Risk‐Aware Pedestrian Behavior Using Reinforcement Learning in Mixed Traffic

ABSTRACT This paper introduces a reinforcement learning method to simulate agents crossing roads in unsignalized, mixed‐traffic environments. These agents represent individual pedestrians or small groups. The method ensures that agents adopt safe interactions with nearby dynamic obstacles (bikes, mo...

Full description

Saved in:
Bibliographic Details
Published inComputer animation and virtual worlds Vol. 36; no. 3
Main Authors Cai, Cheng‐En, Wong, Sai‐Keung, Chen, Tzu‐Yu
Format Journal Article
LanguageEnglish
Published Hoboken, USA John Wiley & Sons, Inc 01.05.2025
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text
ISSN1546-4261
1546-427X
DOI10.1002/cav.70031

Cover

Loading…
Abstract ABSTRACT This paper introduces a reinforcement learning method to simulate agents crossing roads in unsignalized, mixed‐traffic environments. These agents represent individual pedestrians or small groups. The method ensures that agents adopt safe interactions with nearby dynamic obstacles (bikes, motorcycles, or cars) by considering factors such as conflict zones and post‐encroachment times. Risk assessments based on interaction times encourage agents to avoid hazardous behaviors. Additionally, risk‐informed reward terms incentivize agents to perform safe actions, while collision penalties deter collisions. The method achieved collision‐free crossings and demonstrated normal, conservative, and aggressive pedestrian behaviors in various scenarios. Finally, ablation tests revealed the impact of reward weights, reward terms, and key agent state components. The weights of reward terms can be adjusted to achieve either conservative or aggressive pedestrian crossing behaviors, balancing road crossing efficiency and safety. This paper presents a reinforcement learning‐based approach to simulate pedestrian road‐crossing behavior in mixed traffic environments. Pedestrians assess risks, receive safety‐related rewards, avoid collisions, and display diverse behaviors influenced by adjustments to reward weights.
AbstractList This paper introduces a reinforcement learning method to simulate agents crossing roads in unsignalized, mixed‐traffic environments. These agents represent individual pedestrians or small groups. The method ensures that agents adopt safe interactions with nearby dynamic obstacles (bikes, motorcycles, or cars) by considering factors such as conflict zones and post‐encroachment times. Risk assessments based on interaction times encourage agents to avoid hazardous behaviors. Additionally, risk‐informed reward terms incentivize agents to perform safe actions, while collision penalties deter collisions. The method achieved collision‐free crossings and demonstrated normal, conservative, and aggressive pedestrian behaviors in various scenarios. Finally, ablation tests revealed the impact of reward weights, reward terms, and key agent state components. The weights of reward terms can be adjusted to achieve either conservative or aggressive pedestrian crossing behaviors, balancing road crossing efficiency and safety.
ABSTRACT This paper introduces a reinforcement learning method to simulate agents crossing roads in unsignalized, mixed‐traffic environments. These agents represent individual pedestrians or small groups. The method ensures that agents adopt safe interactions with nearby dynamic obstacles (bikes, motorcycles, or cars) by considering factors such as conflict zones and post‐encroachment times. Risk assessments based on interaction times encourage agents to avoid hazardous behaviors. Additionally, risk‐informed reward terms incentivize agents to perform safe actions, while collision penalties deter collisions. The method achieved collision‐free crossings and demonstrated normal, conservative, and aggressive pedestrian behaviors in various scenarios. Finally, ablation tests revealed the impact of reward weights, reward terms, and key agent state components. The weights of reward terms can be adjusted to achieve either conservative or aggressive pedestrian crossing behaviors, balancing road crossing efficiency and safety. This paper presents a reinforcement learning‐based approach to simulate pedestrian road‐crossing behavior in mixed traffic environments. Pedestrians assess risks, receive safety‐related rewards, avoid collisions, and display diverse behaviors influenced by adjustments to reward weights.
