Robust Adaptive Neural Tracking Control for a Class of Perturbed Uncertain Nonlinear Systems With State Constraints

In this paper, we deal with the problem of tracking control for a class of uncertain nonlinear systems in strictfeedback form subject to completely unknown system nonlinearities, hard constraints on full states, and unknown time-varying bounded disturbances. Integral barrier Lyapunov functionals are...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on systems, man, and cybernetics. Systems Vol. 46; no. 12; pp. 1618 - 1629
Main Authors Tang, Zhong-Liang, Ge, Shuzhi Sam, Tee, Keng Peng, He, Wei
Format Journal Article
LanguageEnglish
Published New York IEEE 01.12.2016
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN2168-2216
2168-2232
DOI10.1109/TSMC.2015.2508962

Cover

Abstract In this paper, we deal with the problem of tracking control for a class of uncertain nonlinear systems in strictfeedback form subject to completely unknown system nonlinearities, hard constraints on full states, and unknown time-varying bounded disturbances. Integral barrier Lyapunov functionals are constructed to handle the unknown affine control gains (g(·)) with state constraints simultaneously. This removes the need on the knowledge of control gains for control design and avoids the conservative step of transforming original state constraints into new bounds on tracking errors. Neural networks (NNs) are used to approximate the unknown continuous packaged functions. To enhance the robustness, adapting parameters are developed to compensate the unknown bounds on NNs approximations and external disturbances. Design parameters-dependent feasibility conditions are formulated as sufficient conditions for the existence of feasible design parameters to guarantee the state constraints, and an offline constrained optimization step is proposed to obtain the optimal design parameters prior to the implementation of the proposed control. It is proved that the proposed control can guarantee the semiglobal uniform ultimate boundedness of all signals in closed-loop system, all states are ensured to remain in the predefined constrained state space, and tracking error converges to an adjustable neighborhood of the origin by choosing appropriate design parameters. Simulations are performed to validate the proposed control.
AbstractList In this paper, we deal with the problem of tracking control for a class of uncertain nonlinear systems in strict-feedback form subject to completely unknown system nonlinearities, hard constraints on full states, and unknown time-varying bounded disturbances. Integral barrier Lyapunov functionals are constructed to handle the unknown affine control gains ([Formula Omitted]) with state constraints simultaneously. This removes the need on the knowledge of control gains for control design and avoids the conservative step of transforming original state constraints into new bounds on tracking errors. Neural networks (NNs) are used to approximate the unknown continuous packaged functions. To enhance the robustness, adapting parameters are developed to compensate the unknown bounds on NNs approximations and external disturbances. Design parameters-dependent feasibility conditions are formulated as sufficient conditions for the existence of feasible design parameters to guarantee the state constraints, and an offline constrained optimization step is proposed to obtain the optimal design parameters prior to the implementation of the proposed control. It is proved that the proposed control can guarantee the semiglobal uniform ultimate boundedness of all signals in closed-loop system, all states are ensured to remain in the predefined constrained state space, and tracking error converges to an adjustable neighborhood of the origin by choosing appropriate design parameters. Simulations are performed to validate the proposed control.
In this paper, we deal with the problem of tracking control for a class of uncertain nonlinear systems in strictfeedback form subject to completely unknown system nonlinearities, hard constraints on full states, and unknown time-varying bounded disturbances. Integral barrier Lyapunov functionals are constructed to handle the unknown affine control gains (g(·)) with state constraints simultaneously. This removes the need on the knowledge of control gains for control design and avoids the conservative step of transforming original state constraints into new bounds on tracking errors. Neural networks (NNs) are used to approximate the unknown continuous packaged functions. To enhance the robustness, adapting parameters are developed to compensate the unknown bounds on NNs approximations and external disturbances. Design parameters-dependent feasibility conditions are formulated as sufficient conditions for the existence of feasible design parameters to guarantee the state constraints, and an offline constrained optimization step is proposed to obtain the optimal design parameters prior to the implementation of the proposed control. It is proved that the proposed control can guarantee the semiglobal uniform ultimate boundedness of all signals in closed-loop system, all states are ensured to remain in the predefined constrained state space, and tracking error converges to an adjustable neighborhood of the origin by choosing appropriate design parameters. Simulations are performed to validate the proposed control.
