Construction of an LNG Carrier Port State Control Inspection Knowledge Graph by a Dynamic Knowledge Distillation Method

The Port State Control (PSC) inspection of liquefied natural gas (LNG) carriers is crucial in maritime transportation. PSC inspection requires rapid and accurate identification of defects with limited resources, necessitating professional knowledge and efficient technical methods. Knowledge distilla...

Full description

Saved in:
Bibliographic Details
Published inJournal of marine science and engineering Vol. 13; no. 3; p. 426
Main Authors Gan, Langxiong, Yang, Qihao, Xu, Yi, Mao, Qiongyao, Liu, Chengyong
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 25.02.2025
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The Port State Control (PSC) inspection of liquefied natural gas (LNG) carriers is crucial in maritime transportation. PSC inspection requires rapid and accurate identification of defects with limited resources, necessitating professional knowledge and efficient technical methods. Knowledge distillation, as a model lightweighting approach in the field of artificial intelligence, offers the possibility of enhancing the responsiveness of LNG carrier PSC inspections. In this study, a knowledge distillation method is introduced, namely, the multilayer dynamic multi-teacher weighted knowledge distillation (MDMD) model. This model fuses multilayer soft labels from multi-teacher models by extracting intermediate feature soft labels and minimizing intermediate feature knowledge fusion. It also employs a comprehensive dynamic weight allocation scheme that combines global loss weight allocation with label weight allocation based on the inner product, enabling dynamic weight allocation across multiple teachers. The experimental results show that the MDMD model achieves a 90.6% accuracy rate in named entity recognition, which is 6.3% greater than that of the direct training method. In addition, under the same experimental conditions, the proposed model achieves a prediction speed that is approximately 64% faster than that of traditional models while reducing the number of model parameters by approximately 55%. To efficiently assist in PSC inspections, an LNG carrier PSC inspection knowledge graph is constructed on the basis of the recognition results to quickly and effectively support knowledge queries and assist PSC personnel in making decisions at inspection sites.
AbstractList The Port State Control (PSC) inspection of liquefied natural gas (LNG) carriers is crucial in maritime transportation. PSC inspection requires rapid and accurate identification of defects with limited resources, necessitating professional knowledge and efficient technical methods. Knowledge distillation, as a model lightweighting approach in the field of artificial intelligence, offers the possibility of enhancing the responsiveness of LNG carrier PSC inspections. In this study, a knowledge distillation method is introduced, namely, the multilayer dynamic multi-teacher weighted knowledge distillation (MDMD) model. This model fuses multilayer soft labels from multi-teacher models by extracting intermediate feature soft labels and minimizing intermediate feature knowledge fusion. It also employs a comprehensive dynamic weight allocation scheme that combines global loss weight allocation with label weight allocation based on the inner product, enabling dynamic weight allocation across multiple teachers. The experimental results show that the MDMD model achieves a 90.6% accuracy rate in named entity recognition, which is 6.3% greater than that of the direct training method. In addition, under the same experimental conditions, the proposed model achieves a prediction speed that is approximately 64% faster than that of traditional models while reducing the number of model parameters by approximately 55%. To efficiently assist in PSC inspections, an LNG carrier PSC inspection knowledge graph is constructed on the basis of the recognition results to quickly and effectively support knowledge queries and assist PSC personnel in making decisions at inspection sites.
