Robust Adaptive Neural Tracking Control for a Class of Perturbed Uncertain Nonlinear Systems With State Constraints
In this paper, we deal with the problem of tracking control for a class of uncertain nonlinear systems in strictfeedback form subject to completely unknown system nonlinearities, hard constraints on full states, and unknown time-varying bounded disturbances. Integral barrier Lyapunov functionals are...
Saved in:
Published in | IEEE transactions on systems, man, and cybernetics. Systems Vol. 46; no. 12; pp. 1618 - 1629 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.12.2016
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 2168-2216 2168-2232 |
DOI | 10.1109/TSMC.2015.2508962 |
Cover
Abstract | In this paper, we deal with the problem of tracking control for a class of uncertain nonlinear systems in strictfeedback form subject to completely unknown system nonlinearities, hard constraints on full states, and unknown time-varying bounded disturbances. Integral barrier Lyapunov functionals are constructed to handle the unknown affine control gains (g(·)) with state constraints simultaneously. This removes the need on the knowledge of control gains for control design and avoids the conservative step of transforming original state constraints into new bounds on tracking errors. Neural networks (NNs) are used to approximate the unknown continuous packaged functions. To enhance the robustness, adapting parameters are developed to compensate the unknown bounds on NNs approximations and external disturbances. Design parameters-dependent feasibility conditions are formulated as sufficient conditions for the existence of feasible design parameters to guarantee the state constraints, and an offline constrained optimization step is proposed to obtain the optimal design parameters prior to the implementation of the proposed control. It is proved that the proposed control can guarantee the semiglobal uniform ultimate boundedness of all signals in closed-loop system, all states are ensured to remain in the predefined constrained state space, and tracking error converges to an adjustable neighborhood of the origin by choosing appropriate design parameters. Simulations are performed to validate the proposed control. |
---|---|
AbstractList | In this paper, we deal with the problem of tracking control for a class of uncertain nonlinear systems in strict-feedback form subject to completely unknown system nonlinearities, hard constraints on full states, and unknown time-varying bounded disturbances. Integral barrier Lyapunov functionals are constructed to handle the unknown affine control gains ([Formula Omitted]) with state constraints simultaneously. This removes the need on the knowledge of control gains for control design and avoids the conservative step of transforming original state constraints into new bounds on tracking errors. Neural networks (NNs) are used to approximate the unknown continuous packaged functions. To enhance the robustness, adapting parameters are developed to compensate the unknown bounds on NNs approximations and external disturbances. Design parameters-dependent feasibility conditions are formulated as sufficient conditions for the existence of feasible design parameters to guarantee the state constraints, and an offline constrained optimization step is proposed to obtain the optimal design parameters prior to the