Author Shuzhi Sam Ge
Keng Peng Tee
Zhong-Liang Tang
Wei He
Author_xml – sequence: 1
  givenname: Zhong-Liang
  surname: Tang
  fullname: Tang, Zhong-Liang
– sequence: 2
  givenname: Shuzhi Sam
  surname: Ge
  fullname: Ge, Shuzhi Sam
– sequence: 3
  givenname: Keng Peng
  surname: Tee
  fullname: Tee, Keng Peng
– sequence: 4
  givenname: Wei
  surname: He
  fullname: He, Wei
BookMark eNp9kEtPwzAQhC1UJErpD0BcLHFu8SOJk2MV8ZJKQbQVx8hONuCS2sV2kPrvSdSKAwdOO4eZ2d3vHA2MNYDQJSVTSkl2s1o-5VNGaDxlMUmzhJ2gIaNJOmGMs8GvpskZGnu_IYRQliacJEPkX61qfcCzSu6C_ga8gNbJBq-cLD-1ece5NcHZBtfWYYnzRnqPbY1fwIXWKajw2pSdltrghTWNNiAdXu59gK3Hbzp84GWQAfoeH1xnC_4Cnday8TA-zhFa392u8ofJ_Pn-MZ_NJyXLeJjUVSzKOKUCVAU04rysMwJ1pFhcSVnFNeEqEpzJSGRKEaEIyCzNFOOKRiwt-QhdH3p3zn614EOxsa0z3cqCplHHg_OYdS5xcJXOeu-gLkrdXaz7v6VuCkqKHnLRQy56yMURcpekf5I7p7fS7f_NXB0yGgB-_YILngjBfwD98or3
CODEN ITSMFE
CitedBy_id crossref_primary_10_3390_electronics11081209
crossref_primary_10_1109_TNNLS_2019_2944690
crossref_primary_10_1080_00207721_2024_2440780
crossref_primary_10_1109_TSMC_2019_2961927
crossref_primary_10_1007_s12555_021_0172_3
crossref_primary_10_1016_j_automatica_2020_109102
crossref_primary_10_1080_00207721_2025_2482004
crossref_primary_10_1016_j_jfranklin_2022_08_049
crossref_primary_10_1109_ACCESS_2018_2876762
crossref_primary_10_1109_TSMC_2023_3344292
crossref_primary_10_1016_j_isatra_2019_11_004
crossref_primary_10_1109_TFUZZ_2017_2686378
crossref_primary_10_1007_s12559_024_10388_9
crossref_primary_10_1109_TFUZZ_2023_3325450
crossref_primary_10_1016_j_isatra_2019_03_003
crossref_primary_10_1109_TCYB_2021_3100764
crossref_primary_10_1109_TASE_2023_3280188
crossref_primary_10_1016_j_ins_2025_121976
crossref_primary_10_1016_j_jfranklin_2018_10_011
crossref_primary_10_1109_TSMC_2024_3357539
crossref_primary_10_1109_TSMC_2017_2748227
crossref_primary_10_1038_s41598_025_86783_5
crossref_primary_10_1016_j_automatica_2018_10_030
crossref_primary_10_1002_acs_3532
crossref_primary_10_1007_s00521_021_06293_z
crossref_primary_10_1155_2017_2192393
crossref_primary_10_1016_j_jfranklin_2019_04_008
crossref_primary_10_1109_ACCESS_2019_2926280
crossref_primary_10_1007_s11071_024_10636_5
crossref_primary_10_1016_j_ins_2023_119090
crossref_primary_10_59277_PRA_SER_A_25_3_07
crossref_primary_10_1016_j_oceaneng_2020_108401
crossref_primary_10_1016_j_isatra_2024_03_036
crossref_primary_10_1016_j_ejcon_2024_101080
crossref_primary_10_1016_j_neucom_2024_128034
crossref_primary_10_1002_rnc_6464
crossref_primary_10_1002_rnc_5372
crossref_primary_10_1109_TCYB_2020_3023162
crossref_primary_10_1109_TSMC_2017_2723017
crossref_primary_10_1109_TITS_2021_3066447
crossref_primary_10_1002_rnc_6803
crossref_primary_10_1007_s40815_022_01456_z
crossref_primary_10_1007_s40435_023_01255_w
crossref_primary_10_1002_acs_3782
crossref_primary_10_1016_j_ast_2022_108006
crossref_primary_10_1109_TSMC_2024_3375078
crossref_primary_10_1002_asjc_2181
crossref_primary_10_1016_j_ast_2024_108968
crossref_primary_10_1109_TCYB_2018_2856747
crossref_primary_10_1049_iet_cta_2019_0283
crossref_primary_10_1016_j_jfranklin_2022_03_004
crossref_primary_10_1016_j_jfranklin_2023_05_010
crossref_primary_10_1109_TITS_2024_3429358
