Risk‐Aware Pedestrian Behavior Using Reinforcement Learning in Mixed Traffic
ABSTRACT This paper introduces a reinforcement learning method to simulate agents crossing roads in unsignalized, mixed‐traffic environments. These agents represent individual pedestrians or small groups. The method ensures that agents adopt safe interactions with nearby dynamic obstacles (bikes, mo...
Saved in:
Published in | Computer animation and virtual worlds Vol. 36; no. 3 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Hoboken, USA
John Wiley & Sons, Inc
01.05.2025
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
ISSN | 1546-4261 1546-427X |
DOI | 10.1002/cav.70031 |
Cover
Loading…
Abstract | ABSTRACT
This paper introduces a reinforcement learning method to simulate agents crossing roads in unsignalized, mixed‐traffic environments. These agents represent individual pedestrians or small groups. The method ensures that agents adopt safe interactions with nearby dynamic obstacles (bikes, motorcycles, or cars) by considering factors such as conflict zones and post‐encroachment times. Risk assessments based on interaction times encourage agents to avoid hazardous behaviors. Additionally, risk‐informed reward terms incentivize agents to perform safe actions, while collision penalties deter collisions. The method achieved collision‐free crossings and demonstrated normal, conservative, and aggressive pedestrian behaviors in various scenarios. Finally, ablation tests revealed the impact of reward weights, reward terms, and key agent state components. The weights of reward terms can be adjusted to achieve either conservative or aggressive pedestrian crossing behaviors, balancing road crossing efficiency and safety.
This paper presents a reinforcement learning‐based approach to simulate pedestrian road‐crossing behavior in mixed traffic environments. Pedestrians assess risks, receive safety‐related rewards, avoid collisions, and display diverse behaviors influenced by adjustments to reward weights. |
---|---|
AbstractList | This paper introduces a reinforcement learning method to simulate agents crossing roads in unsignalized, mixed‐traffic environments. These agents represent individual pedestrians or small groups. The method ensures that agents adopt safe interactions with nearby dynamic obstacles (bikes, motorcycles, or cars) by considering factors such as conflict zones and post‐encroachment times. Risk assessments based on interaction times encourage agents to avoid hazardous behaviors. Additionally, risk‐informed reward terms incentivize agents to perform safe actions, while collision penalties deter collisions. The method achieved collision‐free crossings and demonstrated normal, conservative, and aggressive pedestrian behaviors in various scenarios. Finally, ablation tests revealed the impact of reward weights, reward terms, and key agent state components. The weights of reward terms can be adjusted to achieve either conservative or aggressive pedestrian crossing behaviors, balancing road crossing efficiency and safety. ABSTRACT This paper introduces a reinforcement learning method to simulate agents crossing roads in unsignalized, mixed‐traffic environments. These agents represent individual pedestrians or small groups. The method ensures that agents adopt safe interactions with nearby dynamic obstacles (bikes, motorcycles, or cars) by considering factors such as conflict zones and post‐encroachment times. Risk assessments based on interaction times encourage agents