Audience Academic
Author Liu, Chengyong
Yang, Qihao
Mao, Qiongyao
Gan, Langxiong
Xu, Yi
Author_xml – sequence: 1
  givenname: Langxiong
  surname: Gan
  fullname: Gan, Langxiong
– sequence: 2
  givenname: Qihao
  orcidid: 0009-0006-1422-1658
  surname: Yang
  fullname: Yang, Qihao
– sequence: 3
  givenname: Yi
  surname: Xu
  fullname: Xu, Yi
– sequence: 4
  givenname: Qiongyao
  surname: Mao
  fullname: Mao, Qiongyao
– sequence: 5
  givenname: Chengyong
  surname: Liu
  fullname: Liu, Chengyong
BookMark eNpNkVtrXCEUhaWk0DTNW3-A0NdO6v3oY5i00yHTC7R9Fo-XicMZnapDmH9fk1PCKLhl-63FxvUWXKScPADvMbqhVKFPu331mCKKGBGvwCVBw7DAFJOLs_sbcF3rDvUlicBIXILHZU61laNtMSeYAzQJbr6v4NKUEn2BP3Np8FczzcNOtpInuE714Gf-PuXHybuth6tiDg9wPEED707J7KM9e7yLtcVpMs-ab749ZPcOvA5mqv76f70Cf758_r38utj8WK2Xt5uFJYq2RbBeUkkYE9SZMRDmxtFSiZgSzgYh-WiEE9wy3s-BK2wUHgLviHTD6By9AuvZ12Wz04cS96acdDZRPzdy2WpTWrST10hQQjAO4yAV48RJp0xwNIwjV0ox270-zF6Hkv8efW16l48l9fE1xRJzxjlmnbqZqa3ppjGF3IqxfTvff6VnFmLv30o6CCQVehJ8nAW25FqLDy9jYqSfotXn0dJ_DPuYRw
Cites_doi 10.1016/j.ress.2021.107784
10.1093/tse/tdab029
10.1016/j.oceaneng.2024.119434
10.1016/j.jocs.2020.101257
10.3390/jmse10101352
10.1007/978-3-030-58545-7_34
10.1007/978-3-030-58592-1_36
10.1016/j.oceaneng.2023.114232
10.1016/j.marpol.2020.103857
10.1016/j.trd.2021.102704
10.1016/j.artmed.2022.102282
10.1080/03088839.2020.1841913
10.1109/TNNLS.2021.3070843
10.1016/j.eswa.2019.112948
10.1109/CVPR52688.2022.01165
10.1145/3447772
10.1007/s10462-023-10465-9
10.1016/j.marpol.2019.103757
10.1145/3372278.3390713
10.1016/j.oceaneng.2024.119368
10.1109/ACCESS.2022.3152828
10.1016/j.jclepro.2020.124640
10.1016/j.ocecoaman.2023.106679
10.1109/ICCWAMTIP51612.2020.9317379
10.3390/jmse12081449
10.1109/CVPR42600.2020.01294
10.18653/v1/2020.acl-demos.2
10.1016/j.ocecoaman.2023.106660
10.3390/jmse8090641
10.1016/j.neucom.2021.04.102
10.1016/j.ocecoaman.2024.107320
10.1609/aaai.v34i04.5816
10.1016/j.ress.2025.110804
10.1007/s11263-021-01453-z
ContentType Journal Article
Copyright COPYRIGHT 2025 MDPI AG
2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2025 MDPI AG
– notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7ST
7TN
8FE
8FG
ABJCF
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
COVID
DWQXO
F1W
GNUQQ
H96
HCIFZ
L.G
L6V
M7S
PATMY
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
PYCSY
SOI
DOA
DOI 10.3390/jmse13030426
DatabaseName CrossRef
Environment Abstracts
Oceanic Abstracts
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
Natural Science Collection (ProQuest)
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
Coronavirus Research Database
ProQuest Central Korea
ASFA: Aquatic Sciences and Fisheries Abstracts
ProQuest Central Student
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
SciTech Premium Collection
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Engineering Collection
Engineering Database
Environmental Science Database
ProQuest Earth, Atmospheric & Aquatic Science Database (NC LIVE)
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
Environmental Science Collection
Environment Abstracts
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
Environmental Sciences and Pollution Management
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Engineering Collection
Oceanic Abstracts
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
ProQuest Central (New)
Engineering Collection
Engineering Database
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
Coronavirus Research Database
ProQuest Technology Collection
ProQuest SciTech Collection
Environmental Science Collection
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest One Academic UKI Edition
ASFA: Aquatic Sciences and Fisheries Abstracts
Materials Science & Engineering Collection
Environmental Science Database
ProQuest One Academic
Environment Abstracts
ProQuest One Academic (New)
DatabaseTitleList CrossRef
Publicly Available Content Database


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Oceanography
EISSN 2077-1312
ExternalDocumentID oai_doaj_org_article_0632211fb789452d8d9afd3fbb59994c
A837608904
10_3390_jmse13030426
GeographicLocations China
GeographicLocations_xml – name: China
GroupedDBID 5VS
7XC
