Highly Linear High-Power 802.11ac/ax WLAN SiGe HBT Power Amplifiers With a Compact 2nd-Harmonic-Shorted Four-Way Transformer and a Thermally Compensating Dynamic Bias Circuit

This article presents the design of a highly linear high-power silicon-germanium (SiGe) heterojunction bipolar transistor (HBT) 802.11ac/ax wireless local area network (WLAN) power amplifiers (PAs). The challenges associated with electrothermal effects on the dynamic operation of WLAN PAs are first...

Full description

Saved in:
Bibliographic Details
Published inIEEE journal of solid-state circuits Vol. 55; no. 9; pp. 2356 - 2370
Main Authors Ju, Inchan, Gong, Yunyi, Cressler, John D.
Format Journal Article
LanguageEnglish
Published New York IEEE 01.09.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This article presents the design of a highly linear high-power silicon-germanium (SiGe) heterojunction bipolar transistor (HBT) 802.11ac/ax wireless local area network (WLAN) power amplifiers (PAs). The challenges associated with electrothermal effects on the dynamic operation of WLAN PAs are first discussed. We then propose the design methods that take into account the electrothermal transient effect to improve linear output power (<inline-formula> <tex-math notation="LaTeX">P_{\mathrm {OUT}} </tex-math></inline-formula>) and dynamic error vector magnitude (DEVM). A compact four-way output transformer balun is proposed to achieve efficient power combining, and a built-in 2nd-harmonic short is demonstrated by using a novel multi-layered metallization scheme. A thermally compensating dynamic bias circuit that improves the DEVM and reduces memory effects is designed with an integrated temperature sensor. Different SiGe HBT array layouts, laterally and vertically arranged, of the output stage of the PA are also investigated. With the 802.11ac MCS9 VHT80 test signals, the DEVM of a PA with a laterally arranged output stage is lower than that of its vertical counterpart. This suggests the importance of the layout on the transistor electrothermal transient effect. The PA with the laterally arranged output stage shows a <inline-formula> <tex-math notation="LaTeX">P_{\mathrm {OUT}} </tex-math></inline-formula> of 22.5/23.6/23.2 dBm (DEVM = −35 dB) with 10.0/12.2/11.2% power-added efficiency (PAE) at 5210/5530/5855 MHz under an 802.11ac MCS9 VHT80 test signal at 50% duty cycle. Good DEVM performance was measured under the test signal with various duty cycles, indicating that the proposed PA is thermally robust. The design supports the 802.11ax MCS11 VHT80 signals with 19.4-dBm <inline-formula> <tex-math notation="LaTeX">P_{\mathrm {OUT}} </tex-math></inline-formula>, satisfying a DEVM of −40 dB.
AbstractList This article presents the design of a highly linear high-power silicon-germanium (SiGe) heterojunction bipolar transistor (HBT) 802.11ac/ax wireless local area network (WLAN) power amplifiers (PAs). The challenges associated with electrothermal effects on the dynamic operation of WLAN PAs are first discussed. We then propose the design methods that take into account the electrothermal transient effect to improve linear output power (<inline-formula> <tex-math notation="LaTeX">P_{\mathrm {OUT}} </tex-math></inline-formula>) and dynamic error vector magnitude (DEVM). A compact four-way output transformer balun is proposed to achieve efficient power combining, and a built-in 2nd-harmonic short is demonstrated by using a novel multi-layered metallization scheme. A thermally compensating dynamic bias circuit that improves the DEVM and reduces memory effects is designed with an integrated temperature sensor. Different SiGe HBT array layouts, laterally and vertically arranged, of the output stage of the PA are also investigated. With the 802.11ac MCS9 VHT80 test signals, the DEVM of a PA with a laterally arranged output stage is lower than that of its vertical counterpart. This suggests the importance of the layout on the transistor electrothermal transient effect. The PA with the laterally arranged output stage shows a <inline-formula> <tex-math notation="LaTeX">P_{\mathrm {OUT}} </tex-math></inline-formula> of 22.5/23.6/23.2 dBm (DEVM = −35 dB) with 10.0/12.2/11.2% power-added efficiency (PAE) at 5210/5530/5855 MHz under an 802.11ac MCS9 VHT80 test signal at 50% duty cycle. Good DEVM performance was measured under the test signal with various duty cycles, indicating that the proposed PA is thermally robust. The design supports the 802.11ax MCS11 VHT80 signals with 19.4-dBm <inline-formula> <tex-math notation="LaTeX">P_{\mathrm {OUT}} </tex-math></inline-formula>, satisfying a DEVM of −40 dB.