to avoid hazardous behaviors. Additionally, risk‐informed reward terms incentivize agents to perform safe actions, while collision penalties deter collisions. The method achieved collision‐free crossings and demonstrated normal, conservative, and aggressive pedestrian behaviors in various scenarios. Finally, ablation tests revealed the impact of reward weights, reward terms, and key agent state components. The weights of reward terms can be adjusted to achieve either conservative or aggressive pedestrian crossing behaviors, balancing road crossing efficiency and safety. This paper presents a reinforcement learning‐based approach to simulate pedestrian road‐crossing behavior in mixed traffic environments. Pedestrians assess risks, receive safety‐related rewards, avoid collisions, and display diverse behaviors influenced by adjustments to reward weights. |
Author | Chen, Tzu‐Yu Cai, Cheng‐En Wong, Sai‐Keung |
Author_xml | – sequence: 1 givenname: Cheng‐En surname: Cai fullname: Cai, Cheng‐En organization: National Yang Ming Chiao Tung University – sequence: 2 givenname: Sai‐Keung orcidid: 0000-0002-4248-0052 surname: Wong fullname: Wong, Sai‐Keung email: cswingo@nycu.edu.tw organization: National Yang Ming Chiao Tung University – sequence: 3 givenname: Tzu‐Yu surname: Chen fullname: Chen, Tzu‐Yu organization: National Yang Ming Chiao Tung University |
BookMark | eNp1kEtOwzAQhi1UJNrCghtEYsUirR-JYy9LxUsqD1UtYmc5yRhcWqfYtKU7jsAZOQkpQexYzWj0zcyvr4NarnKA0DHBPYIx7Rd63cswZmQPtUma8Dih2WPrr-fkAHVCmNUopwS30e3Yhpevj8_BRnuI7qGE8OatdtEZPOu1rXw0DdY9RWOwzlS-gAW4t2gE2rvd2Lroxr5DGU28NsYWh2jf6HmAo9_aRdOL88nwKh7dXV4PB6O4oDIhsdacsVIKCYRKnos8ESQXpjCaiUyykqakACl0XqZ5ZjhQSbHJTZoYzDPMctZFJ83dpa9eV3VmNatW3tUvFaNUSJFxRmvqtKEKX4Xgwailtwvtt4pgtdOlal3qR1fN9ht2Y-ew_R9Uw8FDs_ENy_1uEA |
Cites_doi | 10.1002/cav.1654 10.1109/TITS.2016.2542283 10.3390/s24072356 10.1002/cav.2255 10.1016/j.trpro.2020.10.018 10.1098/rspb.2009.0405 10.1002/cav.1826 10.3390/electronics13050934 10.1103/PhysRevE.62.1805 10.1002/cav.2089 10.1103/physreve.51.4282 10.1145/1553374.1553380 10.1016/j.jsr.2024.08.006 10.1609/aaai.v33i01.33016120 10.23919/ACC.2018.8430886 10.1109/IROS.2017.8202312 10.1016/j.aap.2013.09.020 10.1209/0295-5075/93/68005 10.1016/j.trf.2024.02.008 10.1016/j.trc.2014.01.007 10.1016/j.trf.2015.07.004 10.1007/978-3-642-19457-3_1 10.1016/j.trip.2024.101036 10.1145/3274247.3274510 10.1038/s41598-025-88897-2 10.1109/TVCG.2021.3139031 10.1109/TVCG.2021.3128286 10.1177/03611981231185768 10.3390/s21144780 10.1080/03081060.2024.2341313 10.1002/cav.1974 10.1109/ACCESS.2019.2933492 |
ContentType | Journal Article |
Copyright | 2025 John Wiley & Sons Ltd. 2025 John Wiley & Sons, Ltd. |
Copyright_xml | – notice: 2025 John Wiley & Sons Ltd. – notice: 2025 John Wiley & Sons, Ltd. |
DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
DOI | 10.1002/cav.70031 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Computer and Information Systems Abstracts CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Visual Arts |
EISSN | 1546-427X |
EndPage | n/a |
ExternalDocumentID | 10_1002_cav_70031 CAV70031 |
Genre | researchArticle |
GrantInformation_xml | – fundername: The National Science and Technology Council of the ROC funderid: NSTC 113‐2221‐E‐A49‐168‐MY3 |