Author Chen, Tzu‐Yu
Cai, Cheng‐En
Wong, Sai‐Keung
Author_xml – sequence: 1
  givenname: Cheng‐En
  surname: Cai
  fullname: Cai, Cheng‐En
  organization: National Yang Ming Chiao Tung University
– sequence: 2
  givenname: Sai‐Keung
  orcidid: 0000-0002-4248-0052
  surname: Wong
  fullname: Wong, Sai‐Keung
  email: cswingo@nycu.edu.tw
  organization: National Yang Ming Chiao Tung University
– sequence: 3
  givenname: Tzu‐Yu
  surname: Chen
  fullname: Chen, Tzu‐Yu
  organization: National Yang Ming Chiao Tung University
BookMark eNp1kEtOwzAQhi1UJNrCghtEYsUirR-JYy9LxUsqD1UtYmc5yRhcWqfYtKU7jsAZOQkpQexYzWj0zcyvr4NarnKA0DHBPYIx7Rd63cswZmQPtUma8Dih2WPrr-fkAHVCmNUopwS30e3Yhpevj8_BRnuI7qGE8OatdtEZPOu1rXw0DdY9RWOwzlS-gAW4t2gE2rvd2Lroxr5DGU28NsYWh2jf6HmAo9_aRdOL88nwKh7dXV4PB6O4oDIhsdacsVIKCYRKnos8ESQXpjCaiUyykqakACl0XqZ5ZjhQSbHJTZoYzDPMctZFJ83dpa9eV3VmNatW3tUvFaNUSJFxRmvqtKEKX4Xgwailtwvtt4pgtdOlal3qR1fN9ht2Y-ew_R9Uw8FDs_ENy_1uEA
Cites_doi 10.1002/cav.1654
10.1109/TITS.2016.2542283
10.3390/s24072356
10.1002/cav.2255
10.1016/j.trpro.2020.10.018
10.1098/rspb.2009.0405
10.1002/cav.1826
10.3390/electronics13050934
10.1103/PhysRevE.62.1805
10.1002/cav.2089
10.1103/physreve.51.4282
10.1145/1553374.1553380
10.1016/j.jsr.2024.08.006
10.1609/aaai.v33i01.33016120
10.23919/ACC.2018.8430886
10.1109/IROS.2017.8202312
10.1016/j.aap.2013.09.020
10.1209/0295-5075/93/68005
10.1016/j.trf.2024.02.008
10.1016/j.trc.2014.01.007
10.1016/j.trf.2015.07.004
10.1007/978-3-642-19457-3_1
10.1016/j.trip.2024.101036
10.1145/3274247.3274510
10.1038/s41598-025-88897-2
10.1109/TVCG.2021.3139031
10.1109/TVCG.2021.3128286
10.1177/03611981231185768
10.3390/s21144780
10.1080/03081060.2024.2341313
10.1002/cav.1974
10.1109/ACCESS.2019.2933492
ContentType Journal Article
Copyright 2025 John Wiley & Sons Ltd.
2025 John Wiley & Sons, Ltd.
Copyright_xml – notice: 2025 John Wiley & Sons Ltd.
– notice: 2025 John Wiley & Sons, Ltd.
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1002/cav.70031
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts
CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Visual Arts
EISSN 1546-427X
EndPage n/a
ExternalDocumentID 10_1002_cav_70031
CAV70031
Genre researchArticle
GrantInformation_xml – fundername: The National Science and Technology Council of the ROC
  funderid: NSTC 113‐2221‐E‐A49‐168‐MY3
GroupedDBID .3N
.4S
.DC
.GA
.Y3
05W
0R~
10A
1L6
1OC
29F
31~
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
6J9
702
7PT
8-0
8-1
8-3
8-4
8-5
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACPOU
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADMLS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUYR
AFBPY
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGYGG
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ARCSS
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EDO
EJD
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
HF~
HGLYW
HHY
HVGLF
HZ~
I-F
ITG
ITH
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N9A
NF~
O66
O9-
OIG
P2W
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
ROL
RX1
RYL
SUPJJ
TN5
TUS
UB1
V2E
V8K
W8V
W99
WBKPD
WIH
WIK
WQJ
WXSBR
WYISQ
WZISG
XG1
XV2
~IA
~WT
AAMMB
AAYXX
AEFGJ
AGXDD
AIDQK
AIDYY
CITATION
1OB
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c2941-aa633d989e1296b8b481b8fcfa38793d251ce98abd5b7f6e2920fbf54f06703b3
IEDL.DBID DR2
ISSN 1546-4261
IngestDate Sat Aug 23 12:47:19 EDT 2025
Thu Jul 03 08:36:51 EDT 2025