This article presents the design of a highly linear high-power silicon–germanium (SiGe) heterojunction bipolar transistor (HBT) 802.11ac/ax wireless local area network (WLAN) power amplifiers (PAs). The challenges associated with electrothermal effects on the dynamic operation of WLAN PAs are first discussed. We then propose the design methods that take into account the electrothermal transient effect to improve linear output power ([Formula Omitted]) and dynamic error vector magnitude (DEVM). A compact four-way output transformer balun is proposed to achieve efficient power combining, and a built-in 2nd-harmonic short is demonstrated by using a novel multi-layered metallization scheme. A thermally compensating dynamic bias circuit that improves the DEVM and reduces memory effects is designed with an integrated temperature sensor. Different SiGe HBT array layouts, laterally and vertically arranged, of the output stage of the PA are also investigated. With the 802.11ac MCS9 VHT80 test signals, the DEVM of a PA with a laterally arranged output stage is lower than that of its vertical counterpart. This suggests the importance of the layout on the transistor electrothermal transient effect. The PA with the laterally arranged output stage shows a [Formula Omitted] of 22.5/23.6/23.2 dBm (DEVM = −35 dB) with 10.0/12.2/11.2% power-added efficiency (PAE) at 5210/5530/5855 MHz under an 802.11ac MCS9 VHT80 test signal at 50% duty cycle. Good DEVM performance was measured under the test signal with various duty cycles, indicating that the proposed PA is thermally robust. The design supports the 802.11ax MCS11 VHT80 signals with 19.4-dBm [Formula Omitted], satisfying a DEVM of −40 dB.
Author Ju, Inchan
Cressler, John D.
Gong, Yunyi
Author_xml – sequence: 1
  givenname: Inchan
  orcidid: 0000-0002-9362-5506
  surname: Ju
  fullname: Ju, Inchan
  email: iju@qti.qualcomm.com
  organization: School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, USA
– sequence: 2
  givenname: Yunyi
  orcidid: 0000-0003-2795-4544
  surname: Gong
  fullname: Gong, Yunyi
  organization: Qualcomm Atheros Inc., San Jose, CA, USA
– sequence: 3
  givenname: John D.
  orcidid: 0000-0001-8268-5135
  surname: Cressler
  fullname: Cressler, John D.