GroupedDBID | .3N .4S .DC .GA .Y3 05W 0R~ 10A 1L6 1OC 29F 31~ 33P 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 6J9 702 7PT 8-0 8-1 8-3 8-4 8-5 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACPOU ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADMLS ADNMO ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUYR AFBPY AFFPM AFGKR AFWVQ AFZJQ AGHNM AGQPQ AGYGG AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ARCSS ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS EDO EJD F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA HF~ HGLYW HHY HVGLF HZ~ I-F ITG ITH IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N9A NF~ O66 O9- OIG P2W P4D PQQKQ Q.N Q11 QB0 QRW R.K ROL RX1 RYL SUPJJ TN5 TUS UB1 V2E V8K W8V W99 WBKPD WIH WIK WQJ WXSBR WYISQ WZISG XG1 XV2 ~IA ~WT AAMMB AAYXX AEFGJ AGXDD AIDQK AIDYY CITATION 1OB 7SC 8FD JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c2941-aa633d989e1296b8b481b8fcfa38793d251ce98abd5b7f6e2920fbf54f06703b3 |
IEDL.DBID | DR2 |
ISSN | 1546-4261 |
IngestDate | Sat Aug 23 12:47:19 EDT 2025 Thu Jul 03 08:36:51 EDT 2025 Wed Jun 25 09:40:24 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2941-aa633d989e1296b8b481b8fcfa38793d251ce98abd5b7f6e2920fbf54f06703b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-4248-0052 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/cav.70031 |
PQID | 3228987632 |
PQPubID | 2034909 |
PageCount | 11 |
ParticipantIDs | proquest_journals_3228987632 crossref_primary_10_1002_cav_70031 wiley_primary_10_1002_cav_70031_CAV70031 |
PublicationCentury | 2000 |
PublicationDate | May/June 2025 2025-05-00 20250501 |
PublicationDateYYYYMMDD | 2025-05-01 |
PublicationDate_xml | – month: 05 year: 2025 text: May/June 2025 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken, USA |
PublicationPlace_xml | – name: Hoboken, USA – name: Chichester |
PublicationTitle | Computer animation and virtual worlds |
PublicationYear | 2025 |
Publisher | John Wiley & Sons, Inc Wiley Subscription Services, Inc |
Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley Subscription Services, Inc |
References | 2019; 7 1995; 51 2018; 29 2021; 21 2011 2019; 33 2009 2009; 276 2025; 15 2024; 102 2024 2024; 13 2024; 35 2014; 62 2014; 40 2016; 17 2015; 26 2023; 2678 2021; 32 2023; 29 2020; 50 2017; 11 2024; 91 2016; 42 2000; 62 2018 2017 2014 2024; 24 2022; 33 2024; 47 e_1_2_9_30_1 e_1_2_9_31_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_10_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_12_1 e_1_2_9_33_1 e_1_2_9_15_1 e_1_2_9_14_1 e_1_2_9_17_1 e_1_2_9_16_1 e_1_2_9_37_1 e_1_2_9_19_1 e_1_2_9_18_1 e_1_2_9_20_1 e_1_2_9_22_1 e_1_2_9_21_1 e_1_2_9_23_1 e_1_2_9_8_1 e_1_2_9_7_1 e_1_2_9_6_1 e_1_2_9_5_1 e_1_2_9_4_1 e_1_2_9_3_1 e_1_2_9_2_1 Silver D. (e_1_2_9_35_1) 2014 e_1_2_9_9_1 e_1_2_9_26_1 Long P. X. (e_1_2_9_24_1) 2018 e_1_2_9_25_1 e_1_2_9_28_1 e_1_2_9_27_1 e_1_2_9_29_1 Feliciani C. (e_1_2_9_36_1) 2017; 11 |
References_xml | – year: 2011 – volume: 17 start-page: 3171 issue: 11 year: 2016 end-page: 3183 article-title: Generating Believable Mixed‐Traffic Animation publication-title: IEEE Transactions on Intelligent Transportation Systems – volume: 13 start-page: 934 issue: 5 year: 2024 article-title: Enhanced Crowd Dynamics Simulation With Deep Learning and Improved Social Force Model publication-title: Electronics – volume: 102 start-page: 88 year: 2024 end-page: 106 article-title: Crossing Roads in a Social Context: How Behaviors of Others Shape Pedestrian Interaction With Automated Vehicles publication-title: Transportation Research Part F: Traffic Psychology and Behaviour – volume: 42 start-page: 468 year: 2016 end-page: 478 article-title: Quantitative Analysis of Lane‐Based Pedestrian‐Vehicle Conflict at a Non‐Signalized Marked Crosswalk