8CJ
8FE
8FG
8FH
AADQD
AAFWJ
AAYXX
ABJCF
ADBBV
AEUYN
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ATCPS
BCNDV
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
CITATION
D1J
GROUPED_DOAJ
HCIFZ
IAO
ITC
KQ8
L6V
LK5
M7R
M7S
MODMG
M~E
OK1
PATMY
PCBAR
PHGZM
PHGZT
PIMPY
PROAC
PTHSS
PYCSY
PMFND
7ST
7TN
ABUWG
AZQEC
C1K
COVID
DWQXO
F1W
GNUQQ
H96
L.G
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
SOI
PUEGO
ID FETCH-LOGICAL-c293t-fce83824463dabf24dbbc380496dcf685ba6d65c45d657591a917f5c388d7bdd3
IEDL.DBID BENPR
ISSN 2077-1312
IngestDate Wed Aug 27 01:29:09 EDT 2025
Fri Jul 25 12:02:18 EDT 2025
Tue Jun 10 20:55:00 EDT 2025
Tue Jul 01 05:34:43 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c293t-fce83824463dabf24dbbc380496dcf685ba6d65c45d657591a917f5c388d7bdd3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0009-0006-1422-1658
OpenAccessLink https://www.proquest.com/docview/3181545514?pq-origsite=%requestingapplication%
PQID 3181545514
PQPubID 2032377
ParticipantIDs doaj_primary_oai_doaj_org_article_0632211fb789452d8d9afd3fbb59994c
proquest_journals_3181545514
gale_infotracacademiconefile_A837608904
crossref_primary_10_3390_jmse13030426
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-02-25
PublicationDateYYYYMMDD 2025-02-25
PublicationDate_xml – month: 02
  year: 2025
  text: 2025-02-25
  day: 25
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Journal of marine science and engineering
PublicationYear 2025
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Demirci (ref_11) 2023; 278
(ref_6) 2020; 112
Zhang (ref_23) 2024; 313
Peng (ref_25) 2023; 56
Shu (ref_12) 2024; 256
Gou (ref_26) 2021; 129
Yang (ref_10) 2021; 213
ref_36
Chen (ref_17) 2020; 141
ref_35
Wen (ref_39) 2021; 454
ref_34
Zhang (ref_37) 2021; 44
ref_33
Peng (ref_2) 2021; 91
ref_32
ref_31
An (ref_42) 2022; 127
ref_30
Gan (ref_21) 2023; 240
Gan (ref_22) 2025; 257
Chen (ref_14) 2024; 313
ref_18
ref_38
Fan (ref_5) 2022; 49
Liu (ref_19) 2023; 242
Hogan (ref_15) 2021; 54
Yan (ref_8) 2021; 48
ref_24
Peng (ref_1) 2021; 283
ref_43
ref_20
ref_40
Tan (ref_41) 2022; 10
Xiao (ref_3) 2020; 115
ref_29
ref_28
Kara (ref_7) 2020; 234
ref_27
ref_9
Ji (ref_16) 2021; 33
ref_4
Liu (ref_13) 2022; 4
References_xml – ident: ref_28
– volume: 213
  start-page: 107784
  year: 2021
  ident: ref_10
  article-title: Using Bayesian network-based TOPSIS to aid dynamic port state control detention risk control decision
  publication-title: Reliab. Eng. Syst. Saf.
  doi: 10.1016/j.ress.2021.107784
– volume: 4
  start-page: tdab029
  year: 2022
  ident: ref_13
  article-title: A novel approach for navigational safety evaluation of inland waterway ships under uncertain environment
  publication-title: Transp. Saf. Environ.
  doi: 10.1093/tse/tdab029
– ident: ref_30
– volume: 313
  start-page: 119434
  year: 2024
  ident: ref_23
  article-title: A knowledge graph-based inspection items recommendation method for port state control inspection of LNG carriers
  publication-title: Ocean. Eng.
  doi: 10.1016/j.oceaneng.2024.119434
– volume: 48
  start-page: 101257
  year: 2021
  ident: ref_8
  article-title: An artificial intelligence model considering data imbalance for ship selection in port state control based on detention probabilities
  publication-title: J. Comput. Sci.
  doi: 10.1016/j.jocs.2020.101257
– ident: ref_20
  doi: 10.3390/jmse10101352
– ident: ref_34
– ident: ref_32
  doi: 10.1007/978-3-030-58545-7_34
– ident: ref_18
  doi: 10.1007/978-3-030-58592-1_36
– volume: 278
  start-page: 114232
  year: 2023
  ident: ref_11
  article-title: Intelligent ship inspection analytics: Ship deficiency data mining for port state control
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2023.114232
– volume: 115
  start-page: 103857
  year: 2020
  ident: ref_3
  article-title: The effectiveness of the new inspection regime for port state control: Application of the Tokyo MoU
  publication-title: Mar. Policy
  doi: 10.1016/j.marpol.2020.103857
– ident: ref_40
– volume: 91
  start-page: 102704
  year: 2021
  ident: ref_2
  article-title: A systematic literature review on port LNG bunkering station
  publication-title: Transp. Res. Part D Transp. Environ.
