Precise Motion Inbetweening via Bidirectional Autoregressive Diffusion Models

ABSTRACT Conditional motion diffusion models have demonstrated significant potential in generating natural and reasonable motions response to constraints such as keyframes, that can be used for motion inbetweening task. However, most methods struggle to match the keyframe constraints accurately, whi...

Full description

Saved in:
Bibliographic Details
Published inComputer animation and virtual worlds Vol. 36; no. 3
Main Authors Peng, Jiawen, Liu, Zhuoran, Lin, Jingzhong, He, Gaoqi
Format Journal Article
LanguageEnglish
Published Hoboken, USA John Wiley & Sons, Inc 01.05.2025
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract ABSTRACT Conditional motion diffusion models have demonstrated significant potential in generating natural and reasonable motions response to constraints such as keyframes, that can be used for motion inbetweening task. However, most methods struggle to match the keyframe constraints accurately, which resulting in unsmooth transitions between keyframes and generated motion. In this article, we propose Bidirectional Autoregressive Motion Diffusion Inbetweening (BAMDI) to generate seamless motion between start and target frames. The main idea is to transfer the motion diffusion model to autoregressive paradigm, which predicts subsequence of motion adjacent to both start and target keyframes to infill the missing frames through several iterations. This can help to improve the local consistency of generated motion. Additionally, bidirectional generation make sure the smoothness on both start frame target keyframes. Experiments show our method achieves state‐of‐the‐art performance compared with other diffusion‐based motion inbetweening methods. Bidirectional Autoregressive Motion Diffusion Inbetweening (BAMDI) generates seamless motion inbetweening through iterative diffusion‐based refinement, ensuring smooth and natural transitions between keyframes.
AbstractList Conditional motion diffusion models have demonstrated significant potential in generating natural and reasonable motions response to constraints such as keyframes, that can be used for motion inbetweening task. However, most methods struggle to match the keyframe constraints accurately, which resulting in unsmooth transitions between keyframes and generated motion. In this article, we propose Bidirectional Autoregressive Motion Diffusion Inbetweening (BAMDI) to generate seamless motion between start and target frames. The main idea is to transfer the motion diffusion model to autoregressive paradigm, which predicts subsequence of motion adjacent to both start and target keyframes to infill the missing frames through several iterations. This can help to improve the local consistency of generated motion. Additionally, bidirectional generation make sure the smoothness on both start frame target keyframes. Experiments show our method achieves state‐of‐the‐art performance compared with other diffusion‐based motion inbetweening methods.
ABSTRACT Conditional motion diffusion models have demonstrated significant potential in generating natural and reasonable motions response to constraints such as keyframes, that can be used for motion inbetweening task. However, most methods struggle to match the keyframe constraints accurately, which resulting in unsmooth transitions between keyframes and generated motion. In this article, we propose Bidirectional Autoregressive Motion Diffusion Inbetweening (BAMDI) to generate seamless motion between start and target frames. The main idea is to transfer the motion diffusion model to autoregressive paradigm, which predicts subsequence of motion adjacent to both start and target keyframes to infill the missing frames through several iterations. This can help to improve the local consistency of generated motion. Additionally, bidirectional generation make sure the smoothness on both start frame target keyframes. Experiments show our method achieves state‐of‐the‐art performance compared with other diffusion‐based motion inbetweening methods. Bidirectional Autoregressive Motion Diffusion Inbetweening (BAMDI) generates seamless motion inbetweening through iterative diffusion‐based refinement, ensuring smooth and natural transitions between keyframes.
Author Liu, Zhuoran
Peng, Jiawen
He, Gaoqi
Lin, Jingzhong
Author_xml – sequence: 1
  givenname: Jiawen
  surname: Peng
  fullname: Peng, Jiawen
– sequence: 2
  givenname: Zhuoran
  surname: Liu
  fullname: Liu, Zhuoran
– sequence: 3
  givenname: Jingzhong
  surname: Lin
  fullname: Lin, Jingzhong
– sequence: 4
  givenname: Gaoqi
  orcidid: 0000-0001-8365-0970
  surname: He
  fullname: He, Gaoqi
  email: gqhe@cs.ecnu.edu.cn
BookMark eNp10E1LAzEQBuAgFWyrB__BgicP2-Zrv461Vi206KGIt5BNJiVl3dRkt6X_3q0r3jzNwDwzDO8IDWpXA0K3BE8IxnSq5GGSYczxBRqShKcxp9nH4K9PyRUahbDraEoJHqL1mwdlA0Rr11hXR8u6hOYIUNt6Gx2sjB6sth05D2UVzdrGedh6CMEeIHq0xrThvLd2GqpwjS6NrALc_NYx2jwtNvOXePX6vJzPVrGiBcdxpg0vWcJyotJSsoJyU2KlMQFFMsh5ApqSkqu0SFgGKSRc01JJw5nSZYHZGN31Z_fefbUQGrFzre_-C4JRmhd5lhDWqfteKe9C8GDE3ttP6U-CYHEOS3RhiZ-wOjvt7dFWcPofivnsvd_4BsoEbaQ
Cites_doi 10.1109/CVPR52688.2022.01117
10.1145/3677388.3696338
10.1145/3550454.3555454
10.1109/3DV50981.2020.00102
10.1145/3386569.3392480
10.1109/CVPR.2019.00589
10.1109/CVPR52688.2022.00509
10.1145/3641519.3657440
10.1109/CVPR52733.2024.00133
ContentType Journal Article
Copyright 2025 John Wiley & Sons Ltd.