implementation of the proposed control. It is proved that the proposed control can guarantee the semiglobal uniform ultimate boundedness of all signals in closed-loop system, all states are ensured to remain in the predefined constrained state space, and tracking error converges to an adjustable neighborhood of the origin by choosing appropriate design parameters. Simulations are performed to validate the proposed control. In this paper, we deal with the problem of tracking control for a class of uncertain nonlinear systems in strictfeedback form subject to completely unknown system nonlinearities, hard constraints on full states, and unknown time-varying bounded disturbances. Integral barrier Lyapunov functionals are constructed to handle the unknown affine control gains (g(·)) with state constraints simultaneously. This removes the need on the knowledge of control gains for control design and avoids the conservative step of transforming original state constraints into new bounds on tracking errors. Neural networks (NNs) are used to approximate the unknown continuous packaged functions. To enhance the robustness, adapting parameters are developed to compensate the unknown bounds on NNs approximations and external disturbances. Design parameters-dependent feasibility conditions are formulated as sufficient conditions for the existence of feasible design parameters to guarantee the state constraints, and an offline constrained optimization step is proposed to obtain the optimal design parameters prior to the implementation of the proposed control. It is proved that the proposed control can guarantee the semiglobal uniform ultimate boundedness of all signals in closed-loop system, all states are ensured to remain in the predefined constrained state space, and tracking error converges to an adjustable neighborhood of the origin by choosing appropriate design parameters. Simulations are performed to validate the proposed control. |
Author | Shuzhi Sam Ge Keng Peng Tee Zhong-Liang Tang Wei He |
Author_xml | – sequence: 1 givenname: Zhong-Liang surname: Tang fullname: Tang, Zhong-Liang – sequence: 2 givenname: Shuzhi Sam surname: Ge fullname: Ge, Shuzhi Sam – sequence: 3 givenname: Keng Peng surname: Tee fullname: Tee, Keng Peng – sequence: 4 givenname: Wei surname: He fullname: He, Wei |
BookMark | eNp9kEtPwzAQhC1UJErpD0BcLHFu8SOJk2MV8ZJKQbQVx8hONuCS2sV2kPrvSdSKAwdOO4eZ2d3vHA2MNYDQJSVTSkl2s1o-5VNGaDxlMUmzhJ2gIaNJOmGMs8GvpskZGnu_IYRQliacJEPkX61qfcCzSu6C_ga8gNbJBq-cLD-1ece5NcHZBtfWYYnzRnqPbY1fwIXWKajw2pSdltrghTWNNiAdXu59gK3Hbzp84GWQAfoeH1xnC_4Cnday8TA-zhFa392u8ofJ_Pn-MZ_NJyXLeJjUVSzKOKUCVAU04rysMwJ1pFhcSVnFNeEqEpzJSGRKEaEIyCzNFOOKRiwt-QhdH3p3zn614EOxsa0z3cqCplHHg_OYdS5xcJXOeu-gLkrdXaz7v6VuCkqKHnLRQy56yMURcpekf5I7p7fS7f_NXB0yGgB-_YILngjBfwD98or3 |
CODEN | ITSMFE |
CitedBy_id | crossref_primary_10_3390_electronics11081209 crossref_primary_10_1109_TNNLS_2019_2944690 crossref_primary_10_1080_00207721_2024_2440780 crossref_primary_10_1109_TSMC_2019_2961927 crossref_primary_10_1007_s12555_021_0172_3 crossref_primary_10_1016_j_automatica_2020_109102 crossref_primary_10_1080_00207721_2025_2482004 crossref_primary_10_1016_j_jfranklin_2022_08_049 crossref_primary_10_1109_ACCESS_2018_2876762 crossref_primary_10_1109_TSMC_2023_3344292 crossref_primary_10_1016_j_isatra_2019_11_004 crossref_primary_10_1109_TFUZZ_2017_2686378 crossref_primary_10_1007_s12559_024_10388_9 