  doi: 10.1016/j.trd.2021.102704
– volume: 127
  start-page: 102282
  year: 2022
  ident: ref_42
  article-title: Chinese clinical named entity recognition via multi-head self-attention based BiLSTM-CRF
  publication-title: Artif. Intell. Med.
  doi: 10.1016/j.artmed.2022.102282
– volume: 49
  start-page: 261
  year: 2022
  ident: ref_5
  article-title: Effectiveness of port state control inspection using Bayesian network modelling
  publication-title: Marit. Policy Manag.
  doi: 10.1080/03088839.2020.1841913
– volume: 44
  start-page: 4388
  year: 2021
  ident: ref_37
  article-title: Self-distillation: Towards efficient and compact neural networks
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 33
  start-page: 494
  year: 2021
  ident: ref_16
  article-title: A survey on knowledge graphs: Representation, acquisition, and applications
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2021.3070843
– volume: 141
  start-page: 112948
  year: 2020
  ident: ref_17
  article-title: A review: Knowledge reasoning over knowledge graph
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2019.112948
– ident: ref_35
  doi: 10.1109/CVPR52688.2022.01165
– volume: 54
  start-page: 1
  year: 2021
  ident: ref_15
  article-title: Knowledge graphs
  publication-title: ACM Comput. Surv.
  doi: 10.1145/3447772
– ident: ref_33
– volume: 56
  start-page: 13071
  year: 2023
  ident: ref_25
  article-title: Knowledge graphs: Opportunities and challenges
  publication-title: Artif. Intell. Rev.
  doi: 10.1007/s10462-023-10465-9
– ident: ref_27
– volume: 112
  start-page: 103757
  year: 2020
  ident: ref_6
  article-title: Analysis of port state control inspection data: The Black Sea Region
  publication-title: Mar. Policy
  doi: 10.1016/j.marpol.2019.103757
– ident: ref_9
  doi: 10.1145/3372278.3390713
– volume: 313
  start-page: 119368
  year: 2024
  ident: ref_14
  article-title: Ship visual trajectory exploitation via an ensemble instance segmentation framework
  publication-title: Ocean. Eng.
  doi: 10.1016/j.oceaneng.2024.119368
– volume: 10
  start-page: 21517
  year: 2022
  ident: ref_41
  article-title: RoBERTa-LSTM: A hybrid model for sentiment analysis with transformer and recurrent neural network
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2022.3152828
– volume: 283
  start-page: 124640
  year: 2021
  ident: ref_1
  article-title: Mapping the global liquefied natural gas trade network: A perspective of maritime transportation
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2020.124640
– volume: 242
  start-page: 106679
  year: 2023
  ident: ref_19
  article-title: Knowledge graph for maritime pollution regulations based on deep learning methods
  publication-title: Ocean Coast. Manag.
  doi: 10.1016/j.ocecoaman.2023.106679
– ident: ref_43
  doi: 10.1109/ICCWAMTIP51612.2020.9317379
– ident: ref_24
  doi: 10.3390/jmse12081449
– ident: ref_31
  doi: 10.1109/CVPR42600.2020.01294
– ident: ref_36
  doi: 10.18653/v1/2020.acl-demos.2
– ident: ref_38
– volume: 240
  start-page: 106660
  year: 2023
  ident: ref_21
  article-title: Knowledge graph construction based on ship collision accident reports to improve maritime traffic safety
  publication-title: Ocean Coast. Manag.
  doi: 10.1016/j.ocecoaman.2023.106660
– ident: ref_4
  doi: 10.3390/jmse8090641
– volume: 454
  start-page: 25
  year: 2021
  ident: ref_39
  article-title: Preparing lessons: Improve knowledge distillation with better supervision
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2021.04.102
– volume: 234
  start-page: 558
  year: 2020
  ident: ref_7
  article-title: The similarity analysis of Port State Control regimes based on the performance of flag states
  publication-title: Proc. Inst. Mech. Eng. Part M J. Eng. Marit. Environ.