crossref_primary_10_1016_j_ins_2024_120224
crossref_primary_10_1002_rnc_6378
crossref_primary_10_1007_s40815_023_01527_9
crossref_primary_10_1109_ACCESS_2020_3010027
crossref_primary_10_1007_s40815_022_01384_y
crossref_primary_10_1002_rnc_6118
crossref_primary_10_1109_TFUZZ_2017_2765627
crossref_primary_10_1109_TSMC_2021_3099808
crossref_primary_10_1016_j_ifacol_2024_07_260
crossref_primary_10_1002_rnc_7458
crossref_primary_10_1002_rnc_4069
crossref_primary_10_1002_acs_3325
crossref_primary_10_3390_act11040102
crossref_primary_10_1109_TSMC_2024_3489587
crossref_primary_10_1109_TSMC_2024_3387435
crossref_primary_10_1016_j_isatra_2023_06_034
crossref_primary_10_1109_TFUZZ_2020_3028645
crossref_primary_10_1002_rnc_4926
crossref_primary_10_1049_iet_cta_2019_0652
crossref_primary_10_1109_ACCESS_2019_2956188
crossref_primary_10_1109_LCSYS_2019_2919814
crossref_primary_10_1109_TIM_2024_3370753
crossref_primary_10_1109_TNNLS_2021_3123946
crossref_primary_10_1049_iet_cta_2019_0769
crossref_primary_10_1109_TSMC_2023_3280569
crossref_primary_10_1109_TFUZZ_2024_3406017
crossref_primary_10_1109_TCYB_2025_3535867
crossref_primary_10_1109_TMECH_2022_3182154
crossref_primary_10_1007_s12555_018_0745_y
crossref_primary_10_1109_TCYB_2021_3135893
crossref_primary_10_1109_TFUZZ_2022_3164536
crossref_primary_10_1109_TSMC_2022_3191789
crossref_primary_10_1007_s12555_020_0423_8
crossref_primary_10_1109_TNNLS_2022_3164948
crossref_primary_10_1080_00207179_2018_1558285
crossref_primary_10_1080_00207721_2024_2392841
crossref_primary_10_1109_ACCESS_2019_2945501
crossref_primary_10_1080_00207179_2023_2214248
crossref_primary_10_1109_TFUZZ_2022_3155297
crossref_primary_10_1016_j_neunet_2020_01_016
crossref_primary_10_1007_s11432_018_9501_9
crossref_primary_10_1016_j_jprocont_2023_02_002
crossref_primary_10_3934_math_2024019
crossref_primary_10_1109_TSMC_2020_2994808
crossref_primary_10_1016_j_jfranklin_2022_07_021
crossref_primary_10_1109_TII_2020_3038939
crossref_primary_10_1002_rnc_3967
crossref_primary_10_1049_iet_cta_2017_0556
crossref_primary_10_1007_s11071_021_06633_7
crossref_primary_10_1109_ACCESS_2017_2713419
crossref_primary_10_1016_j_ins_2020_03_055
crossref_primary_10_1016_j_isatra_2025_01_045
crossref_primary_10_1016_j_ast_2022_107744
crossref_primary_10_1016_j_isatra_2020_01_021
crossref_primary_10_1109_TVT_2022_3142144
crossref_primary_10_1016_j_jfranklin_2022_07_011
crossref_primary_10_1002_acs_2939
crossref_primary_10_1002_rnc_5776
crossref_primary_10_1109_TASE_2024_3374242
crossref_primary_10_1109_TCYB_2020_3036646
crossref_primary_10_1109_TCYB_2020_2985707
crossref_primary_10_1109_TNNLS_2020_2967150
crossref_primary_10_1109_TAC_2018_2845707
crossref_primary_10_1016_j_amc_2024_128979
crossref_primary_10_1016_j_isatra_2023_07_040
crossref_primary_10_1016_j_amc_2019_124913
crossref_primary_10_1109_TSMC_2019_2894171
crossref_primary_10_1155_2017_6893521
crossref_primary_10_1109_TSMC_2018_2854770
crossref_primary_10_1109_TFUZZ_2020_2965908
crossref_primary_10_1080_00207179_2019_1626024
crossref_primary_10_1016_j_ins_2023_03_010
crossref_primary_10_1016_j_neucom_2021_11_090
crossref_primary_10_1016_j_neucom_2023_126504
crossref_primary_10_1002_acs_3010