Wed Jun 25 09:40:24 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2941-aa633d989e1296b8b481b8fcfa38793d251ce98abd5b7f6e2920fbf54f06703b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-4248-0052
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/cav.70031
PQID 3228987632
PQPubID 2034909
PageCount 11
ParticipantIDs proquest_journals_3228987632
crossref_primary_10_1002_cav_70031
wiley_primary_10_1002_cav_70031_CAV70031
PublicationCentury 2000
PublicationDate May/June 2025
2025-05-00
20250501
PublicationDateYYYYMMDD 2025-05-01
PublicationDate_xml – month: 05
  year: 2025
  text: May/June 2025
PublicationDecade 2020
PublicationPlace Hoboken, USA
PublicationPlace_xml – name: Hoboken, USA
– name: Chichester
PublicationTitle Computer animation and virtual worlds
PublicationYear 2025
Publisher John Wiley & Sons, Inc
Wiley Subscription Services, Inc
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley Subscription Services, Inc
References 2019; 7
1995; 51
2018; 29
2021; 21
2011
2019; 33
2009
2009; 276
2025; 15
2024; 102
2024
2024; 13
2024; 35
2014; 62
2014; 40
2016; 17
2015; 26
2023; 2678
2021; 32
2023; 29
2020; 50
2017; 11
2024; 91
2016; 42
2000; 62
2018
2017
2014
2024; 24
2022; 33
2024; 47
e_1_2_9_30_1
e_1_2_9_31_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_10_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_12_1
e_1_2_9_33_1
e_1_2_9_15_1
e_1_2_9_14_1
e_1_2_9_17_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_19_1
e_1_2_9_18_1
e_1_2_9_20_1
e_1_2_9_22_1
e_1_2_9_21_1
e_1_2_9_23_1
e_1_2_9_8_1
e_1_2_9_7_1
e_1_2_9_6_1
e_1_2_9_5_1
e_1_2_9_4_1
e_1_2_9_3_1
e_1_2_9_2_1
Silver D. (e_1_2_9_35_1) 2014
e_1_2_9_9_1
e_1_2_9_26_1
Long P. X. (e_1_2_9_24_1) 2018
e_1_2_9_25_1
e_1_2_9_28_1
e_1_2_9_27_1
e_1_2_9_29_1
Feliciani C. (e_1_2_9_36_1) 2017; 11
References_xml – year: 2011
– volume: 17
  start-page: 3171
  issue: 11
  year: 2016
  end-page: 3183
  article-title: Generating Believable Mixed‐Traffic Animation
  publication-title: IEEE Transactions on Intelligent Transportation Systems
– volume: 13
  start-page: 934
  issue: 5
  year: 2024
  article-title: Enhanced Crowd Dynamics Simulation With Deep Learning and Improved Social Force Model
  publication-title: Electronics
– volume: 102
  start-page: 88
  year: 2024
  end-page: 106
  article-title: Crossing Roads in a Social Context: How Behaviors of Others Shape Pedestrian Interaction With Automated Vehicles
  publication-title: Transportation Research Part F: Traffic Psychology and Behaviour
– volume: 42
  start-page: 468
  year: 2016
  end-page: 478
  article-title: Quantitative Analysis of Lane‐Based Pedestrian‐Vehicle Conflict at a Non‐Signalized Marked Crosswalk
  publication-title: Transportation Research Part F: Traffic Psychology and Behaviour
– start-page: 6252
  year: 2018
  end-page: 6259
– start-page: 3981
  year: 2018
  end-page: 3987
– volume: 33
  start-page: 6120
  year: 2019
  end-page: 6127
– volume: 21
  start-page: 4780
  issue: 14
  year: 2021
  article-title: Cooperative Object Transportation Using Curriculum‐Based Deep Reinforcement Learning
  publication-title: Sensors
– year: 2024
– volume: 2678
  start-page: 606
  issue: 4
  year: 2023
  end-page: 621
  article-title: CitySim: A Drone‐Based Vehicle Trajectory Dataset for Safety‐Oriented Research and Digital Twins
  publication-title: Transportation Research Record
– volume: 35
  issue: 3
  year: 2024
  article-title: Mastering Broom‐Like Tools for Object Transportation Animation Using Deep Reinforcement Learning