crossref_primary_10_1109_TFUZZ_2023_3325450 crossref_primary_10_1016_j_isatra_2019_03_003 crossref_primary_10_1109_TCYB_2021_3100764 crossref_primary_10_1109_TASE_2023_3280188 crossref_primary_10_1016_j_ins_2025_121976 crossref_primary_10_1016_j_jfranklin_2018_10_011 crossref_primary_10_1109_TSMC_2024_3357539 crossref_primary_10_1109_TSMC_2017_2748227 crossref_primary_10_1038_s41598_025_86783_5 crossref_primary_10_1016_j_automatica_2018_10_030 crossref_primary_10_1002_acs_3532 crossref_primary_10_1007_s00521_021_06293_z crossref_primary_10_1155_2017_2192393 crossref_primary_10_1016_j_jfranklin_2019_04_008 crossref_primary_10_1109_ACCESS_2019_2926280 crossref_primary_10_1007_s11071_024_10636_5 crossref_primary_10_1016_j_ins_2023_119090 crossref_primary_10_59277_PRA_SER_A_25_3_07 crossref_primary_10_1016_j_oceaneng_2020_108401 crossref_primary_10_1016_j_isatra_2024_03_036 crossref_primary_10_1016_j_ejcon_2024_101080 crossref_primary_10_1016_j_neucom_2024_128034 crossref_primary_10_1002_rnc_6464 crossref_primary_10_1002_rnc_5372 crossref_primary_10_1109_TCYB_2020_3023162 crossref_primary_10_1109_TSMC_2017_2723017 crossref_primary_10_1109_TITS_2021_3066447 crossref_primary_10_1002_rnc_6803 crossref_primary_10_1007_s40815_022_01456_z crossref_primary_10_1007_s40435_023_01255_w crossref_primary_10_1002_acs_3782 crossref_primary_10_1016_j_ast_2022_108006 crossref_primary_10_1109_TSMC_2024_3375078 crossref_primary_10_1002_asjc_2181 crossref_primary_10_1016_j_ast_2024_108968 crossref_primary_10_1109_TCYB_2018_2856747 crossref_primary_10_1049_iet_cta_2019_0283 crossref_primary_10_1016_j_jfranklin_2022_03_004 crossref_primary_10_1016_j_jfranklin_2023_05_010 crossref_primary_10_1109_TITS_2024_3429358 crossref_primary_10_1016_j_ins_2024_120224 crossref_primary_10_1002_rnc_6378 crossref_primary_10_1007_s40815_023_01527_9 crossref_primary_10_1109_ACCESS_2020_3010027 crossref_primary_10_1007_s40815_022_01384_y crossref_primary_10_1002_rnc_6118 crossref_primary_10_1109_TFUZZ_2017_2765627 crossref_primary_10_1109_TSMC_2021_3099808 crossref_primary_10_1016_j_ifacol_2024_07_260 crossref_primary_10_1002_rnc_7458 crossref_primary_10_1002_rnc_4069 crossref_primary_10_1002_acs_3325 crossref_primary_10_3390_act11040102 crossref_primary_10_1109_TSMC_2024_3489587 crossref_primary_10_1109_TSMC_2024_3387435 crossref_primary_10_1016_j_isatra_2023_06_034 crossref_primary_10_1109_TFUZZ_2020_3028645 crossref_primary_10_1002_rnc_4926 crossref_primary_10_1049_iet_cta_2019_0652 crossref_primary_10_1109_ACCESS_2019_2956188 crossref_primary_10_1109_LCSYS_2019_2919814 crossref_primary_10_1109_TIM_2024_3370753 crossref_primary_10_1109_TNNLS_2021_3123946 crossref_primary_10_1049_iet_cta_2019_0769 crossref_primary_10_1109_TSMC_2023_3280569 crossref_primary_10_1109_TFUZZ_2024_3406017 crossref_primary_10_1109_TCYB_2025_3535867 crossref_primary_10_1109_TMECH_2022_3182154 crossref_primary_10_1007_s12555_018_0745_y crossref_primary_10_1109_TCYB_2021_3135893 crossref_primary_10_1109_TFUZZ_2022_3164536 crossref_primary_10_1109_TSMC_2022_3191789 crossref_primary_10_1007_s12555_020_0423_8 crossref_primary_10_1109_TNNLS_2022_3164948 crossref_primary_10_1080_00207179_2018_1558285 crossref_primary_10_1080_00207721_2024_2392841 crossref_primary_10_1109_ACCESS_2019_2945501 crossref_primary_10_1080_00207179_2023_2214248 crossref_primary_10_1109_TFUZZ_2022_3155297 crossref_primary_10_1016_j_neunet_2020_01_016 