publication-title: Transportation Research Part F: Traffic Psychology and Behaviour – start-page: 6252 year: 2018 end-page: 6259 – start-page: 3981 year: 2018 end-page: 3987 – volume: 33 start-page: 6120 year: 2019 end-page: 6127 – volume: 21 start-page: 4780 issue: 14 year: 2021 article-title: Cooperative Object Transportation Using Curriculum‐Based Deep Reinforcement Learning publication-title: Sensors – year: 2024 – volume: 2678 start-page: 606 issue: 4 year: 2023 end-page: 621 article-title: CitySim: A Drone‐Based Vehicle Trajectory Dataset for Safety‐Oriented Research and Digital Twins publication-title: Transportation Research Record – volume: 35 issue: 3 year: 2024 article-title: Mastering Broom‐Like Tools for Object Transportation Animation Using Deep Reinforcement Learning publication-title: Computer Animation and Virtual Worlds – volume: 276 start-page: 2755 issue: 1668 year: 2009 end-page: 2762 article-title: Experimental Study of the Behavioural Mechanisms Underlying Self‐Organization in Human Crowds publication-title: Proceedings of the Royal Society B: Biological Sciences – volume: 47 start-page: 1156 issue: 7 year: 2024 end-page: 1178 article-title: Assessing the Impact of Reaction Time on the Crossing and Merging Conflicts and Identifying Suitable Reaction Time to Detect the Critical Conflict publication-title: Transportation Planning and Technology – volume: 40 start-page: 143 year: 2014 end-page: 159 article-title: Application of Social Force Model to Pedestrian Behavior Analysis at Signalized Crosswalk publication-title: Transportation Research Part C: Emerging Technologies – year: 2018 – volume: 51 start-page: 4282 issue: 5 year: 1995 end-page: 4286 article-title: Social Force Model for Pedestrian Dynamics publication-title: Physical Review. E, Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics – volume: 33 issue: 3–4 year: 2022 article-title: A Personalized and Emotion Based Virtual Simulation Model for Pedestrian‐Vehicle Collision Avoidance publication-title: Computer Animation and Virtual Worlds – volume: 11 start-page: 117 issue: 2 year: 2017 end-page: 138 article-title: A Simulation Model for Non‐Signalized Pedestrian Crosswalks Based on Evidence From on Field Observation publication-title: Intell Artif – volume: 15 start-page: 5403 issue: 1 year: 2025 article-title: Efficient Crowd Simulation in Complex Environment Using Deep Reinforcement Learning publication-title: Scientific Reports – start-page: 387 year: 2014 end-page: 395 – volume: 24 start-page: 2356 issue: 7 year: 2024 article-title: Toward Better Pedestrian Trajectory Predictions: The Role of Density and Time‐To‐Collision in Hybrid Deep‐Learning Algorithms publication-title: Sensors – volume: 29 start-page: 1664 issue: 3 year: 2023 end-page: 1677 article-title: A Calibrated Force‐Based Model for Mixed Traffic Simulation publication-title: IEEE Transactions on Visualization and Computer Graphics – volume: 62 start-page: 178 year: 2014 end-page: 185 article-title: Gap Acceptance of Violators at Signalised Pedestrian Crossings publication-title: Accident Analysis and Prevention – volume: 50 start-page: 145 year: 2020 end-page: 151 article-title: Evaluating the Conflicts Between Vehicles and Pedestrians publication-title: Transportation Research Procedia – volume: 26 start-page: 405 issue: 3–4 year: 2015 end-page: 412 article-title: Vehicle‐Pedestrian Interaction for Mixed Traffic Simulation publication-title: Computer Animation and Virtual Worlds – start-page: 41 year: 