  publication-title: Computer Animation and Virtual Worlds
– volume: 276
  start-page: 2755
  issue: 1668
  year: 2009
  end-page: 2762
  article-title: Experimental Study of the Behavioural Mechanisms Underlying Self‐Organization in Human Crowds
  publication-title: Proceedings of the Royal Society B: Biological Sciences
– volume: 47
  start-page: 1156
  issue: 7
  year: 2024
  end-page: 1178
  article-title: Assessing the Impact of Reaction Time on the Crossing and Merging Conflicts and Identifying Suitable Reaction Time to Detect the Critical Conflict
  publication-title: Transportation Planning and Technology
– volume: 40
  start-page: 143
  year: 2014
  end-page: 159
  article-title: Application of Social Force Model to Pedestrian Behavior Analysis at Signalized Crosswalk
  publication-title: Transportation Research Part C: Emerging Technologies
– year: 2018
– volume: 51
  start-page: 4282
  issue: 5
  year: 1995
  end-page: 4286
  article-title: Social Force Model for Pedestrian Dynamics
  publication-title: Physical Review. E, Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics
– volume: 33
  issue: 3–4
  year: 2022
  article-title: A Personalized and Emotion Based Virtual Simulation Model for Pedestrian‐Vehicle Collision Avoidance
  publication-title: Computer Animation and Virtual Worlds
– volume: 11
  start-page: 117
  issue: 2
  year: 2017
  end-page: 138
  article-title: A Simulation Model for Non‐Signalized Pedestrian Crosswalks Based on Evidence From on Field Observation
  publication-title: Intell Artif
– volume: 15
  start-page: 5403
  issue: 1
  year: 2025
  article-title: Efficient Crowd Simulation in Complex Environment Using Deep Reinforcement Learning
  publication-title: Scientific Reports
– start-page: 387
  year: 2014
  end-page: 395
– volume: 24
  start-page: 2356
  issue: 7
  year: 2024
  article-title: Toward Better Pedestrian Trajectory Predictions: The Role of Density and Time‐To‐Collision in Hybrid Deep‐Learning Algorithms
  publication-title: Sensors
– volume: 29
  start-page: 1664
  issue: 3
  year: 2023
  end-page: 1677
  article-title: A Calibrated Force‐Based Model for Mixed Traffic Simulation
  publication-title: IEEE Transactions on Visualization and Computer Graphics
– volume: 62
  start-page: 178
  year: 2014
  end-page: 185
  article-title: Gap Acceptance of Violators at Signalised Pedestrian Crossings
  publication-title: Accident Analysis and Prevention
– volume: 50
  start-page: 145
  year: 2020
  end-page: 151
  article-title: Evaluating the Conflicts Between Vehicles and Pedestrians
  publication-title: Transportation Research Procedia
– volume: 26
  start-page: 405
  issue: 3–4
  year: 2015
  end-page: 412
  article-title: Vehicle‐Pedestrian Interaction for Mixed Traffic Simulation
  publication-title: Computer Animation and Virtual Worlds
– start-page: 41
  year: 2009
  end-page: 48
– volume: 7
  start-page: 109544
  year: 2019
  end-page: 109554
  article-title: Crowd Navigation in an Unknown and Dynamic Environment Based on Deep Reinforcement Learning
  publication-title: IEEE Access
– volume: 24
  year: 2024
  article-title: The Video‐Based Safety Methodology for Pedestrian Crosswalk Safety Measured: The Case of Thammasat University, Thailand
  publication-title: Transportation Research Interdisciplinary Perspectives
– volume: 32
  issue: 1
  year: 2021
  article-title: A Simplified Force Model for Mixed Traffic Simulation