crossref_primary_10_1007_s11432_018_9501_9 crossref_primary_10_1016_j_jprocont_2023_02_002 crossref_primary_10_3934_math_2024019 crossref_primary_10_1109_TSMC_2020_2994808 crossref_primary_10_1016_j_jfranklin_2022_07_021 crossref_primary_10_1109_TII_2020_3038939 crossref_primary_10_1002_rnc_3967 crossref_primary_10_1049_iet_cta_2017_0556 crossref_primary_10_1007_s11071_021_06633_7 crossref_primary_10_1109_ACCESS_2017_2713419 crossref_primary_10_1016_j_ins_2020_03_055 crossref_primary_10_1016_j_isatra_2025_01_045 crossref_primary_10_1016_j_ast_2022_107744 crossref_primary_10_1016_j_isatra_2020_01_021 crossref_primary_10_1109_TVT_2022_3142144 crossref_primary_10_1016_j_jfranklin_2022_07_011 crossref_primary_10_1002_acs_2939 crossref_primary_10_1002_rnc_5776 crossref_primary_10_1109_TASE_2024_3374242 crossref_primary_10_1109_TCYB_2020_3036646 crossref_primary_10_1109_TCYB_2020_2985707 crossref_primary_10_1109_TNNLS_2020_2967150 crossref_primary_10_1109_TAC_2018_2845707 crossref_primary_10_1016_j_amc_2024_128979 crossref_primary_10_1016_j_isatra_2023_07_040 crossref_primary_10_1016_j_amc_2019_124913 crossref_primary_10_1109_TSMC_2019_2894171 crossref_primary_10_1155_2017_6893521 crossref_primary_10_1109_TSMC_2018_2854770 crossref_primary_10_1109_TFUZZ_2020_2965908 crossref_primary_10_1080_00207179_2019_1626024 crossref_primary_10_1016_j_ins_2023_03_010 crossref_primary_10_1016_j_neucom_2021_11_090 crossref_primary_10_1016_j_neucom_2023_126504 crossref_primary_10_1002_acs_3010 crossref_primary_10_1007_s40436_019_00275_0 crossref_primary_10_1109_TSMC_2021_3094975 crossref_primary_10_1016_j_automatica_2021_109595 crossref_primary_10_1016_j_jfranklin_2017_11_036 crossref_primary_10_1109_TFUZZ_2019_2919490 crossref_primary_10_1016_j_jfranklin_2024_107190 crossref_primary_10_1109_TCYB_2021_3069865 crossref_primary_10_1016_j_apm_2024_06_024 crossref_primary_10_1016_j_jfranklin_2022_10_004 crossref_primary_10_1109_TFUZZ_2020_2979668 crossref_primary_10_1002_rnc_4107 crossref_primary_10_1080_00207179_2023_2251608 crossref_primary_10_1007_s11071_024_09692_8 crossref_primary_10_1016_j_ifacol_2020_06_053 crossref_primary_10_1109_ACCESS_2019_2916798 crossref_primary_10_1109_ACCESS_2019_2912630 crossref_primary_10_1109_TNNLS_2022_3171518 crossref_primary_10_1109_TNNLS_2022_3201695 crossref_primary_10_1007_s11071_022_07513_4 crossref_primary_10_1109_TFUZZ_2023_3342737 crossref_primary_10_1016_j_jfranklin_2021_12_004 crossref_primary_10_1109_TCYB_2019_2926298 crossref_primary_10_1016_j_cja_2023_12_016 crossref_primary_10_1016_j_oceaneng_2022_112288 crossref_primary_10_1109_TIE_2017_2784347 crossref_primary_10_1109_TFUZZ_2022_3176681 crossref_primary_10_1109_ACCESS_2021_3118063 crossref_primary_10_1109_TVT_2023_3337331 crossref_primary_10_1007_s11071_020_05921_y crossref_primary_10_1016_j_ifacol_2018_07_322 crossref_primary_10_1109_TNNLS_2023_3238819 crossref_primary_10_1002_rnc_7050 crossref_primary_10_1002_rnc_6082 crossref_primary_10_1109_TAC_2017_2753466 crossref_primary_10_1109_TNNLS_2020_3026078 crossref_primary_10_1109_TFUZZ_2023_3279505 crossref_primary_10_1109_TFUZZ_2018_2798577 crossref_primary_10_1109_TCYB_2019_2906118 crossref_primary_10_1016_j_amc_2022_127176 crossref_primary_10_1016_j_nahs_2022_101299 crossref_primary_10_1016_j_isatra_2022_02_013 crossref_primary_10_1109_TSMC_2019_2903203 crossref_primary_10_1016_j_ymssp_2018_03_042 