  organization: Qualcomm Atheros Inc., San Jose, CA, USA
BookMark eNo9kd1qGzEQhUVJoU7aByi9EfRajn52V9Kls03iFtMW7OLeLROtFCt4JVdak_il-ozV4tCrYWbOOTPwXaKLEINF6COjc8aovv62XrdzTjmdc62F5PQNmrG6VoRJ8fsCzShlimhO6Tt0mfNTaatKsRn6u_SPu_0Jr3ywkPDUkZ_x2SasKC_RYK7hBW9Xi-947e8tXt5s8Hm_GA5777xNGW_9uMOA2zgcwIyYh54sIQ0xeEPWu5hG2-O7eExkCye8SRCyi2koGRD64tvsbBpgX76YEmzIMPrwiL-cAgze4BsPGbc-maMf36O3DvbZfnitV-jX3e2mXZLVj_uv7WJFDNdiJA5EU9VONQ0zjYJGKkGlA3APllEnmaFM9mVWlnVPnahd36gHKQU3jItKiiv0-Zx7SPHP0eaxeyr_h3Ky45VQjW5qLYqKnVUmxZyTdd0h-QHSqWO0m7B0E5ZuwtK9YimeT2ePt9b-12uqZSEl_gGVUInt
CODEN IJSCBC
CitedBy_id crossref_primary_10_1109_TMTT_2023_3241696
crossref_primary_10_1109_LMWC_2022_3168567
crossref_primary_10_1109_TMTT_2020_3031586
crossref_primary_10_3390_mi14122236
crossref_primary_10_1109_JSSC_2022_3149910
crossref_primary_10_1109_TCSII_2022_3180072
crossref_primary_10_1109_TED_2022_3232755
crossref_primary_10_1109_TCSII_2022_3206113
crossref_primary_10_1587_elex_19_20220157
crossref_primary_10_1109_TMTT_2021_3134664
crossref_primary_10_1109_TMTT_2023_3305055
crossref_primary_10_1109_TMTT_2023_3323045
crossref_primary_10_1587_elex_19_20220425
crossref_primary_10_1587_elex_20_20230447
crossref_primary_10_1109_JSSC_2022_3191975
crossref_primary_10_1109_TCSI_2023_3280324
crossref_primary_10_1109_TMTT_2022_3168546
crossref_primary_10_1109_ACCESS_2023_3267506
crossref_primary_10_3390_electronics11162478
crossref_primary_10_1049_ell2_12396
crossref_primary_10_1109_LMWT_2023_3296770
Cites_doi 10.1109/JSSC.2017.2704595
10.1109/TMTT.2019.2899332
10.1109/JSSC.2005.857424
10.1109/TMTT.2017.2691766
10.1109/TMTT.2007.893644
10.1109/MMM.2014.2356037
10.1109/RFIC.2015.7337720
10.1109/JSSC.2007.897170
10.1109/RFIC.2015.7337746
10.1109/TVT.2004.823477
10.1109/JSSC.2009.2039274
10.1147/JRD.2008.5388567
10.1109/JSSC.2005.852829
10.1109/ISSCC.2016.7417962
10.1109/PAWR.2014.6825745
10.1109/16.704359
10.1109/22.939917
10.1109/TED.2005.859652
10.1109/CICC.2015.7338361
10.1109/RFIC.2014.6851675
10.1109/TED.2016.2586539
10.1109/RFIC.2018.8429023
10.1109/TMTT.2013.2280186
10.1109/JSSC.2015.2399458
10.1109/TED.2016.2570601
10.1109/JSSC.2009.2015817
10.1109/TED.2006.870277
10.1109/JSSC.2014.2313561
10.1109/RFIC.2017.7969100
10.1109/TCSII.2007.914899
10.1109/CSICS.2014.6978582
10.1109/JSSC.2003.815918
10.1109/LMWC.2014.2303151
10.1109/JSSC.2012.2191334
10.1109/TED.2009.2021365
10.1109/JSSC.2004.833570
10.1109/BCTM.2017.8112906
10.1109/16.293311
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
8FD
L7M
DOI 10.1109/JSSC.2020.2993720
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE All-Society Periodicals Package (ASPP) 1998-Present
IEL
CrossRef
Electronics & Communications Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEL
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-173X
EndPage 2370
ExternalDocumentID 10_1109_JSSC_2020_2993720
9097173
Genre orig-research
GroupedDBID -~X
.DC
0R~
29I
3EH
4.4
41~
5GY
5VS
6IK
97E
AAJGR
AASAJ
ABQJQ
ABVLG
ACGFS
ACIWK
ACNCT
AENEX
AETIX
AI.