2025 John Wiley & Sons, Ltd.
Copyright_xml – notice: 2025 John Wiley & Sons Ltd.
– notice: 2025 John Wiley & Sons, Ltd.
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1002/cav.70040
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList CrossRef
Computer and Information Systems Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Visual Arts
EISSN 1546-427X
EndPage n/a
ExternalDocumentID 10_1002_cav_70040
CAV70040
Genre researchArticle
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 62472178
– fundername: Open Projects Program of StateKey Laboratory of Multimodal Artificial Intelligence Systems
  funderid: MAIS2024111
– fundername: Natural Science Foundation of Chongqing, China
  funderid: CSTB2022NSCQ‐MSX0552
– fundername: Fundamental Research Funds for the Central Universities
GroupedDBID .3N
.4S
.DC
.GA
.Y3
05W
0R~
10A
1L6
1OC
29F
31~
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
6J9
702
7PT
8-0
8-1
8-3
8-4
8-5
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACPOU
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADMLS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUYR
AFBPY
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGYGG
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ARCSS
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EDO
EJD
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
HF~
HGLYW
HHY
HVGLF
HZ~
I-F
ITG
ITH
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N9A
NF~
O66
O9-
OIG
P2W
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
ROL
RX1
RYL
SUPJJ
TN5
TUS
UB1
V2E
V8K
W8V
W99
WBKPD
WIH
WIK
WQJ
WXSBR
WYISQ
WZISG
XG1
XV2
~IA
~WT
AAMMB
AAYXX
AEFGJ
AGXDD
AIDQK
AIDYY
CITATION
1OB
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c2940-7df4b35381c6ba3924fb0cd01ec17e845ed21b4c69537e6e54d2bcaf43cdb903
IEDL.DBID DR2
ISSN 1546-4261
IngestDate Sat Aug 23 13:08:45 EDT 2025
Thu Jul 03 08:16:55 EDT 2025
Wed Jun 25 09:40:24 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2940-7df4b35381c6ba3924fb0cd01ec17e845ed21b4c69537e6e54d2bcaf43cdb903
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-8365-0970
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/cav.70040
PQID 3228987513
PQPubID 2034909
PageCount 11
ParticipantIDs proquest_journals_3228987513
crossref_primary_10_1002_cav_70040
wiley_primary_10_1002_cav_70040_CAV70040
PublicationCentury 2000
PublicationDate May/June 2025
2025-05-00
20250501
PublicationDateYYYYMMDD 2025-05-01
PublicationDate_xml – month: 05
  year: 2025
  text: May/June 2025
PublicationDecade 2020
PublicationPlace Hoboken, USA
PublicationPlace_xml – name: Hoboken, USA
– name: Chichester
PublicationTitle Computer animation and virtual worlds
PublicationYear 2025
Publisher John Wiley & Sons, Inc
Wiley Subscription Services, Inc
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley Subscription Services, Inc
References 2020; 39
2019
2015; 34
2022; 41
2021; 34
2020; 33
2014
2024
2023
2022
2021
2020
e_1_2_10_12_1
e_1_2_10_23_1
e_1_2_10_13_1
e_1_2_10_10_1
e_1_2_10_21_1
e_1_2_10_11_1
Ekkasit P. (e_1_2_10_17_1) 2024
e_1_2_10_20_1
Loper M. (e_1_2_10_22_1) 2015; 34
Cohan S. (e_1_2_10_4_1) 2024
Guy T. (e_1_2_10_2_1) 2023
Ho J. (e_1_2_10_19_1) 2020; 33
Korrawe K. (e_1_2_10_5_1) 2023
Dhariwal P. (e_1_2_10_9_1) 2021
