– volume: 254
  start-page: 178
  issue: 1
  year: 2008
  end-page: 196
  article-title: A Methodology for Performing Global Uncertainty and Sensitivity Analysis in Systems Biology
  publication-title: Journal of Theoretical Biology
– volume: 324
  start-page: 1330
  issue: 13
  year: 2020
  end-page: 1341
  article-title: Association Between Administration of Systemic Corticosteroids and Mortality Among Critically Ill Patients With Covid‐19: A Meta‐Analysis
  publication-title: JAMA
– volume: 25
  start-page: 281
  year: 2010
  end-page: 293
  article-title: Strategies for Antiviral Screening Targeting Early Steps of Virus Infection
  publication-title: Virologica Sinica
– volume: 78
  start-page: 145
  issue: 1
  year: 2018
  end-page: 170
  article-title: A Stage‐Structured Mathematical Model for Fish Stock With Harvesting
  publication-title: SIAM Journal on Applied Mathematics
– volume: 328
  year: 2020
  article-title: Modeling the Viral Dynamics of Sars‐Cov‐2 Infection
  publication-title: Mathematical Biosciences
– volume: 38
  start-page: 733
  year: 1985
  end-page: 753
  article-title: Differential Equation Models of Some Parasitic Infections: Methods for the Study of Asymptotic Behavior
  publication-title: Communications on Pure and Applied Mathematics
– year: 2007
– year: 2003
– year: 1996
– volume: 106
  start-page: 325
  year: 2022
  end-page: 342
  article-title: Dynamical Analysis and Optimal Control of an Age‐Since Infection HIV Model at Individuals and Population Levels
  publication-title: Applied Mathematical Modelling
– volume: 77
  start-page: 1035
  issue: 4
  year: 2018
  end-page: 1057
  article-title: Multiscale Model Within‐Host and Between‐Host for Viral Infectious Diseases
  publication-title: Journal of Mathematical Biology
– volume: 590
  start-page: 1972
  issue: 13
  year: 2016
  end-page: 1986
  article-title: Multiscale Modeling of Virus Replication and Spread
  publication-title: FEBS Letters
– volume: 25
  start-page: 1923
  issue: 15
  year: 2009
  end-page: 1929
  article-title: Structural and Practical Identifiability Analysis of Partially Observed Dynamical Models by Exploiting the Profile Likelihood
  publication-title: Bioinformatics
– volume: 77
  start-page: 343
  issue: 2
  year: 2018
  end-page: 376
  article-title: A Periodic Disease Transmission Model With Asymptomatic Carriage and Latency Periods
  publication-title: Journal of Mathematical Biology
– volume: 95
  year: 2021
  article-title: Stability Analysis in COVID‐19 Within‐Host Model With Immune Response
  publication-title: Communications in Nonlinear Science and Numerical Simulation
– volume: 152
  start-page: 143
  issue: 2
  year: 1998
  end-page: 163
  article-title: Influence of Delayed Viral Production on Viral Dynamics in HIV‐1 Infected Patients
  publication-title: Mathematical Biosciences
– volume: 21
  start-page: 11
  year: 1978
  end-page: 41
  article-title: Phase Space for Retarded Equations With Infinite Delay
  publication-title: Fako de l'Funkcialaj Ekvacioj Japana Matematika Societo
– volume: 9
  start-page: 1123
  issue: 1
  year: 2020
  end-page: 1130