AIBXA
AKJIK
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
PZZ
RIA
RIE
RIG
RNS
TAE
TN5
UKR
VH1
XFK
AAYXX
CITATION
7SP
8FD
L7M
ID FETCH-LOGICAL-c293t-fa3645f8661c68a678307faafbe10f71c017d830c685d0f35fd68b7732c123473
IEDL.DBID RIE
ISSN 0018-9200
IngestDate Thu Oct 10 17:27:11 EDT 2024
Fri Aug 23 00:44:24 EDT 2024
Mon Jul 08 05:38:42 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c293t-fa3645f8661c68a678307faafbe10f71c017d830c685d0f35fd68b7732c123473
ORCID 0000-0001-8268-5135
0000-0002-9362-5506
0000-0003-2795-4544
PQID 2438696593
PQPubID 85482
PageCount 15
ParticipantIDs ieee_primary_9097173
proquest_journals_2438696593
crossref_primary_10_1109_JSSC_2020_2993720
PublicationCentury 2000
PublicationDate 2020-09-01
PublicationDateYYYYMMDD 2020-09-01
PublicationDate_xml – month: 09
  year: 2020
  text: 2020-09-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE journal of solid-state circuits
PublicationTitleAbbrev JSSC
PublicationYear 2020
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref15
ref11
ref16
ref18
(ref2) 2018
ref50
ye (ref45) 2015
ref46
ref48
ref47
ref42
ref41
ref44
(ref1) 2018
ref49
chee (ref7) 2017
ref8
chen (ref12) 2017
ref4
ref3
ref5
li (ref9) 2017
ref40
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref39
ref38
anderson (ref17) 2018
chowdhury (ref19) 2017
tam (ref14) 2015
ju (ref29) 2019
ref24
ref23
wu (ref10) 2018
ref25
ref20
ref22
ref21
ref28
(ref6) 2016
ref27
cripps (ref43) 2006
huang (ref26) 2015
huang (ref51) 2017
References_xml – ident: ref15
  doi: 10.1109/JSSC.2017.2704595
– ident: ref16
  doi: 10.1109/TMTT.2019.2899332
– year: 2006
  ident: ref43
  publication-title: RF Power Amplifiers for Wireless Communications
  contributor:
    fullname: cripps
– ident: ref39
  doi: 10.1109/JSSC.2005.857424
– ident: ref18
  doi: 10.1109/TMTT.2017.2691766
– start-page: 292
  year: 2017
  ident: ref7
  article-title: 17.1 a digitally assisted CMOS WiFi 802.11ac/11ax front-end module achieving 12% PA efficiency at 20 dBm output power with 160 MHz 256-QAM OFDM signal
  publication-title: IEEE Int Solid-State Circuits Conf (ISSCC) Dig Tech Papers
  contributor:
    fullname: chee
– start-page: 80
  year: 2019
  ident: ref29
  article-title: 4.4 a highly linear high-power 802.11ac/ax WLAN SiGe HBT power amplifier using a compact $2^{nd}$ -harmonic-shorting four-way transformer and integrated thermal sensors
  publication-title: IEEE Int Solid-State Circuits Conf (ISSCC) Dig Tech Papers
  contributor:
    fullname: ju
– ident: ref30
  doi: 10.1109/TMTT.2007.893644
– ident: ref13
  doi: 10.1109/MMM.2014.2356037
– start-page: 123
  year: 2015
  ident: ref14
  article-title: A dual band (2G/5G) IEEE 802.11b/g/n/AC 80 MHz bandwidth AMAM envelope feedback power amplifier with digital pre-distortion
  publication-title: Proc IEEE Radio Freq Integr Circuits Symp (RFIC)
  doi: 10.1109/RFIC.2015.7337720
  contributor:
    fullname: tam
– ident: ref24
  doi: 10.1109/JSSC.2007.897170