  publication-title: Computer Animation and Virtual Worlds
– volume: 91
  start-page: 68
  year: 2024
  end-page: 84
  article-title: Vehicle‐Pedestrian Near Miss Analysis at Signalized Mid‐Block Crossings
  publication-title: Journal of Safety Research
– start-page: 3
  year: 2011
  end-page: 19
– volume: 62
  start-page: 1805
  issue: 2
  year: 2000
  end-page: 1824
  article-title: Congested Traffic States in Empirical Observations and Microscopic Simulations
  publication-title: Physical Review E
– start-page: 1343
  year: 2017
  end-page: 1350
– volume: 29
  start-page: 2036
  issue: 4
  year: 2023
  end-page: 2052
  article-title: Heterogeneous Crowd Simulation Using Parametric Reinforcement Learning
  publication-title: IEEE Transactions on Visualization and Computer Graphics
– volume: 29
  issue: 3–4
  year: 2018
  article-title: Transporting Objects by Multiagent Cooperation in Crowd Simulation
  publication-title: Computer Animation and Virtual Worlds
– ident: e_1_2_9_3_1
  doi: 10.1002/cav.1654
– ident: e_1_2_9_20_1
  doi: 10.1109/TITS.2016.2542283
– ident: e_1_2_9_9_1
  doi: 10.3390/s24072356
– ident: e_1_2_9_32_1
  doi: 10.1002/cav.2255
– ident: e_1_2_9_6_1
  doi: 10.1016/j.trpro.2020.10.018
– ident: e_1_2_9_37_1
  doi: 10.1098/rspb.2009.0405
– ident: e_1_2_9_21_1
  doi: 10.1002/cav.1826
– ident: e_1_2_9_28_1
  doi: 10.3390/electronics13050934
– ident: e_1_2_9_33_1
  doi: 10.1103/PhysRevE.62.1805
– ident: e_1_2_9_19_1
  doi: 10.1002/cav.2089
– ident: e_1_2_9_14_1
  doi: 10.1103/physreve.51.4282
– ident: e_1_2_9_30_1
  doi: 10.1145/1553374.1553380
– ident: e_1_2_9_11_1
  doi: 10.1016/j.jsr.2024.08.006
– ident: e_1_2_9_26_1
  doi: 10.1609/aaai.v33i01.33016120
– ident: e_1_2_9_34_1
  doi: 10.23919/ACC.2018.8430886
– ident: e_1_2_9_23_1
  doi: 10.1109/IROS.2017.8202312
– ident: e_1_2_9_2_1
  doi: 10.1016/j.aap.2013.09.020
– ident: e_1_2_9_15_1
  doi: 10.1209/0295-5075/93/68005
– ident: e_1_2_9_5_1
  doi: 10.1016/j.trf.2024.02.008
– start-page: 6252
  volume-title: IEEE Int'l Conference on Robotics and Automation
  year: 2018
  ident: e_1_2_9_24_1
– ident: e_1_2_9_17_1
  doi: 10.1016/j.trc.2014.01.007
– ident: e_1_2_9_10_1
  doi: 10.1016/j.trf.2015.07.004
– start-page: 387
  volume-title: Proceedings of the 31st Int'l Conference on Machine Learning. Vol. 32 of Proceedings of Machine Learning Research
  year: 2014
  ident: e_1_2_9_35_1
– volume: 11
  start-page: 117
  issue: 2
  year: 2017
  ident: e_1_2_9_36_1
  article-title: A Simulation Model for Non‐Signalized Pedestrian Crosswalks Based on Evidence From on Field Observation
  publication-title: Intell Artif
– ident: e_1_2_9_16_1
  doi: 10.1007/978-3-642-19457-3_1
– ident: e_1_2_9_8_1
  doi: 10.1016/j.trip.2024.101036
– ident: e_1_2_9_22_1
  doi: 10.1145/3274247.3274510
– ident: e_1_2_9_12_1
– ident: e_1_2_9_29_1
  doi: 10.1038/s41598-025-88897-2
– ident: e_1_2_9_27_1
  doi: 10.1109/TVCG.2021.3139031
– ident: e_1_2_9_4_1
  doi: 10.1109/TVCG.2021.3128286
– ident: e_1_2_9_7_1
  doi: 10.1177/03611981231185768
– ident: e_1_2_9_31_1
  doi: 10.3390/s21144780
– ident: e_1_2_9_13_1
  doi: 10.1080/03081060.2024.2341313
– ident: e_1_2_9_18_1
  doi: 10.1002/cav.1974
– ident: e_1_2_9_25_1
  doi: 10.1109/ACCESS.2019.2933492
SSID ssj0026210
Score 2.3714206
Snippet ABSTRACT This paper introduces a reinforcement learning method to simulate agents crossing roads in unsignalized, mixed‐traffic environments. These agents...