– volume: 256
  start-page: 107320
  year: 2024
  ident: ref_12
  article-title: Influence of sea ice on ship routes and speed along the Arctic Northeast Passage
  publication-title: Ocean Coast. Manag.
  doi: 10.1016/j.ocecoaman.2024.107320
– ident: ref_29
  doi: 10.1609/aaai.v34i04.5816
– volume: 257
  start-page: 110804
  year: 2025
  ident: ref_22
  article-title: Graph neural networks enabled accident causation prediction for maritime vessel traffic
  publication-title: Reliab. Eng. Syst. Saf.
  doi: 10.1016/j.ress.2025.110804
– volume: 129
  start-page: 1789
  year: 2021
  ident: ref_26
  article-title: Knowledge distillation: A survey
  publication-title: Int. J. Comput. Vis.
  doi: 10.1007/s11263-021-01453-z
SSID ssj0000826106
Score 2.2911992
Snippet The Port State Control (PSC) inspection of liquefied natural gas (LNG) carriers is crucial in maritime transportation. PSC inspection requires rapid and...
SourceID doaj
proquest
gale
crossref
SourceType Open Website
Aggregation Database
Index Database
StartPage 426
SubjectTerms Accident investigations
Accuracy
Artificial intelligence
Computational linguistics
Decision making
Deep learning
Distillation
Distilling
dynamic multi-teacher weight allocation
Gas detectors
Graphs
Inspection
Inspections
Knowledge acquisition
knowledge distillation
knowledge graph
Knowledge representation
Labels
Language
Language processing
Liquefied natural gas
Marine transportation
Methods
multilayer soft label fusion
Multilayers
Natural gas
Natural language interfaces
Neural networks
Performance evaluation
port state control inspection
Ports
Recognition
Ship accidents & safety
Shipping industry
Teachers
Traffic accidents & safety
Weight
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA7iSQTxieuLHBRPxW3TpOlRd9X1fVHwFjJ5HES7ogviv3em6cp6EC9e21DCTDPf97XzYGwfcleHCDETgHK1FFWeWZHHTGnEqjxWogD63nFzq0YP5eWjfJwZ9UU5Yak9cDLcEUJogSIlQqXrUhZe-9pGLyKARG5TOoq-iHkzYqqNwciaUeykTHeBuv7o6eU9ULwmzfADg9pW_b8F5BZlzpbZUkcP-XHa1gqbC80qW7xzwTZdb-k19kFDNqdtX_k4ctvw69tzPrBvNH6OU3Iob0kkH6REdH7RpIpKXH81_YjGz-l5HD655cM0l37m5pDO_nNKlOM37ZjpdfZwdno_GGXd_ITMIYhPsuiCFhrxWwlvIRalB3BCoyZQ3kWlJVjllXSl9PT7pc4tarcocYn2FXgvNth8M27CJuOyr2qoqoA4R6WnCkQVHDoG-gIZodc9djC1qHlNbTIMyguyvJm1fI-dkLm_11Bz6_YCutx0Ljd_ubzHDslZho7g5M0621US4FapmZU51pTpo-t-2WM7U3-a7my-G4xixBuRKW79x2622UJBM4GpzF3usHn0f9hFojKBvfad_ALMheWx
  priority: 102
  providerName: Directory of Open Access Journals
Title Construction of an LNG Carrier Port State Control Inspection Knowledge Graph by a Dynamic Knowledge Distillation Method
URI https://www.proquest.com/docview/3181545514
https://doaj.org/article/0632211fb789452d8d9afd3fbb59994c