crossref_primary_10_1016_j_oceaneng_2018_10_009 crossref_primary_10_1080_00207721_2019_1567869 crossref_primary_10_3390_math13060986 crossref_primary_10_1109_TCYB_2021_3070137 crossref_primary_10_1109_TSMC_2016_2611579 crossref_primary_10_1016_j_ifacol_2018_05_002 crossref_primary_10_1080_00207721_2019_1567863 crossref_primary_10_1109_TSMC_2024_3374873 crossref_primary_10_1016_j_automatica_2019_108608 crossref_primary_10_1049_iet_cta_2017_1348 crossref_primary_10_1016_j_ast_2021_107264 crossref_primary_10_1016_j_ast_2024_109549 crossref_primary_10_1007_s40815_023_01576_0 crossref_primary_10_1007_s11071_024_09876_2 crossref_primary_10_1016_j_neucom_2021_02_038 crossref_primary_10_1016_j_jfranklin_2021_08_013 crossref_primary_10_1049_cth2_12528 crossref_primary_10_1109_TSMC_2016_2608969 crossref_primary_10_1016_j_jfranklin_2023_01_006 crossref_primary_10_1109_TSMC_2023_3257170 crossref_primary_10_1016_j_neucom_2018_12_011 crossref_primary_10_1016_j_neucom_2020_09_026 crossref_primary_10_1016_j_jfranklin_2022_05_045 crossref_primary_10_1016_j_jfranklin_2020_07_037 crossref_primary_10_1002_rnc_6143 crossref_primary_10_1016_j_ins_2024_121506 crossref_primary_10_59277_PRA_SER_A_24_3_10 crossref_primary_10_1016_j_ifacol_2022_04_086 crossref_primary_10_1109_TSMC_2017_2749124 crossref_primary_10_1016_j_amc_2018_05_040 crossref_primary_10_1109_TCYB_2022_3217404 crossref_primary_10_1109_TFUZZ_2019_2920808 crossref_primary_10_1109_TSMC_2017_2784451 crossref_primary_10_1109_TCYB_2017_2758385 crossref_primary_10_1016_j_automatica_2024_111728 crossref_primary_10_3390_sym15101919 crossref_primary_10_1109_TSMC_2022_3230429 crossref_primary_10_1002_rnc_7821 crossref_primary_10_1109_TMECH_2023_3235054 crossref_primary_10_1002_rnc_6971 crossref_primary_10_1049_iet_cta_2017_1120 crossref_primary_10_1109_TFUZZ_2020_3033376 crossref_primary_10_1002_rnc_5747 crossref_primary_10_1109_TCYB_2018_2838573 crossref_primary_10_1177_09596518241276229 crossref_primary_10_1109_TCYB_2018_2864166 crossref_primary_10_1002_rnc_7921 crossref_primary_10_1016_j_jfranklin_2018_08_024 crossref_primary_10_1016_j_ijmecsci_2021_106942 crossref_primary_10_1109_TAC_2024_3372888 crossref_primary_10_3390_jmse9080866 crossref_primary_10_1631_FITEE_2300408 crossref_primary_10_1109_TAC_2024_3354559 crossref_primary_10_1002_asjc_3105 crossref_primary_10_1016_j_ifacol_2018_11_487 crossref_primary_10_1109_TSMC_2019_2931314 |
Cites_doi | 10.1142/3774 10.1109/TNN.2003.813823 10.1016/j.automatica.2005.03.030 10.3182/20110828-6-IT-1002.02532 10.3182/20140824-6-ZA-1003.01265 10.1109/CDC.2005.1583507 10.1109/72.392252 10.1016/j.automatica.2008.11.017 10.1109/TCST.2008.2000981 10.1016/j.automatica.2009.02.021 10.1109/TNN.2003.811712 10.1080/00207179.2011.631192 10.1109/TCYB.2013.2262935 10.1109/TSMCB.2011.2108283 10.3182/20130902-3-CN-3020.00122 10.1109/TNNLS.2015.2420661 10.1016/j.automatica.2007.11.025 10.1109/TCYB.2015.2411285 10.1109/TAC.2010.2061090 10.1109/TNN.2010.2047115 10.1109/TNNLS.2014.2316289 10.1109/TSMCB.2003.817055 10.1109/TCST.2014.2362718 10.1080/00207179.2013.828854 10.1109/TIE.2015.2400427 10.1109/TFUZZ.2015.2396075 10.1016/j.automatica.2011.08.044 10.1016/j.fss.2005.06.011 10.1109/FUZZY.1992.258721 10.1109/TAC.2003.815049 10.1109/TCYB.2014.2351399 10.1109/TIE.2013.2288200 10.1109/TFUZZ.2010.2050326 10.1109/9.661611 10.1007/978-1-4471-0967-9 10.1109/TSMC.2015.2426131 10.1016/j.automatica.2006.01.004 