e_1_2_10_18_1
e_1_2_10_3_1
e_1_2_10_6_1
e_1_2_10_16_1
e_1_2_10_8_1
e_1_2_10_14_1
e_1_2_10_7_1
e_1_2_10_15_1
References_xml – start-page: 2151
  year: 2023
  end-page: 2162
– start-page: 11461
  year: 2022
  end-page: 11471
– start-page: 1
  year: 2024
  end-page: 9
– start-page: 1334
  year: 2024
  end-page: 1345
– volume: 34
  start-page: 248:1
  issue: 6
  year: 2015
  end-page: 248:16
  article-title: SMPL: A Skinned Multi‐Person Linear Model
  publication-title: ACM Transactions on Graphics, (Proceedings of the SIGGRAPH Asia)
– volume: 33
  start-page: 6840
  year: 2020
  end-page: 6851
  article-title: Denoising Diffusion Probabilistic Models
  publication-title: Advances in Neural Information Processing Systems
– volume: 39
  start-page: 60
  issue: 4
  year: 2020
  end-page: 61
  article-title: Robust Motion In‐Betweening
  publication-title: ACM Transactions on Graphics
– year: 2022
– start-page: 5152
  year: 2022
  end-page: 5161
– year: 2021
– year: 2023
– volume: 41
  start-page: 181
  issue: 6
  year: 2022
  end-page: 184
  article-title: Motion In‐Betweening via Two‐Stage Transformers
  publication-title: ACM Transactions on Graphics
– start-page: 172
  year: 2024
  end-page: 190
– start-page: 918
  year: 2020
  end-page: 927
– start-page: 1
  year: 2024
  end-page: 10
– volume: 34
  start-page: 8780
  year: 2021
  end-page: 8794
– year: 2019
– year: 2014
– ident: e_1_2_10_8_1
  doi: 10.1109/CVPR52688.2022.01117
– ident: e_1_2_10_23_1
– volume-title: The Eleventh International Conference on Learning Representations
  year: 2023
  ident: e_1_2_10_2_1
– ident: e_1_2_10_18_1
  doi: 10.1145/3677388.3696338
– ident: e_1_2_10_16_1
  doi: 10.1145/3550454.3555454
– ident: e_1_2_10_13_1
  doi: 10.1109/3DV50981.2020.00102
– volume: 33
  start-page: 6840
  year: 2020
  ident: e_1_2_10_19_1
  article-title: Denoising Diffusion Probabilistic Models
  publication-title: Advances in Neural Information Processing Systems
– volume: 34
  start-page: 248:1
  issue: 6
  year: 2015
  ident: e_1_2_10_22_1
  article-title: SMPL: A Skinned Multi‐Person Linear Model
  publication-title: ACM Transactions on Graphics, (Proceedings of the SIGGRAPH Asia)
– ident: e_1_2_10_10_1
– ident: e_1_2_10_15_1
– start-page: 172
  volume-title: European Conference on Computer Vision
  year: 2024
  ident: e_1_2_10_17_1
– start-page: 2151
  volume-title: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)
  year: 2023
  ident: e_1_2_10_5_1
– ident: e_1_2_10_6_1
– ident: e_1_2_10_14_1
  doi: 10.1145/3386569.3392480
– ident: e_1_2_10_20_1
  doi: 10.1109/CVPR.2019.00589
– ident: e_1_2_10_21_1
  doi: 10.1109/CVPR52688.2022.00509
– start-page: 8780
  volume-title: Advances in Neural Information Processing Systems
  year: 2021
  ident: e_1_2_10_9_1
– ident: e_1_2_10_12_1
  doi: 10.1145/3641519.3657440
– ident: e_1_2_10_3_1
– ident: e_1_2_10_7_1
  doi: 10.1109/CVPR52733.2024.00133
– start-page: 1
  volume-title: ACM SIGGRAPH 2024 Conference Papers
  year: 2024
  ident: e_1_2_10_4_1
– ident: e_1_2_10_11_1
SSID ssj0026210
Score 2.3711052
Snippet ABSTRACT Conditional motion diffusion models have demonstrated significant potential in generating natural and reasonable motions response to constraints such...