  article-title: Profiling Serum Cytokines in COVID‐19 Patients Reveals IL‐6 and IL‐10 Are Disease Severity Predictors
  publication-title: Emerging Microbes & Infections
– volume: 84
  start-page: 514
  issue: 4
  year: 1995
  article-title: The Survival and Turnover of Mature and Immature CD8+ T Cells
  publication-title: Immunology
– volume: 114
  start-page: 81
  issue: 1
  year: 1993
  end-page: 125
  article-title: Dynamics of HIV Infection of CD4+ T Cells
  publication-title: Mathematical Biosciences
– volume: 270
  start-page: 183
  year: 2015
  end-page: 191
  article-title: Global Dynamics of a Delayed Within‐Host Viral Infection Model With Both Virus‐to‐Cell and Cell‐to‐Cell Transmissions
  publication-title: Mathematical Biosciences
– volume: 93
  start-page: 1070
  issue: 2
  year: 2021
  end-page: 1077
  article-title: The Dynamics of Immune Response in Covid‐19 Patients With Different Illness Severity
  publication-title: Journal of Medical Virology
– volume: 6
  start-page: 603
  issue: 3
  year: 2009
  article-title: Global Stability for an SEIR Epidemiological Model With Varying Infectivity and Infinite Delay
  publication-title: Mathematical Biosciences and Engineering
– volume: 17
  start-page: 2853
  issue: 4
  year: 2020
  end-page: 2861
  article-title: The Within‐Host Viral Kinetics of SARS‐CoV‐2
  publication-title: Mathematical Biosciences and Engineering
– year: 2017
– year: 1978
– volume: 5
  start-page: 389
  issue: 2
  year: 2008
  end-page: 402
  article-title: Seir Epidemiological Model With Varying Infectivity and Infinite Delay
  publication-title: Mathematical Biosciences and Engineering
– volume: 285
  start-page: 81
  issue: 1
  year: 2018
  end-page: 96
  article-title: Mathematical Modeling of Within‐Host Zika Virus Dynamics
  publication-title: Immunological Reviews
– volume: 180
  start-page: 29
  issue: 1‐2
  year: 2002
  end-page: 48
  article-title: Reproduction Numbers and Sub‐Threshold Endemic Equilibria for Compartmental Models of Disease Transmission
  publication-title: Mathematical Biosciences
– ident: e_1_2_11_4_1
  doi: 10.1007/s00285‐013‐0720‐4
– ident: e_1_2_11_50_1
  doi: 10.1515/9780691187655
– ident: e_1_2_11_28_1
  doi: 10.1007/s12250‐010‐3135‐z
– ident: e_1_2_11_10_1
  doi: 10.3934/cpaa.2022121
– ident: e_1_2_11_52_1
  doi: 10.1016/S0362‐546X(01)00678‐2
– ident: e_1_2_11_7_1
  doi: 10.1016/j.mbs.2015.05.001
– ident: e_1_2_11_36_1
  doi: 10.1016/j.cmpb.2021.106412
– ident: e_1_2_11_2_1
  doi: 10.1007/s11538‐010‐9503‐x
– ident: e_1_2_11_12_1
  doi: 10.1007/s00285‐017‐1199‐1
– ident: e_1_2_11_11_1
  doi: 10.1016/j.apm.2022.03.043
– volume-title: Delay Differential Equations: With Applications in Population Dynamics
  year: 1993
  ident: e_1_2_11_43_1
– ident: e_1_2_11_32_1
  doi: 10.1007/s00285‐002‐0191‐5
– ident: e_1_2_11_22_1
  doi: 10.1371/journal.pcbi.1008752
– volume-title: Delay Differential Equations
  year: 2009
  ident: e_1_2_11_15_1
– ident: e_1_2_11_31_1
  doi: 10.1016/j.jtbi.2008.05.031
– ident: e_1_2_11_34_1
  doi: 10.1080/17513758.2018.1498984
– ident: e_1_2_11_8_1
  doi: 10.1137/130930145
– ident: e_1_2_11_9_1
  doi: 10.1016/s0025‐5564(98)10027‐5