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9swDCbW9DIMGNY9sKxdoMOGnYzGliXLp6FNm7Tbmg3DCvQm6DlgaJ02CTD035e05T4O7dUSDIOU-JE0yQ_gk81dHaKNGbcYrpa8yjPD85hJhViVx4oXlvIdJ3N5dFp-OxNnKeG2SmWVvU1sDbVfOMqR7-LZI7RHfP96eZURaxT9XU0UGhuwiSZYqQFs7h_Of_2-zbIgwKF_ILuKd47x_e6_i1Ugu02xwwMsakf2P2aYW7SZvoKXyU1ke51et-BZaF7Di58umCbNmH4D_4lssx__yhaRmYb9mM_YxCyJho5RkShrnUk26QrS2XHTdVbi_u99Mo3N6H3MXjPDDjp--nuLB2QDzruCOXbS0k2_hdPp4Z_JUZZ4FDKHYL7OoguKK8Rxyb2xsSi9tY4rjA2kd1EqYY30UrhSePoNU-cGY7gocIvylfWev4NBs2jCe2BiLGtbVQHxjlpQpeVVcGgT7JijZ-jVED73EtWX3bgMjWEGSV7fl_wQ9knct3toyHX7YLH8q9Od0eg9FRifRlupuhSFV7420fNorUC3tnRD-ELK0nQV10vjTOoowE-loVZ6T1HFj6rH5RB2en3qdEdX-u5EfXh6eRueF8T6S43sYgcGqNnwEV2RtR3BhprORunUjdqA_gZtq-CQ
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB6VcgAhIZ4iUMAHKk6rZtdrr_eAUEnIgzy4tFJvxk8EopuSRKryp_iNzOyjlAPcel1b1mpmPN_MeB4Ab2zqyhBtTLhFdzXnRZoYnsZEKsSqNBY8sxTvWCzl5DT_dCbO9uBXVwtDaZWdTqwVtV85ipEfoewR2iO-v7_4mdDUKHpd7UZoNGIxC7tLdNk276ZD5O9hlo0-ngwmSTtVIHEIbdskuqC4QlST3Bsbs9xb67hCS1l6F6US1kgvhcuFp0eJMjXo0USBW5QvrPccz70Ft3OOSE6V6aPxVUwH4RStEdnk1-N6_-j7-SYQSpCn8hfy1QMC_gUDNbaNHsD91ihlx40UPYS9UD2Ce59dMFXb0foxXNJoz67ZLFtFZio2X47ZwKxp6B2jlFRWm65s0KS_s2nV1HHi_lkXumNjOo_ZHTNsuKvM-Td3bXFIGudHk57HFvVw6ydweiP0fQr71aoKz4CJvixtUQREVyp4lZYXwaEGsn2OdqhXPTjsKKovmuYcGp0aory-TvkefCByX-2hltr1h9X6q25vqEZbLUNvONpClbnIvPKliZ5HawUa0bnrwVtilqaLv10bZ9r6BfxVaqGljxXlF6myn_fgoOOnbjXCRv-R3-f_X34NdyYni7meT5ezF3A3o3nDVEIvDmAfuRxeohG0ta9qyWPw5aZF_TcOdhsG
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9tAEB7RIFVVJdSnCKXtHop6shJ77fX6gBAkBNJAiqoicdvus2oFDk0iofw1fl1n_KD00N64elcra3Y838x4Zj6ADya2hQ8mRNxguJryPI40j0MkJGJVHHKeGMp3nE7F8Xn66SK7WIPbtheGyipbm1gZajezlCPvoe4R2iO-90JTFnE2HO1d_4qIQYr-tLZ0GrWKTPzqBsO3xe54iHe9kySjw6-D46hhGIgswtwyCtZLLhHhBHfahCR1xlgu0WsWzgYhM6OFE5lNM0c_KIpYY3QTMtwiXW6c43juI1jPKSrqwPrB4fTsy12GB8EVfRNRV9tzXvR7P68WnjCD4pa_cLCiC_gXKFRIN3oGG42LyvZrnXoOa758AU8_W6_LZr71S7ghos929CybBaZLdjI9YgM9Jwo8RgWqrHJk2aAuhmfjsu7qxP2TNpHHjug8ZlZMs-Gq1Fc_7L3FIdmfy7pYj51WVNev4PxBJPwaOuWs9JvAsr4oTJ57xFpqfxWG596iPTJ9jl6pk13YaSWqrutRHQpDHJK8ui_5LhyQuO_20IDt6sFs_l0136tCzy3B2DiYXBZpljjpCh0cD8Zk6FKntgsf6bIUmYHlXFvddDPgq9JALbUvqdpIFv20C9vtfarGPizUH23e-v_ye3iMaq5OxtPJG3iSEPkw9dNn29DBS_Zv0SNamneN6jH49tDa_hu8-SCY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Construction+of+an+LNG+Carrier+Port+State+Control+Inspection+Knowledge+Graph+by+a+Dynamic+Knowledge+Distillation+Method&rft.jtitle=Journal+of+marine+science+and+engineering&rft.au=Gan%2C+Langxiong&rft.au=Yang%2C+Qihao&rft.au=Xu%2C+Yi&rft.au=Mao%2C+Qiongyao&rft.date=2025-02-25&rft.pub=MDPI+AG&rft.eissn=2077-1312&rft.volume=13&rft.issue=3&rft.spage=426&rft_id=info:doi/10.3390%2Fjmse13030426&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2077-1312&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2077-1312&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2077-1312&client=summon