10.1137/S0363012992232555 10.1109/TSMC.2015.2420037 10.1109/TFUZZ.2014.2348017 10.1109/TCYB.2015.2452217 10.1109/TSMCB.2011.2159264 10.1109/TNNLS.2015.2471262 10.1109/CDC.2012.6426120 10.1109/TSMCB.2012.2226577 10.1109/TFUZZ.2014.2327987 10.1016/j.automatica.2015.10.034 10.1109/3468.895898 10.1109/TSMCA.2004.824870 10.1109/TAC.2006.886518 10.1016/S0005-1098(01)00254-0 10.1109/TCYB.2014.2329495 10.1109/TFUZZ.2009.2021648 10.1109/TNNLS.2014.2330336 10.1016/S0005-1098(99)00214-9 10.1016/S0005-1098(00)00116-3 10.1109/CDC.2012.6426196 10.23919/ACC.1991.4791778 10.1007/978-1-4757-6577-9 10.1109/TNNLS.2014.2302477 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016 |
DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 7TB 8FD FR3 H8D JQ2 L7M L~C L~D |
DOI | 10.1109/TSMC.2015.2508962 |
DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database Aerospace Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Aerospace Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Aerospace Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2168-2232 |
EndPage | 1629 |
ExternalDocumentID | 10_1109_TSMC_2015_2508962 7373677 |
Genre | orig-research |
GrantInformation_xml | – fundername: National Basic Research Program of China (973 Program) grantid: 2014CB744206 – fundername: Fundamental Research Funds for the China Central Universities of University of Electronic Science and Technology of China grantid: ZYGX2013Z003 funderid: 10.13039/501100005408 |
GroupedDBID | 0R~ 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFS ACIWK AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD HZ~ IFIPE IPLJI JAVBF M43 O9- OCL PQQKQ RIA RIE RNS AAYXX CITATION RIG 7SC 7SP 7TB 8FD FR3 H8D JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c293t-fd57c5817ebde1433cf90ef4b25daad5f03b4732a479bb07b0ea989b23b1428c3 |
IEDL.DBID | RIE |
ISSN | 2168-2216 |
IngestDate | Sun Jun 29 15:30:34 EDT 2025 Tue Jul 01 02:29:03 EDT 2025 Thu Apr 24 23:04:09 EDT 2025 Tue Aug 26 16:43:01 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c293t-fd57c5817ebde1433cf90ef4b25daad5f03b4732a479bb07b0ea989b23b1428c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 1842213352 |
PQPubID | 75739 |
PageCount | 12 |
ParticipantIDs | crossref_citationtrail_10_1109_TSMC_2015_2508962 proquest_journals_1842213352 crossref_primary_10_1109_TSMC_2015_2508962 ieee_primary_7373677 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-Dec. 2016-12-00 20161201 |
PublicationDateYYYYMMDD | 2016-12-01 |
PublicationDate_xml | – month: 12 year: 2016 text: 2016-Dec. |
PublicationDecade | 2010 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on systems, man, and cybernetics. Systems |
PublicationTitleAbbrev | TSMC |
PublicationYear | 2016 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref56 ref12 ref15 ref58 ref53 ref52 ref55 ref54 ref10 ref17 ref16 ref19 ref51 ref50 ref46 ref45 ref48 ref47 ref42 ref41 ref44 ref43 ren (ref11) 2010; 21 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 tong (ref20) 2005; 156 ref35 ref34 ref37 ref36 ref31 sanner (ref57) 1991 ref30 ref33 ref32 ref2 liu (ref59) 2015; 26 ref1 ref39 ref38 ref24 ref23 ref26 krsti? (ref13) 1995 ref25 ref22 ref21 ref28 ref27 ref29 ref60 ref62 ref61 tee (ref18) 2010 tee (ref14) 2009; 17 |