crossref_primary_10_1007_s40436_019_00275_0
crossref_primary_10_1109_TSMC_2021_3094975
crossref_primary_10_1016_j_automatica_2021_109595
crossref_primary_10_1016_j_jfranklin_2017_11_036
crossref_primary_10_1109_TFUZZ_2019_2919490
crossref_primary_10_1016_j_jfranklin_2024_107190
crossref_primary_10_1109_TCYB_2021_3069865
crossref_primary_10_1016_j_apm_2024_06_024
crossref_primary_10_1016_j_jfranklin_2022_10_004
crossref_primary_10_1109_TFUZZ_2020_2979668
crossref_primary_10_1002_rnc_4107
crossref_primary_10_1080_00207179_2023_2251608
crossref_primary_10_1007_s11071_024_09692_8
crossref_primary_10_1016_j_ifacol_2020_06_053
crossref_primary_10_1109_ACCESS_2019_2916798
crossref_primary_10_1109_ACCESS_2019_2912630
crossref_primary_10_1109_TNNLS_2022_3171518
crossref_primary_10_1109_TNNLS_2022_3201695
crossref_primary_10_1007_s11071_022_07513_4
crossref_primary_10_1109_TFUZZ_2023_3342737
crossref_primary_10_1016_j_jfranklin_2021_12_004
crossref_primary_10_1109_TCYB_2019_2926298
crossref_primary_10_1016_j_cja_2023_12_016
crossref_primary_10_1016_j_oceaneng_2022_112288
crossref_primary_10_1109_TIE_2017_2784347
crossref_primary_10_1109_TFUZZ_2022_3176681
crossref_primary_10_1109_ACCESS_2021_3118063
crossref_primary_10_1109_TVT_2023_3337331
crossref_primary_10_1007_s11071_020_05921_y
crossref_primary_10_1016_j_ifacol_2018_07_322
crossref_primary_10_1109_TNNLS_2023_3238819
crossref_primary_10_1002_rnc_7050
crossref_primary_10_1002_rnc_6082
crossref_primary_10_1109_TAC_2017_2753466
crossref_primary_10_1109_TNNLS_2020_3026078
crossref_primary_10_1109_TFUZZ_2023_3279505
crossref_primary_10_1109_TFUZZ_2018_2798577
crossref_primary_10_1109_TCYB_2019_2906118
crossref_primary_10_1016_j_amc_2022_127176
crossref_primary_10_1016_j_nahs_2022_101299
crossref_primary_10_1016_j_isatra_2022_02_013
crossref_primary_10_1109_TSMC_2019_2903203
crossref_primary_10_1016_j_ymssp_2018_03_042
crossref_primary_10_1016_j_oceaneng_2018_10_009
crossref_primary_10_1080_00207721_2019_1567869
crossref_primary_10_3390_math13060986
crossref_primary_10_1109_TCYB_2021_3070137
crossref_primary_10_1109_TSMC_2016_2611579
crossref_primary_10_1016_j_ifacol_2018_05_002
crossref_primary_10_1080_00207721_2019_1567863
crossref_primary_10_1109_TSMC_2024_3374873
crossref_primary_10_1016_j_automatica_2019_108608
crossref_primary_10_1049_iet_cta_2017_1348
crossref_primary_10_1016_j_ast_2021_107264
crossref_primary_10_1016_j_ast_2024_109549
crossref_primary_10_1007_s40815_023_01576_0
crossref_primary_10_1007_s11071_024_09876_2
crossref_primary_10_1016_j_neucom_2021_02_038
crossref_primary_10_1016_j_jfranklin_2021_08_013
crossref_primary_10_1049_cth2_12528
crossref_primary_10_1109_TSMC_2016_2608969
crossref_primary_10_1016_j_jfranklin_2023_01_006
crossref_primary_10_1109_TSMC_2023_3257170
crossref_primary_10_1016_j_neucom_2018_12_011
crossref_primary_10_1016_j_neucom_2020_09_026
crossref_primary_10_1016_j_jfranklin_2022_05_045
crossref_primary_10_1016_j_jfranklin_2020_07_037
crossref_primary_10_1002_rnc_6143
crossref_primary_10_1016_j_ins_2024_121506
crossref_primary_10_59277_PRA_SER_A_24_3_10
crossref_primary_10_1016_j_ifacol_2022_04_086
crossref_primary_10_1109_TSMC_2017_2749124