This paper introduces a reinforcement learning method to simulate agents crossing roads in unsignalized, mixed‐traffic environments. These agents represent...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Index Database
Publisher
SubjectTerms Ablation
mixed traffic
Motorcycles
Pedestrian crossings
pedestrian simulation
Pedestrians
reinforcement learning
risk‐aware assessment
unsignalized environments
Title Risk‐Aware Pedestrian Behavior Using Reinforcement Learning in Mixed Traffic
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcav.70031
https://www.proquest.com/docview/3228987632
Volume 36
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1bS8MwFMfD2JM-eBenU4L44Et3SdO0wacxHENwyHBjD0LJVcqgyrqp-ORH8DP6SUzSdlNBEN9KaUp7kpPzTzj5HQDOgjYLFBHa7muYBYrmxKNB1PJkiJUOEaJSumyLAemP8NUkmFTARXkWJudDLDfcrGe4-do6OONZcwUNFeypEdoxaeZfm6tlBdFwiY5CBOUkggATzy4TSqpQCzWXLb_HopXA_CpTXZzpbYK78gvz9JJpYzHnDfH6A974z1_YAhuF_oSdfMBsg4pKd8D6OMkW-d1sFwyGSTb9eHvvPLOZgjdKKlfbI4UFS3EGXZ4BHCpHXRVugxEWoNZ7mKTwOnlREpowaPkUe2DUu7zt9r2i7IInEMVtjzHi-5JGVBktQHjEsZG2kRaa-ZHxZmkUkVA0YlwGPNRE2XpXmusAa3vmx-f-PqimD6k6AFALFprgF3IqJCaixUmgEOKYK0qlkSI1cFp2QPyY0zXinKOMYmOc2BmnBupl18SFg2WxmYciaml6qAbOnY1_f0Hc7YzdxeHfHz0Ca8hW-nWpjXVQnc8W6tjIjzk_cePsE42e1cY
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1bS8MwFMcPUx_UB-_ivAbxwZfOLW3TBnwZ4pi6DRlTfJHS3KQIVXZR8cmP4Gf0k5ik7aaCIL6V0pQ2ycn553DyOwAHfi32JeHKxDX0BkUx4lA_rDoi8KQKMKZC2GyLDmleeec3_k0JjouzMBkfYhxwM5Zh12tj4CYgfTShhvL4qRKYSTkFM6ait91QdcfwKExwxiLwPeKYjULBFario3HT795oIjG_ClXraRqLcFt8Y5Zgcl8ZDVmFv_7AN_73J5ZgIZegqJ7NmWUoyXQF5q-TwSi7O1iFTjcZ3H-8vdef475El1JIW94jRTlOsY9sqgHqSgte5TbGiHJW6x1KUtROXqRA2hMaRMUaXDVOeydNJ6-84HBMvZoTx8R1BQ2p1HKAsJB5Wt2GiqvYDbVBCy2KuKRhzITPAkWkKXmlmPI9ZY79uMxdh-n0IZUbgBSPA-3_Aka58AivMuJLjJnHJKVCq5Ey7BcjED1mgI0oQynjSHdOZDunDNvF2ES5jQ0ivRSF1AD1cBkObSf__oLopH5tLzb__ugezDZ77VbUOutcbMEcNoV_babjNkwP-yO5o9XIkO3aSfcJ8o7Z4Q
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1bS8MwFMcPU0H0wbs4r0F88KVzpmna4NNwDq9jDBUfhNLcZAhVdlHxyY_gZ_STmKTtpoIgvpXSlDY5J-efcPI7ADvBfhIoKrTd1zALFM2px4Ko6smQKB1izKR02RZNenxFTm-CmxIcFGdhMj7EcMPNeoabr62DP0q9N4KGiuSpElqbHIMJQquRNel6e8iOwhRnKIKAUM-uEwqsUBXvDZt-D0YjhflVp7pA05iF2-ITs_yS-8qgzyvi9Qe98Z__MAczuQBFtcxi5qGk0gWYvu70Btnd3iI0253e_cfbe-056SrUUlK54h4pymGKXeQSDVBbOeyqcDuMKCe13qFOii46L0oiEwctoGIJrhpHl4fHXl53wROYkX0vSajvSxYxZcQA5REnRttGWujEj4w7SyOJhGJRwmXAQ02VLXiluQ6Itod-fO4vw3j6kKoVQFokoYl-IWdCEiqqnAYKY064YkwaLVKG7WIA4scMrxFnIGUcm86JXeeUYb0Ymjj3sF5sJqKIWZweLsOu6-PfXxAf1q7dxerfH92CyVa9EZ-fNM_WYArbqr8uzXEdxvvdgdowUqTPN53JfQKgydiZ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Risk%E2%80%90Aware+Pedestrian+Behavior+Using+Reinforcement+Learning+in+Mixed+Traffic&rft.jtitle=Computer+animation+and+virtual+worlds&rft.au=Cai%2C+Cheng%E2%80%90En&rft.au=Wong%2C+Sai%E2%80%90Keung&rft.au=Chen%2C+Tzu%E2%80%90Yu&rft.date=2025-05-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1546-4261&rft.eissn=1546-427X&rft.volume=36&rft.issue=3&rft_id=info:doi/10.1002%2Fcav.70031&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1546-4261&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1546-4261&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1546-4261&client=summon