References_xml | – ident: ref38 doi: 10.1142/3774 – ident: ref54 doi: 10.1109/TNN.2003.813823 – ident: ref5 doi: 10.1016/j.automatica.2005.03.030 – ident: ref1 doi: 10.3182/20110828-6-IT-1002.02532 – ident: ref46 doi: 10.3182/20140824-6-ZA-1003.01265 – ident: ref48 doi: 10.1109/CDC.2005.1583507 – ident: ref26 doi: 10.1109/72.392252 – ident: ref7 doi: 10.1016/j.automatica.2008.11.017 – volume: 17 start-page: 340 year: 2009 ident: ref14 article-title: Adaptive control of electrostatic microactuators with bidirectional drive publication-title: IEEE Trans Control Syst Technol doi: 10.1109/TCST.2008.2000981 – ident: ref44 doi: 10.1016/j.automatica.2009.02.021 – ident: ref62 doi: 10.1109/TNN.2003.811712 – ident: ref8 doi: 10.1080/00207179.2011.631192 – ident: ref32 doi: 10.1109/TCYB.2013.2262935 – ident: ref36 doi: 10.1109/TSMCB.2011.2108283 – ident: ref9 doi: 10.3182/20130902-3-CN-3020.00122 – volume: 26 start-page: 1789 year: 2015 ident: ref59 article-title: Adaptive neural output feedback control of output-constrained nonlinear systems with unknown output nonlinearity publication-title: IEEE Trans Neural Netw Learn Syst doi: 10.1109/TNNLS.2015.2420661 – ident: ref52 doi: 10.1016/j.automatica.2007.11.025 – ident: ref19 doi: 10.1109/TCYB.2015.2411285 – ident: ref2 doi: 10.1109/TAC.2010.2061090 – volume: 21 start-page: 1339 year: 2010 ident: ref11 article-title: Adaptive neural control for output feedback nonlinear systems using a barrier Lyapunov function publication-title: IEEE Trans Neural Netw doi: 10.1109/TNN.2010.2047115 – ident: ref40 doi: 10.1109/TNNLS.2014.2316289 – ident: ref42 doi: 10.1109/TSMCB.2003.817055 – ident: ref17 doi: 10.1109/TCST.2014.2362718 – ident: ref12 doi: 10.1080/00207179.2013.828854 – ident: ref16 doi: 10.1109/TIE.2015.2400427 – ident: ref43 doi: 10.1109/TFUZZ.2015.2396075 – ident: ref49 doi: 10.1016/j.automatica.2011.08.044 – volume: 156 start-page: 285 year: 2005 ident: ref20 article-title: Fuzzy adaptive output feedback control for MIMO nonlinear systems publication-title: Fuzzy Sets Syst doi: 10.1016/j.fss.2005.06.011 – ident: ref25 doi: 10.1109/FUZZY.1992.258721 – ident: ref60 doi: 10.1109/TAC.2003.815049 – ident: ref41 doi: 10.1109/TCYB.2014.2351399 – ident: ref15 doi: 10.1109/TIE.2013.2288200 – ident: ref22 doi: 10.1109/TFUZZ.2010.2050326 – ident: ref4 doi: 10.1109/9.661611 – ident: ref56 doi: 10.1007/978-1-4471-0967-9 – ident: ref33 doi: 10.1109/TSMC.2015.2426131 – ident: ref55 doi: 10.1016/j.automatica.2006.01.004 – ident: ref58 doi: 10.1137/S0363012992232555 – ident: ref39 doi: 10.1109/TSMC.2015.2420037 – ident: ref34 doi: 10.1109/TFUZZ.2014.2348017 – ident: ref35 doi: 10.1109/TCYB.2015.2452217 – ident: ref30 doi: 10.1109/TSMCB.2011.2159264 – ident: ref24 doi: 10.1109/TNNLS.2015.2471262 – ident: ref47 doi: 10.1109/CDC.2012.6426120 – year: 1995 ident: ref13 publication-title: Nonlinear and Adaptive Control Design – ident: ref51 doi: 10.1109/TSMCB.2012.2226577 – ident: ref37 doi: 10.1109/TFUZZ.2014.2327987 – ident: ref10 doi: 10.1016/j.automatica.2015.10.034 – ident: ref28 doi: 10.1109/3468.895898 – start-page: 5181 year: 2010 ident: ref18 article-title: Adaptive admittance control of a robot manipulator under task space constraint publication-title: Proc IEEE Int Conf Robot Autom – ident: ref29 doi: 10.1109/TSMCA.2004.824870 – ident: ref6 doi: 10.1109/TAC.2006.886518 – ident: ref53 doi: 10.1016/S0005-1098(01)00254-0 – ident: ref23 doi: 10.1109/TCYB.2014.2329495 – ident: ref21 doi: 10.1109/TFUZZ.2009.2021648 – ident: ref31 doi: 10.1109/TNNLS.2014.2330336 – ident: ref3 doi: 10.1016/S0005-1098(99)00214-9 – ident: ref61 doi: 10.1016/S0005-1098(00)00116-3 – ident: ref50 doi: 10.1109/CDC.2012.6426196 – start-page: 2153 year: 1991 ident: ref57 article-title: gaussian networks for direct adaptive control publication-title: 1991 American Control Conference ACC doi: 10.23919/ACC.1991.4791778 – ident: ref27 doi: 10.1007/978-1-4757-6577-9 – ident: ref45 doi: 10.1109/TNNLS.2014.2302477 |