Conditional motion diffusion models have demonstrated significant potential in generating natural and reasonable motions response to constraints such as...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Index Database
Publisher
SubjectTerms character animation
Constraints
diffusion models
motion generation
motion inbetweening
Smoothness
Title Precise Motion Inbetweening via Bidirectional Autoregressive Diffusion Models
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcav.70040
https://www.proquest.com/docview/3228987513
Volume 36
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PS8MwFA5jJz34W5xOCeLBS7cmTdMGT3M6pjARmWMHoTRpAkWZYtcd_OvNj3ZTQRBvpbShfUne973Hy_cAOJMagkTEUo8yFHuGk3uxDn48QTTaEEljRcx559EdHT6S22k4bYCL-iyM04dYJtzMzrD-2mzwlBfdlWioSBcdo81u4nVTq2UI0cNSOgpT7JQIQkI9EybUqkI-7i7f_I5FK4L5laZanBlsgqf6C115yXOnnPOO-Pgh3vjPX9gCGxX_hD23YLZBQ852wPokL0p3t9gFo3ujeFFIOLIdfuDNrCrm0igHF3kKL3MHhDaLCHtGBUHasF17TniVK1WaFBw0bdZeij0wHlyP-0Ov6rrgCcxMeWGmCA-0H0SC8lTTJ6K4LzIfSYEiGZNQZhhxIigLg0hSGZIMc5EqEoiMMz_YB83Z60weABgQhTMfM8wjSqJUMe0rMBJIoozrYVgLnNbmT96ctkbiVJRxok2TWNO0QLuemKTaXkWivVDMdKSFghY4txb-fYCk35vYi8O_P3oE1rDp82sLG9ugOX8v5bEmH3N-YlfZJ0wx1A8
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1RT9swED4VeBh7GGwD0VHAQiDtJSV2HCd-4KG0VO1K0TSVijcrdhypYuqmpWXa_hJ_ZT9qtpO0DGkSL33gLYqik-Pz3Xd3On8HcKINBKmIJx7jOPZsTO7FJvnxFDVoQzWLM2rvOw-vWe-GfroNb2vwUN2FKfghFgU3axnOX1sDtwXpsyVrqErum5ac3S9bKgf610-TsOXn_Y7R7ikh3ctRu-eVMwU8RbhtnkszKgNj5VgxmZjggGbSV6mPtcKRjmmoU4IlVYyHQaSZDmlKpEoyGqhUcj8wYtdgww4Qt0T9nS8LrirCSEF9EFLm2bykojHyydlipf-C3zKifRwXO2DrbsGfakuKfpa75nwmm-r3E7bIF7Jn2_CmDLBRq7CIt1DT03fwejzJ58Xb_D0MP1tKj1yjoRthhPrTslvNwDi6nyToYlIgvSuTopaledCuLmGgAXUmWTa3NUZk58h9zXdgtIrf2YX16bep3gMU0IykPuFERoxGScaNMyRYYY1TacTwOhxX6hbfC_IQUdBEE2E0IZwm6tCoDoIo_UcujJuNuUklcVCHj06j_xcg2q2xe_jw_E-P4FVvNLwSV_3rwT5sEjvU2HVxNmB99mOuD0ykNZOH7oQjECs-HX8BRmkySA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NTtwwEB7BVkJwKOVPbEuLVYHEJUvsOE584LBlu2KhixACxM2KHVtagRbU7G4Fj9RX4aWwnWQpSEi9cOAWRdHI8XjmmxmNvwHY0haCVMKzgHGcBi4mD1Kb_ASKWrShmqWGuvvO_WN2cE4PL-PLGfhb34Up-SGmBTdnGd5fOwO_zc3uE2moyiYtx80eVh2VR_ruj83Xir1exyp3m5Duz7P9g6AaKRAowl3vXG6ojKyRY8VkZmMDamSo8hBrhROd0ljnBEuqGI-jRDMd05xIlRkaqVzyMLJiZ-EDZSF3YyI6p1OqKsJIyXwQUxa4tKRmMQrJ7nSlz7HvKaD9Nyz2uNZdhId6R8p2lqvWeCRb6v4FWeT72LJP8LEKr1G7tIclmNHDZVi4GBTj8m2xAv0TR-hRaNT3A4xQb1j1qlkQR5NBhn4MSpz3RVLUdiQP2lclLDCgzsCYsaswIjdF7rpYhbO3-J01aAxvhnodUEQNyUPCiUwYTTLDrSskWGGNc2nF8CZ8r7UtbkvqEFGSRBNhNSG8JpqwUZ8DUXmPQlgnm3KbSOKoCTteoa8LEPvtC__w-f8_3YS5k05X_OodH32BeeImGvsWzg1ojH6P9VcbZo3kN3--EYg3PhyPYf0w9w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Precise+Motion+Inbetweening+via+Bidirectional+Autoregressive+Diffusion+Models&rft.jtitle=Computer+animation+and+virtual+worlds&rft.au=Peng%2C+Jiawen&rft.au=Liu%2C+Zhuoran&rft.au=Lin%2C+Jingzhong&rft.au=He%2C+Gaoqi&rft.date=2025-05-01&rft.issn=1546-4261&rft.eissn=1546-427X&rft.volume=36&rft.issue=3&rft_id=info:doi/10.1002%2Fcav.70040&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_cav_70040
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1546-4261&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1546-4261&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1546-4261&client=summon