crossref_primary_10_1016_j_amc_2018_05_040
crossref_primary_10_1109_TCYB_2022_3217404
crossref_primary_10_1109_TFUZZ_2019_2920808
crossref_primary_10_1109_TSMC_2017_2784451
crossref_primary_10_1109_TCYB_2017_2758385
crossref_primary_10_1016_j_automatica_2024_111728
crossref_primary_10_3390_sym15101919
crossref_primary_10_1109_TSMC_2022_3230429
crossref_primary_10_1002_rnc_7821
crossref_primary_10_1109_TMECH_2023_3235054
crossref_primary_10_1002_rnc_6971
crossref_primary_10_1049_iet_cta_2017_1120
crossref_primary_10_1109_TFUZZ_2020_3033376
crossref_primary_10_1002_rnc_5747
crossref_primary_10_1109_TCYB_2018_2838573
crossref_primary_10_1177_09596518241276229
crossref_primary_10_1109_TCYB_2018_2864166
crossref_primary_10_1002_rnc_7921
crossref_primary_10_1016_j_jfranklin_2018_08_024
crossref_primary_10_1016_j_ijmecsci_2021_106942
crossref_primary_10_1109_TAC_2024_3372888
crossref_primary_10_3390_jmse9080866
crossref_primary_10_1631_FITEE_2300408
crossref_primary_10_1109_TAC_2024_3354559
crossref_primary_10_1002_asjc_3105
crossref_primary_10_1016_j_ifacol_2018_11_487
crossref_primary_10_1109_TSMC_2019_2931314
Cites_doi 10.1142/3774
10.1109/TNN.2003.813823
10.1016/j.automatica.2005.03.030
10.3182/20110828-6-IT-1002.02532
10.3182/20140824-6-ZA-1003.01265
10.1109/CDC.2005.1583507
10.1109/72.392252
10.1016/j.automatica.2008.11.017
10.1109/TCST.2008.2000981
10.1016/j.automatica.2009.02.021
10.1109/TNN.2003.811712
10.1080/00207179.2011.631192
10.1109/TCYB.2013.2262935
10.1109/TSMCB.2011.2108283
10.3182/20130902-3-CN-3020.00122
10.1109/TNNLS.2015.2420661
10.1016/j.automatica.2007.11.025
10.1109/TCYB.2015.2411285
10.1109/TAC.2010.2061090
10.1109/TNN.2010.2047115
10.1109/TNNLS.2014.2316289
10.1109/TSMCB.2003.817055
10.1109/TCST.2014.2362718
10.1080/00207179.2013.828854
10.1109/TIE.2015.2400427
10.1109/TFUZZ.2015.2396075
10.1016/j.automatica.2011.08.044
10.1016/j.fss.2005.06.011
10.1109/FUZZY.1992.258721
10.1109/TAC.2003.815049
10.1109/TCYB.2014.2351399
10.1109/TIE.2013.2288200
10.1109/TFUZZ.2010.2050326
10.1109/9.661611
10.1007/978-1-4471-0967-9
10.1109/TSMC.2015.2426131
10.1016/j.automatica.2006.01.004
10.1137/S0363012992232555
10.1109/TSMC.2015.2420037
10.1109/TFUZZ.2014.2348017
10.1109/TCYB.2015.2452217
10.1109/TSMCB.2011.2159264
10.1109/TNNLS.2015.2471262
10.1109/CDC.2012.6426120
10.1109/TSMCB.2012.2226577
10.1109/TFUZZ.2014.2327987
10.1016/j.automatica.2015.10.034
10.1109/3468.895898
10.1109/TSMCA.2004.824870
10.1109/TAC.2006.886518
10.1016/S0005-1098(01)00254-0
10.1109/TCYB.2014.2329495
10.1109/TFUZZ.2009.2021648
10.1109/TNNLS.2014.2330336
10.1016/S0005-1098(99)00214-9
10.1016/S0005-1098(00)00116-3
10.1109/CDC.2012.6426196
10.23919/ACC.1991.4791778
10.1007/978-1-4757-6577-9
10.1109/TNNLS.2014.2302477
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
7TB
8FD
FR3
H8D
JQ2
L7M
L~C
L~D
DOI 10.1109/TSMC.2015.2508962
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Aerospace Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Aerospace Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Aerospace Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2168-2232
EndPage 1629
ExternalDocumentID 10_1109_TSMC_2015_2508962
7373677
Genre orig-research