– start-page: 227
  year: 2015
  ident: ref26
  article-title: A highly integrated single chip 5-6 GHz front-end IC based on SiGe BiCMOS that enhances 802.11ac WLAN radio front-end designs
  publication-title: Proc IEEE Radio Freq Integr Circuits Symp (RFIC)
  doi: 10.1109/RFIC.2015.7337746
  contributor:
    fullname: huang
– ident: ref36
  doi: 10.1109/TVT.2004.823477
– ident: ref40
  doi: 10.1109/JSSC.2009.2039274
– ident: ref37
  doi: 10.1147/JRD.2008.5388567
– start-page: 1
  year: 2015
  ident: ref45
  article-title: 2.5 a 2-to-6 GHz class-AB power amplifier with 28.4% PAE in 65nm CMOS supporting 256 QAM
  publication-title: IEEE Int Solid-State Circuits Conf (ISSCC) Dig Tech Papers
  contributor:
    fullname: ye
– year: 2018
  ident: ref1
  publication-title: 802 11ac The Fifth Generation of Wi-Fi
– ident: ref38
  doi: 10.1109/JSSC.2005.852829
– ident: ref11
  doi: 10.1109/ISSCC.2016.7417962
– ident: ref5
  doi: 10.1109/PAWR.2014.6825745
– start-page: 6403
  year: 2018
  ident: ref17
  article-title: An asymmetrical parallel-combined cascode CMOS WiFi 5 GHz 802.11ac RF power amplifier
  publication-title: Proc IEEE Radio Freq Integr Circuits Symp (RFIC)
  contributor:
    fullname: anderson
– ident: ref41
  doi: 10.1109/16.704359
– start-page: 300
  year: 2018
  ident: ref10
  article-title: A 28nm CMOS wireless connectivity combo IC with a reconfigurable $2\times2$ MIMO WiFi supporting $80+80$ MHz 256-QAM, and BT 5.0
  publication-title: Proc IEEE Radio Freq Integr Circuits Symp (RFIC)
  contributor:
    fullname: wu
– ident: ref49
  doi: 10.1109/22.939917
– ident: ref3
  doi: 10.1109/TED.2005.859652
– ident: ref8
  doi: 10.1109/CICC.2015.7338361
– ident: ref31
  doi: 10.1109/RFIC.2014.6851675
– ident: ref35
  doi: 10.1109/TED.2016.2586539
– start-page: 126
  year: 2017
  ident: ref12
  article-title: 7.1 an 802.11ac dual-band reconfigurable transceiver supporting up to four VHT80 spatial streams with 116 fsrms-jitter frequency synthesizer and integrated LNA/PA delivering 256 QAM 19 dBm per stream achieving 1.733 Gb/s PHY rate
  publication-title: Proc IEEE Int Solid-State Circuits Conf (ISSCC)
  contributor:
    fullname: chen
– ident: ref28
  doi: 10.1109/RFIC.2018.8429023
– ident: ref46
  doi: 10.1109/TMTT.2013.2280186
– ident: ref22
  doi: 10.1109/JSSC.2015.2399458
– start-page: 200
  year: 2017
  ident: ref9
  article-title: A $2\times2\,\,802.11$ ac WiFi transceiver supporting per channel 160 MHz operation in 28 nm CMOS
  publication-title: Proc IEEE Radio Freq Integr Circuits Symp (RFIC)
  contributor:
    fullname: li
– ident: ref34
  doi: 10.1109/TED.2016.2570601
– ident: ref25
  doi: 10.1109/JSSC.2009.2015817
– start-page: 34
  year: 2017
  ident: ref19
  article-title: 2.2 a fully integrated reconfigurable wideband envelope-tracking SoC for high-bandwidth WLAN applications in a 28 nm CMOS technology
  publication-title: IEEE Int Solid-State Circuits Conf (ISSCC) Dig Tech Papers