– ident: e_1_2_11_37_1
  doi: 10.1007/s00285‐018‐1241‐y
– ident: e_1_2_11_21_1
  doi: 10.1016/j.cnsns.2020.105584
– ident: e_1_2_11_45_1
  doi: 10.1007/978-1-4612-4342-7
– ident: e_1_2_11_14_1
  doi: 10.1137/15M1031965
– ident: e_1_2_11_33_1
  doi: 10.1038/srep10371
– ident: e_1_2_11_61_1
  doi: 10.1016/j.jtbi.2008.04.011
– ident: e_1_2_11_39_1
  doi: 10.1016/j.matcom.2016.10.002
– ident: e_1_2_11_40_1
  doi: 10.1002/1873‐3468.12095
– ident: e_1_2_11_60_1
  doi: 10.1001/jama.2020.17023
– volume-title: Applied Delay Differential Equations
  year: 2009
  ident: e_1_2_11_46_1
– volume-title: Complex Variables and Applications
  year: 2004
  ident: e_1_2_11_48_1
– volume: 21
  start-page: 11
  year: 1978
  ident: e_1_2_11_44_1
  article-title: Phase Space for Retarded Equations With Infinite Delay
  publication-title: Fako de l'Funkcialaj Ekvacioj Japana Matematika Societo
– ident: e_1_2_11_23_1
  doi: 10.1016/j.apm.2022.02.008
– ident: e_1_2_11_5_1
  doi: 10.3934/mbe.2009.6.603
– volume-title: Medical Microbiology
  year: 1996
  ident: e_1_2_11_63_1
– ident: e_1_2_11_16_1
  doi: 10.1007/978-3-319-56433-3
– ident: e_1_2_11_18_1
  doi: 10.1016/j.mbs.2020.108438
– ident: e_1_2_11_29_1
  doi: 10.1016/0025‐5564(93)90043‐a
– ident: e_1_2_11_55_1
  doi: 10.1080/22221751.2020.1770129
– ident: e_1_2_11_17_1
– ident: e_1_2_11_41_1
  doi: 10.1007/s00285‐022‐01849‐6
– ident: e_1_2_11_38_1
  doi: 10.1002/jmv.26504
– volume-title: Model Selection and Multimodel Inference: A Practical Information‐Theoretic Approach
  year: 2007
  ident: e_1_2_11_57_1
– ident: e_1_2_11_25_1
  doi: 10.1111/imr.12687
– ident: e_1_2_11_47_1
  doi: 10.1016/S0025‐5564(02)00108‐6
– ident: e_1_2_11_59_1
  doi: 10.1001/jama.2020.16747
– ident: e_1_2_11_24_1
  doi: 10.1016/j.apm.2023.11.010
– ident: e_1_2_11_20_1
  doi: 10.1016/j.arcontrol.2020.09.006
– ident: e_1_2_11_35_1
  doi: 10.3390/v7102875
– ident: e_1_2_11_3_1
  doi: 10.1007/s11071‐020‐05825‐x
– ident: e_1_2_11_58_1
  doi: 10.1093/bioinformatics/btp358
– ident: e_1_2_11_49_1
  doi: 10.1007/s11071‐020‐05825‐x
– ident: e_1_2_11_56_1
  doi: 10.1007/s00430‐020‐00693‐z
– ident: e_1_2_11_54_1
  doi: 10.1098/rsif.2023.0187
– ident: e_1_2_11_13_1
  doi: 10.1016/j.jde.2015.12.038
– ident: e_1_2_11_19_1
  doi: 10.3934/mbe.2020159
– ident: e_1_2_11_6_1
  doi: 10.3934/mbe.2008.5.389
– volume: 84
  start-page: 514
  issue: 4
  year: 1995
  ident: e_1_2_11_53_1
  article-title: The Survival and Turnover of Mature and Immature CD8+ T Cells
  publication-title: Immunology
– ident: e_1_2_11_62_1
  doi: 10.1137/16M1097092
– ident: e_1_2_11_42_1
  doi: 10.1007/978-3-642-93107-9
– volume-title: Molecular Pathology and the Dynamics of Disease
  year: 2018
  ident: e_1_2_11_64_1
– ident: e_1_2_11_30_1
  doi: 10.1128/JVI.01623‐05
– ident: e_1_2_11_26_1
  doi: 10.1016/j.tibs.2010.10.002
– ident: e_1_2_11_27_1
  doi: 10.3390/v9060126
– ident: e_1_2_11_51_1
  doi: 10.1002/cpa.3160380607
SSID ssj0008112
Score 2.3862917
Snippet ABSTRACT Epidemics caused by infectious agents, including viruses, are a major threat to humanity, and understanding the underlying dynamics is essential for...