GrantInformation_xml – fundername: National Basic Research Program of China (973 Program)
  grantid: 2014CB744206
– fundername: Fundamental Research Funds for the China Central Universities of University of Electronic Science and Technology of China
  grantid: ZYGX2013Z003
  funderid: 10.13039/501100005408
GroupedDBID 0R~
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFS
ACIWK
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
HZ~
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
RIG
7SC
7SP
7TB
8FD
FR3
H8D
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c293t-fd57c5817ebde1433cf90ef4b25daad5f03b4732a479bb07b0ea989b23b1428c3
IEDL.DBID RIE
ISSN 2168-2216
IngestDate Sun Jun 29 15:30:34 EDT 2025
Tue Jul 01 02:29:03 EDT 2025
Thu Apr 24 23:04:09 EDT 2025
Tue Aug 26 16:43:01 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c293t-fd57c5817ebde1433cf90ef4b25daad5f03b4732a479bb07b0ea989b23b1428c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 1842213352
PQPubID 75739
PageCount 12
ParticipantIDs crossref_citationtrail_10_1109_TSMC_2015_2508962
proquest_journals_1842213352
crossref_primary_10_1109_TSMC_2015_2508962
ieee_primary_7373677
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-Dec.
2016-12-00
20161201
PublicationDateYYYYMMDD 2016-12-01
PublicationDate_xml – month: 12
  year: 2016
  text: 2016-Dec.
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on systems, man, and cybernetics. Systems
PublicationTitleAbbrev TSMC
PublicationYear 2016
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref56
ref12
ref15
ref58
ref53
ref52
ref55
ref54
ref10
ref17
ref16
ref19
ref51
ref50
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
ren (ref11) 2010; 21
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
tong (ref20) 2005; 156
ref35
ref34
ref37
ref36
ref31
sanner (ref57) 1991
ref30
ref33
ref32
ref2
liu (ref59) 2015; 26
ref1
ref39
ref38
ref24
ref23
ref26
krsti? (ref13) 1995
ref25
ref22
ref21
ref28
ref27
ref29
ref60
ref62
ref61
tee (ref18) 2010
tee (ref14) 2009; 17
References_xml – ident: ref38
  doi: 10.1142/3774
– ident: ref54
  doi: 10.1109/TNN.2003.813823
– ident: ref5
  doi: 10.1016/j.automatica.2005.03.030
– ident: ref1
  doi: 10.3182/20110828-6-IT-1002.02532
– ident: ref46
  doi: 10.3182/20140824-6-ZA-1003.01265
– ident: ref48
  doi: 10.1109/CDC.2005.1583507
– ident: ref26
  doi: 10.1109/72.392252
– ident: ref7
  doi: 10.1016/j.automatica.2008.11.017
– volume: 17
  start-page: 340
  year: 2009
  ident: ref14
  article-title: Adaptive control of electrostatic microactuators with bidirectional drive
  publication-title: IEEE Trans Control Syst Technol
  doi: 10.1109/TCST.2008.2000981
– ident: ref44
  doi: 10.1016/j.automatica.2009.02.021
– ident: ref62
  doi: 10.1109/TNN.2003.811712
– ident: ref8
  doi: 10.1080/00207179.2011.631192
– ident: ref32
  doi: 10.1109/TCYB.2013.2262935
– ident: ref36
  doi: 10.1109/TSMCB.2011.2108283
– ident: ref9
  doi: 10.3182/20130902-3-CN-3020.00122
– volume: 26
  start-page: 1789
  year: 2015
  ident: ref59
  article-title: Adaptive neural output feedback control of output-constrained nonlinear systems with unknown output nonlinearity
  publication-title: IEEE Trans Neural Netw Learn Syst