2009 end-page: 48 – volume: 7 start-page: 109544 year: 2019 end-page: 109554 article-title: Crowd Navigation in an Unknown and Dynamic Environment Based on Deep Reinforcement Learning publication-title: IEEE Access – volume: 24 year: 2024 article-title: The Video‐Based Safety Methodology for Pedestrian Crosswalk Safety Measured: The Case of Thammasat University, Thailand publication-title: Transportation Research Interdisciplinary Perspectives – volume: 32 issue: 1 year: 2021 article-title: A Simplified Force Model for Mixed Traffic Simulation publication-title: Computer Animation and Virtual Worlds – volume: 91 start-page: 68 year: 2024 end-page: 84 article-title: Vehicle‐Pedestrian Near Miss Analysis at Signalized Mid‐Block Crossings publication-title: Journal of Safety Research – start-page: 3 year: 2011 end-page: 19 – volume: 62 start-page: 1805 issue: 2 year: 2000 end-page: 1824 article-title: Congested Traffic States in Empirical Observations and Microscopic Simulations publication-title: Physical Review E – start-page: 1343 year: 2017 end-page: 1350 – volume: 29 start-page: 2036 issue: 4 year: 2023 end-page: 2052 article-title: Heterogeneous Crowd Simulation Using Parametric Reinforcement Learning publication-title: IEEE Transactions on Visualization and Computer Graphics – volume: 29 issue: 3–4 year: 2018 article-title: Transporting Objects by Multiagent Cooperation in Crowd Simulation publication-title: Computer Animation and Virtual Worlds – ident: e_1_2_9_3_1 doi: 10.1002/cav.1654 – ident: e_1_2_9_20_1 doi: 10.1109/TITS.2016.2542283 – ident: e_1_2_9_9_1 doi: 10.3390/s24072356 – ident: e_1_2_9_32_1 doi: 10.1002/cav.2255 – ident: e_1_2_9_6_1 doi: 10.1016/j.trpro.2020.10.018 – ident: e_1_2_9_37_1 doi: 10.1098/rspb.2009.0405 – ident: e_1_2_9_21_1 doi: 10.1002/cav.1826 – ident: e_1_2_9_28_1 doi: 10.3390/electronics13050934 – ident: e_1_2_9_33_1 doi: 10.1103/PhysRevE.62.1805 – ident: e_1_2_9_19_1 doi: 10.1002/cav.2089 – ident: e_1_2_9_14_1 doi: 10.1103/physreve.51.4282 – ident: e_1_2_9_30_1 doi: 10.1145/1553374.1553380 – ident: e_1_2_9_11_1 doi: 10.1016/j.jsr.2024.08.006 – ident: e_1_2_9_26_1 doi: 10.1609/aaai.v33i01.33016120 – ident: e_1_2_9_34_1 doi: 10.23919/ACC.2018.8430886 – ident: e_1_2_9_23_1 doi: 10.1109/IROS.2017.8202312 – ident: e_1_2_9_2_1 doi: 10.1016/j.aap.2013.09.020 – ident: e_1_2_9_15_1 doi: 10.1209/0295-5075/93/68005 – ident: e_1_2_9_5_1 doi: 10.1016/j.trf.2024.02.008 – start-page: 6252 volume-title: IEEE Int'l Conference on Robotics and Automation year: 2018 ident: e_1_2_9_24_1 – ident: e_1_2_9_17_1 doi: 10.1016/j.trc.2014.01.007 – ident: e_1_2_9_10_1 doi: 10.1016/j.trf.2015.07.004 – start-page: 387 volume-title: Proceedings of the 31st Int'l Conference on Machine Learning. Vol. 32 of Proceedings of Machine Learning Research year: 2014 ident: e_1_2_9_35_1 – volume: 11 start-page: 117 issue: 2 year: 2017 ident: e_1_2_9_36_1 article-title: A Simulation Model for Non‐Signalized Pedestrian Crosswalks Based on Evidence From on Field Observation publication-title: Intell Artif – ident: e_1_2_9_16_1 doi: 10.1007/978-3-642-19457-3_1 – ident: e_1_2_9_8_1 doi: 10.1016/j.trip.2024.101036 – ident: e_1_2_9_22_1 doi: 10.1145/3274247.3274510 – ident: e_1_2_9_12_1 – ident: e_1_2_9_29_1 doi: 10.1038/s41598-025-88897-2 – ident: e_1_2_9_27_1 doi: 10.1109/TVCG.2021.3139031 – ident: e_1_2_9_4_1 doi: 10.1109/TVCG.2021.3128286 – ident: e_1_2_9_7_1 doi: 10.1177/03611981231185768 – ident: e_1_2_9_31_1 doi: 10.3390/s21144780 – ident: e_1_2_9_13_1 doi: 10.1080/03081060.2024.2341313 – ident: e_1_2_9_18_1 doi: 10.1002/cav.1974 – ident: e_1_2_9_25_1 doi: 10.1109/ACCESS.2019.2933492 |