SSID | ssj0001286306 |
Score | 2.4848366 |
Snippet | In this paper, we deal with the problem of tracking control for a class of uncertain nonlinear systems in strictfeedback form subject to completely unknown... In this paper, we deal with the problem of tracking control for a class of uncertain nonlinear systems in strict-feedback form subject to completely unknown... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1618 |
SubjectTerms | Adaptive systems Approximation methods Artificial neural networks Backstepping design constrained states Control design Feedback neural network (NN) Neural networks Nonlinear systems Robust control Tracking control Trajectory Uncertainty unknown disturbance |
Title | Robust Adaptive Neural Tracking Control for a Class of Perturbed Uncertain Nonlinear Systems With State Constraints |
URI | https://ieeexplore.ieee.org/document/7373677 https://www.proquest.com/docview/1842213352 |
Volume | 46 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEB6sJz34FuuLPXgS026ySTY5SlGKUBG12FvYJ4rSlia9-Oud3aTFF-Il5LCzLHyzO7OzM98AnMkwEyoKRcCltkFsGQ1yalTAVcQFt8bGzNUOD27T_jC-GSWjFbhY1sIYY3zymem4X_-Wrydq7kJlXc44SzlvQQvVrK7V-hRPyVLmW2lGYYrg47d5xAxp3n18GPRcHlfSQZOf5Wn0xQz5vio_DmNvYa43YbBYW51Y8tqZV7Kj3r_RNv538Vuw0bia5LLWjW1YMeMdWP9EQLgL5f1EzsuKXGoxdececVwdKIMWTLkYOunVmewEXVsiiO-gSSaW3JkZmippNBmi0vikAnJbk26IGWlY0MnTS_VMvDfr5il9N4qq3IPh9dVjrx80bRgChb5AFVidcJVkITdSG3SvmLIIp41llGghdGIpkzFnkYh5LiXlkhqRZ7mMmAswZYrtw-p4MjYHQLhSiinN0SZmcSgFHifaUGYTalMu0qQNdIFKoRqOcre4t8LfVWheOCALB2TRANmG86XItCbo-GvwrgNmObDBpA3HC-iLZguXBV59UYlcSdrh71JHsIZzp3VuyzGsVrO5OUEPpZKnXjU_AA6G45o |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9tAEB4BPQCHtjwq0tKyB04Ih7XX67WPKAKlLYkQJIKbtU9RtUpQ7Fz49cyunYiXUC-WD7v2St94v_HszDcAhyrOpU5iGQllXJQ6RqOCWh0JnQgpnHUp87XDg2HWH6e_bvntChwva2GstSH5zHb9bTjLN1M996GyE8EEy4RYhQ_I-ylvqrWeRFTyjIVmmkmcIfx4bY8xY1qcjK4HPZ_JxbtI-nmRJc-IKHRWebUdB445_wSDxeqa1JK_3XmtuvrhhXDj_y7_M3xsnU1y2ljHFqzYyTZsPpEg3IHqaqrmVU1Ojbz3Ox_xah04BzlM-yg66TW57ASdWyJJ6KFJpo5c2hmSlbKGjNFsQloBGTayG3JGWh10cvOnviPBn_XPqUI_irrahfH52ajXj9pGDJFGb6COnOFC8zwWVhmLDhbTDgF1qUq4kdJwR5lKBUtkKgqlqFDUyiIvVMJ8iCnX7AusTaYTuwdEaK2ZNgJZMU9jJXFDMZYyx6nLhMx4B-gClVK3KuV-cf_K8LdCi9IDWXogyxbIDhwtp9w3Eh3vDd7xwCwHtph0YH8Bfdl-xFWJP79oRL4o7evbsw5gvT8aXJQXP4e_v8EGvidrMl32Ya2eze139Fdq9SOY6SMfkubn |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Robust+Adaptive+Neural+Tracking+Control+for+a+Class+of+Perturbed+Uncertain+Nonlinear+Systems+With+State+Constraints&rft.jtitle=IEEE+transactions+on+systems%2C+man%2C+and+cybernetics.+Systems&rft.au=Zhong-Liang+Tang&rft.au=Shuzhi+Sam+Ge&rft.au=Keng+Peng+Tee&rft.au=Wei+He&rft.date=2016-12-01&rft.pub=IEEE&rft.issn=2168-2216&rft.volume=46&rft.issue=12&rft.spage=1618&rft.epage=1629&rft_id=info:doi/10.1109%2FTSMC.2015.2508962&rft.externalDocID=7373677 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2216&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2216&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2216&client=summon |