  doi: 10.1109/TNNLS.2015.2420661
– ident: ref52
  doi: 10.1016/j.automatica.2007.11.025
– ident: ref19
  doi: 10.1109/TCYB.2015.2411285
– ident: ref2
  doi: 10.1109/TAC.2010.2061090
– volume: 21
  start-page: 1339
  year: 2010
  ident: ref11
  article-title: Adaptive neural control for output feedback nonlinear systems using a barrier Lyapunov function
  publication-title: IEEE Trans Neural Netw
  doi: 10.1109/TNN.2010.2047115
– ident: ref40
  doi: 10.1109/TNNLS.2014.2316289
– ident: ref42
  doi: 10.1109/TSMCB.2003.817055
– ident: ref17
  doi: 10.1109/TCST.2014.2362718
– ident: ref12
  doi: 10.1080/00207179.2013.828854
– ident: ref16
  doi: 10.1109/TIE.2015.2400427
– ident: ref43
  doi: 10.1109/TFUZZ.2015.2396075
– ident: ref49
  doi: 10.1016/j.automatica.2011.08.044
– volume: 156
  start-page: 285
  year: 2005
  ident: ref20
  article-title: Fuzzy adaptive output feedback control for MIMO nonlinear systems
  publication-title: Fuzzy Sets Syst
  doi: 10.1016/j.fss.2005.06.011
– ident: ref25
  doi: 10.1109/FUZZY.1992.258721
– ident: ref60
  doi: 10.1109/TAC.2003.815049
– ident: ref41
  doi: 10.1109/TCYB.2014.2351399
– ident: ref15
  doi: 10.1109/TIE.2013.2288200
– ident: ref22
  doi: 10.1109/TFUZZ.2010.2050326
– ident: ref4
  doi: 10.1109/9.661611
– ident: ref56
  doi: 10.1007/978-1-4471-0967-9
– ident: ref33
  doi: 10.1109/TSMC.2015.2426131
– ident: ref55
  doi: 10.1016/j.automatica.2006.01.004
– ident: ref58
  doi: 10.1137/S0363012992232555
– ident: ref39
  doi: 10.1109/TSMC.2015.2420037
– ident: ref34
  doi: 10.1109/TFUZZ.2014.2348017
– ident: ref35
  doi: 10.1109/TCYB.2015.2452217
– ident: ref30
  doi: 10.1109/TSMCB.2011.2159264
– ident: ref24
  doi: 10.1109/TNNLS.2015.2471262
– ident: ref47
  doi: 10.1109/CDC.2012.6426120
– year: 1995
  ident: ref13
  publication-title: Nonlinear and Adaptive Control Design
– ident: ref51
  doi: 10.1109/TSMCB.2012.2226577
– ident: ref37
  doi: 10.1109/TFUZZ.2014.2327987
– ident: ref10
  doi: 10.1016/j.automatica.2015.10.034
– ident: ref28
  doi: 10.1109/3468.895898
– start-page: 5181
  year: 2010
  ident: ref18
  article-title: Adaptive admittance control of a robot manipulator under task space constraint
  publication-title: Proc IEEE Int Conf Robot Autom
– ident: ref29
  doi: 10.1109/TSMCA.2004.824870
– ident: ref6
  doi: 10.1109/TAC.2006.886518
– ident: ref53
  doi: 10.1016/S0005-1098(01)00254-0
– ident: ref23
  doi: 10.1109/TCYB.2014.2329495
– ident: ref21
  doi: 10.1109/TFUZZ.2009.2021648
– ident: ref31
  doi: 10.1109/TNNLS.2014.2330336
– ident: ref3
  doi: 10.1016/S0005-1098(99)00214-9
– ident: ref61
  doi: 10.1016/S0005-1098(00)00116-3
– ident: ref50
  doi: 10.1109/CDC.2012.6426196
– start-page: 2153
  year: 1991
  ident: ref57
  article-title: gaussian networks for direct adaptive control
  publication-title: 1991 American Control Conference ACC
  doi: 10.23919/ACC.1991.4791778
– ident: ref27
  doi: 10.1007/978-1-4757-6577-9
– ident: ref45
  doi: 10.1109/TNNLS.2014.2302477
SSID ssj0001286306
Score 2.4848366
Snippet In this paper, we deal with the problem of tracking control for a class of uncertain nonlinear systems in strictfeedback form subject to completely unknown...