Epidemics caused by infectious agents, including viruses, are a major threat to humanity, and understanding the underlying dynamics is essential for developing...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Index Database
Publisher
StartPage 12186
SubjectTerms COVID-19
distributed delay
Equilibrium
global dynamics
Health services
Immune response
Immune system
Infections
Lymphocytes
Qualitative analysis
Replication
Sensitivity analysis
Statistical methods
Time lag
Viruses
within‐host modeling
Title Global Dynamics of a Within‐Host Model for Immune Response With a Generic Distributed Delay
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmma.11021
https://www.proquest.com/docview/3229052566
Volume 48
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ27TsMwFIaPEBMMXAqIcpOFGGAI5OImtpgQpSpIZUAgGECRr6KiTREJA0w8As_Ik2A7SQtISIjNg2MlsU_82zn-foAdXxKmMJWexJx6OGGxRzjFntSaEV9LX3K7D9k7j7tX-OymdTMFh_VZmJIPMd5ws5Hhvtc2wBnPDybQ0OGQ2Rx2d4g8iGLLzW9fTNBRJHB_Oi0exsNhgGuqkB8ejK_8PhdNBOZXmermmc483NZ3WKaXPOw_F3xfvP6AN_7zERZgrtKf6KgcMIswpbIGzPbG8Na8AYtVvOdot4JS7y3BXWkOgNqlg32ORhoxdN0v7vvZx9t7d5QXyPqqDZBRwejUnjpR6KJMwFWunqnumusL1La0Xmu0pSRqqwF7WYarzsnlcderrBk8EVIceErECWakhXkspFCURT4XRCRSJ4yq2JeaR4m2K10R-pS1TDkgCcPYZyIxgzdagelslKlVQIxqa3pNOGchJlxxQgQ1izIZa2LkUdCE7bqT0seSwJGWrOUwNS8wdS-wCRt196VVEOZpZFn2LaPp4ibsun74vYG01ztyhbW_V12HmdC6Abt0wA2YLp6e1aaRKAXfcmPxE6BZ4lk
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV27TsMwFL2qYAAG3ojytBADDIEkdRNbYqkoqDzCgECwoMhPUQEtImGAiU_gG_kSbCdpAQkJsXlwrMTXNz7XvvccgE1fEqYwlZ7EnHo4ZpFHOMWe1JoRX0tfcnsOmZxFnUt8fN28rsFeVQtT8EMMDtysZ7j_tXVweyC9O2QNfXhgNondVpGPYgM0bOjVPh-SR5HA3XVaghgPhwGueIX8cHfw6PfdaAgxvwJVt9McTsFN9Y5FgsndznPOd8TrD_rG_37ENEyWEBS1ijUzAzXVm4WJZMDfms3CTOnyGdoqeam35-Cm0AdA7ULEPkN9jRi66ua33d7H23unn-XISqvdIwOE0ZEtPFHovMjBVa6f6e6G6wrUtoS9VmtLSdRW9-xlHi4PDy72O16pzuCJkOLAUyKKMSNNzCMhhaKs4XNBRCx1zKiKfKl5I9Y22BWhT1nTtAMSM4x9JmKzfhsLMNLr99QiIEa11b0mnLMQE644IYKauExGmhiEFNRho7JS-liQcKQF3XKYmglM3QTWYaWyX1r6YZY2LJ1908C6qA5bzhC_D5AmScs1lv7edR3GOhfJaXp6dHayDOOhFQd22YErMJI_PatVg1hyvuYW5ifUO-Z4
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LSsQwFL2IgujCtzg-g7jQRbXtZNoEV-I4jI8REUUXSskTB8cZsXWhKz_Bb_RLTNJ2RgVB3GVxG9rce5uT5OYcgA1fEqYwlZ7EnHo4ZpFHOMWe1JoRX0tfcrsP2TqNmpf46Lp2PQS75V2YnB-iv-FmM8P9r22CP0q9MyANfXhgtobdXiIfwZFBEhYRnQ-4o0jgjjotP4yHwwCXtEJ-uNN_9PtkNECYX3Gqm2gak3BTvmJeX3K__ZzxbfH6g73xn98wBRMFAEV7ecRMw5DqzsB4q8_ems7AdJHwKdosWKm3ZuE2VwdA9VzCPkU9jRi6amd37e7H23uzl2bICqt1kIHB6NBeO1HoPK_AVc7OmLvu2gLVLV2vVdpSEtVVh73MwWXj4GK_6RXaDJ4IKQ48JaIYM1LDPBJSKMqqPhdExFLHjKrIl5pXY22XuiL0KauZdkBihrHPRGyitzoPw91eVy0AYlRb1WvCOQsx4YoTIqhZlclIE4OPggqsl05KHnMKjiQnWw4TM4CJG8AKLJfuS4osTJOqJbOvGVAXVWDT-eH3DpJWa881Fv9uugajZ_VGcnJ4erwEY6FVBnalgcswnD09qxUDVzK-6sLyEztP5Sc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Global+Dynamics+of+a+Within%E2%80%90Host+Model+for+Immune+Response+With+a+Generic+Distributed+Delay&rft.jtitle=Mathematical+methods+in+the+applied+sciences&rft.au=Al%E2%80%90Darabsah%2C+Isam&rft.date=2025-08-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0170-4214&rft.eissn=1099-1476&rft.volume=48&rft.issue=12&rft.spage=12186&rft.epage=12206&rft_id=info:doi/10.1002%2Fmma.11021&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0170-4214&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0170-4214&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0170-4214&client=summon