SSID | ssj0026210 |
Score | 2.3714206 |
Snippet | ABSTRACT
This paper introduces a reinforcement learning method to simulate agents crossing roads in unsignalized, mixed‐traffic environments. These agents... This paper introduces a reinforcement learning method to simulate agents crossing roads in unsignalized, mixed‐traffic environments. These agents represent... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Index Database Publisher |
SubjectTerms | Ablation mixed traffic Motorcycles Pedestrian crossings pedestrian simulation Pedestrians reinforcement learning risk‐aware assessment unsignalized environments |
Title | Risk‐Aware Pedestrian Behavior Using Reinforcement Learning in Mixed Traffic |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcav.70031 https://www.proquest.com/docview/3228987632 |
Volume | 36 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1bS8MwFMfD2JM-eBenU4L44Et3SdO0wacxHENwyHBjD0LJVcqgyrqp-ORH8DP6SUzSdlNBEN9KaUp7kpPzTzj5HQDOgjYLFBHa7muYBYrmxKNB1PJkiJUOEaJSumyLAemP8NUkmFTARXkWJudDLDfcrGe4-do6OONZcwUNFeypEdoxaeZfm6tlBdFwiY5CBOUkggATzy4TSqpQCzWXLb_HopXA_CpTXZzpbYK78gvz9JJpYzHnDfH6A974z1_YAhuF_oSdfMBsg4pKd8D6OMkW-d1sFwyGSTb9eHvvPLOZgjdKKlfbI4UFS3EGXZ4BHCpHXRVugxEWoNZ7mKTwOnlREpowaPkUe2DUu7zt9r2i7IInEMVtjzHi-5JGVBktQHjEsZG2kRaa-ZHxZmkUkVA0YlwGPNRE2XpXmusAa3vmx-f-PqimD6k6AFALFprgF3IqJCaixUmgEOKYK0qlkSI1cFp2QPyY0zXinKOMYmOc2BmnBupl18SFg2WxmYciaml6qAbOnY1_f0Hc7YzdxeHfHz0Ca8hW-nWpjXVQnc8W6tjIjzk_cePsE42e1cY |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1bS8MwFMcPUx_UB-_ivAbxwZfOLW3TBnwZ4pi6DRlTfJHS3KQIVXZR8cmP4Gf0k5ik7aaCIL6V0pQ2ycn553DyOwAHfi32JeHKxDX0BkUx4lA_rDoi8KQKMKZC2GyLDmleeec3_k0JjouzMBkfYhxwM5Zh12tj4CYgfTShhvL4qRKYSTkFM6ait91QdcfwKExwxiLwPeKYjULBFario3HT795oIjG_ClXraRqLcFt8Y5Zgcl8ZDVmFv_7AN_73J5ZgIZegqJ7NmWUoyXQF5q-TwSi7O1iFTjcZ3H-8vdef475El1JIW94jRTlOsY9sqgHqSgte5TbGiHJW6x1KUtROXqRA2hMaRMUaXDVOeydNJ6-84HBMvZoTx8R1BQ2p1HKAsJB5Wt2GiqvYDbVBCy2KuKRhzITPAkWkKXmlmPI9ZY79uMxdh-n0IZUbgBSPA-3_Aka58AivMuJLjJnHJKVCq5Ey7BcjED1mgI0oQynjSHdOZDunDNvF2ES5jQ0ivRSF1AD1cBkObSf__oLopH5tLzb__ugezDZ77VbUOutcbMEcNoV_babjNkwP-yO5o9XIkO3aSfcJ8o7Z4Q |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1bS8MwFMcPU0H0wbs4r0F88KVzpmna4NNwDq9jDBUfhNLcZAhVdlHxyY_gZ_STmKTtpoIgvpXSlDY5J-efcPI7ADvBfhIoKrTd1zALFM2px4Ko6smQKB1izKR02RZNenxFTm-CmxIcFGdhMj7EcMPNeoabr62DP0q9N4KGiuSpElqbHIMJQquRNel6e8iOwhRnKIKAUM-uEwqsUBXvDZt-D0YjhflVp7pA05iF2-ITs_yS-8qgzyvi9Qe98Z__MAczuQBFtcxi5qGk0gWYvu70Btnd3iI0253e_cfbe-056SrUUlK54h4pymGKXeQSDVBbOeyqcDuMKCe13qFOii46L0oiEwctoGIJrhpHl4fHXl53wROYkX0vSajvSxYxZcQA5REnRttGWujEj4w7SyOJhGJRwmXAQ02VLXiluQ6Itod-fO4vw3j6kKoVQFokoYl-IWdCEiqqnAYKY064YkwaLVKG7WIA4scMrxFnIGUcm86JXeeUYb0Ymjj3sF5sJqKIWZweLsOu6-PfXxAf1q7dxerfH92CyVa9EZ-fNM_WYArbqr8uzXEdxvvdgdowUqTPN53JfQKgydiZ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Risk%E2%80%90Aware+Pedestrian+Behavior+Using+Reinforcement+Learning+in+Mixed+Traffic&rft.jtitle=Computer+animation+and+virtual+worlds&rft.au=Cai%2C+Cheng%E2%80%90En&rft.au=Wong%2C+Sai%E2%80%90Keung&rft.au=Chen%2C+Tzu%E2%80%90Yu&rft.date=2025-05-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1546-4261&rft.eissn=1546-427X&rft.volume=36&rft.issue=3&rft_id=info:doi/10.1002%2Fcav.70031&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1546-4261&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1546-4261&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1546-4261&client=summon |