In this paper, we deal with the problem of tracking control for a class of uncertain nonlinear systems in strict-feedback form subject to completely unknown...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1618
SubjectTerms Adaptive systems
Approximation methods
Artificial neural networks
Backstepping design
constrained states
Control design
Feedback
neural network (NN)
Neural networks
Nonlinear systems
Robust control
Tracking control
Trajectory
Uncertainty
unknown disturbance
Title Robust Adaptive Neural Tracking Control for a Class of Perturbed Uncertain Nonlinear Systems With State Constraints
URI https://ieeexplore.ieee.org/document/7373677
https://www.proquest.com/docview/1842213352
Volume 46
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEB6sJz34FuuLPXgS026ySTY5SlGKUBG12FvYJ4rSlia9-Oud3aTFF-Il5LCzLHyzO7OzM98AnMkwEyoKRcCltkFsGQ1yalTAVcQFt8bGzNUOD27T_jC-GSWjFbhY1sIYY3zymem4X_-Wrydq7kJlXc44SzlvQQvVrK7V-hRPyVLmW2lGYYrg47d5xAxp3n18GPRcHlfSQZOf5Wn0xQz5vio_DmNvYa43YbBYW51Y8tqZV7Kj3r_RNv538Vuw0bia5LLWjW1YMeMdWP9EQLgL5f1EzsuKXGoxdececVwdKIMWTLkYOunVmewEXVsiiO-gSSaW3JkZmippNBmi0vikAnJbk26IGWlY0MnTS_VMvDfr5il9N4qq3IPh9dVjrx80bRgChb5AFVidcJVkITdSG3SvmLIIp41llGghdGIpkzFnkYh5LiXlkhqRZ7mMmAswZYrtw-p4MjYHQLhSiinN0SZmcSgFHifaUGYTalMu0qQNdIFKoRqOcre4t8LfVWheOCALB2TRANmG86XItCbo-GvwrgNmObDBpA3HC-iLZguXBV59UYlcSdrh71JHsIZzp3VuyzGsVrO5OUEPpZKnXjU_AA6G45o
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9tAEB4BPQCHtjwq0tKyB04Ih7XX67WPKAKlLYkQJIKbtU9RtUpQ7Fz49cyunYiXUC-WD7v2St94v_HszDcAhyrOpU5iGQllXJQ6RqOCWh0JnQgpnHUp87XDg2HWH6e_bvntChwva2GstSH5zHb9bTjLN1M996GyE8EEy4RYhQ_I-ylvqrWeRFTyjIVmmkmcIfx4bY8xY1qcjK4HPZ_JxbtI-nmRJc-IKHRWebUdB445_wSDxeqa1JK_3XmtuvrhhXDj_y7_M3xsnU1y2ljHFqzYyTZsPpEg3IHqaqrmVU1Ojbz3Ox_xah04BzlM-yg66TW57ASdWyJJ6KFJpo5c2hmSlbKGjNFsQloBGTayG3JGWh10cvOnviPBn_XPqUI_irrahfH52ajXj9pGDJFGb6COnOFC8zwWVhmLDhbTDgF1qUq4kdJwR5lKBUtkKgqlqFDUyiIvVMJ8iCnX7AusTaYTuwdEaK2ZNgJZMU9jJXFDMZYyx6nLhMx4B-gClVK3KuV-cf_K8LdCi9IDWXogyxbIDhwtp9w3Eh3vDd7xwCwHtph0YH8Bfdl-xFWJP79oRL4o7evbsw5gvT8aXJQXP4e_v8EGvidrMl32Ya2eze139Fdq9SOY6SMfkubn
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Robust+Adaptive+Neural+Tracking+Control+for+a+Class+of+Perturbed+Uncertain+Nonlinear+Systems+With+State+Constraints&rft.jtitle=IEEE+transactions+on+systems%2C+man%2C+and+cybernetics.+Systems&rft.au=Zhong-Liang+Tang&rft.au=Shuzhi+Sam+Ge&rft.au=Keng+Peng+Tee&rft.au=Wei+He&rft.date=2016-12-01&rft.pub=IEEE&rft.issn=2168-2216&rft.volume=46&rft.issue=12&rft.spage=1618&rft.epage=1629&rft_id=info:doi/10.1109%2FTSMC.2015.2508962&rft.externalDocID=7373677
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2216&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2216&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2216&client=summon