  contributor:
    fullname: chowdhury
– ident: ref48
  doi: 10.1109/TED.2006.870277
– ident: ref21
  doi: 10.1109/JSSC.2014.2313561
– ident: ref47
  doi: 10.1109/RFIC.2017.7969100
– year: 2016
  ident: ref6
  publication-title: TQP5525 Datasheet
– ident: ref42
  doi: 10.1109/TCSII.2007.914899
– ident: ref50
  doi: 10.1109/CSICS.2014.6978582
– ident: ref44
  doi: 10.1109/JSSC.2003.815918
– ident: ref33
  doi: 10.1109/LMWC.2014.2303151
– ident: ref20
  doi: 10.1109/JSSC.2012.2191334
– year: 2017
  ident: ref51
  article-title: Systems, circuits and methods for correcting dynamic error vector magnitude effects
  contributor:
    fullname: huang
– ident: ref32
  doi: 10.1109/TED.2009.2021365
– ident: ref23
  doi: 10.1109/JSSC.2004.833570
– ident: ref27
  doi: 10.1109/BCTM.2017.8112906
– ident: ref4
  doi: 10.1109/16.293311
– year: 2018
  ident: ref2
  publication-title: IEEE 802 11ax the sixth generation of Wi-Fi
SSID ssj0014481
Score 2.5180402
Snippet This article presents the design of a highly linear high-power silicon-germanium (SiGe) heterojunction bipolar transistor (HBT) 802.11ac/ax wireless local area...
This article presents the design of a highly linear high-power silicon–germanium (SiGe) heterojunction bipolar transistor (HBT) 802.11ac/ax wireless local area...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Publisher
StartPage 2356
SubjectTerms Bias
Circuit design
dynamic error vector magnitude (DEVM)
electrothermal
error vector magnitude (EVM)
Gain
Germanium
heterojunction bipolar transistor (HBT)
Heterojunction bipolar transistors
junction temperature
Layouts
Local area networks
memory effect
Metallizing
Multilayers
power amplifier (PA)
Power amplifiers
Semiconductor devices
Sensor arrays
Silicon germanides
Silicon germanium
silicon–germanium (SiGe)
Temperature sensors
thermal
Thermal resistance
transformer
Transformers
Transient analysis
Transistors
Wireless LAN
wireless local area network (WLAN)
Wireless networks
Title Highly Linear High-Power 802.11ac/ax WLAN SiGe HBT Power Amplifiers With a Compact 2nd-Harmonic-Shorted Four-Way Transformer and a Thermally Compensating Dynamic Bias Circuit
URI https://ieeexplore.ieee.org/document/9097173
https://www.proquest.com/docview/2438696593
Volume 55
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjR3LTttAcASc6KEPaNUUWs2BE-omtjfx4xjShggBqpSgcLP2KayCqYIjkX5Uv7EzthOhlgM32-sdz2rG89iZnQE4GnipYhumwvSdE1wBTGjptJBaEfe4MFWO9zsuLuPJVf_senC9BV83Z2Gcc3XymevyZR3Lt_dmyVtlvYwLHiVyG7bTIGrOam0iBuRmNN3x6LsZkb6NYIZB1jubTkfkCUZBN2JtzK29n-iguqnKf5K4Vi_jN3CxRqzJKvnZXVa6a37_U7PxpZi_hdetnYnDhjHewZYr9-DVk-qD-_CHczxuV0juKLE78p34wU3TkNZNa1Kmpx5xfj68xGlx6nByMsNmfMhp6J6baOO8qG5QYS1WTIVRacVELe644K6Y3nAmr8UxISPmaoWztZVMMFRpaR5xKWmGW8KCIZBLrTgNG7-tSnVXGDwp1AOOioVZFtV7uBp_n40mom3fIAzZEJXwikOcPiULwMSpIq1I8sQr5bULA5-EhoSBpWc0OLCBlwNv41QniYwMqdN-Ij_ATnlfuo-AmdYJQVPSeS5oGGpj00STp8bWqY50B47XBM1_NVU68tq7CbKcqZ8z9fOW-h3YZwJtXmxp04HDNQvk7X_8kEd9mcZcc1F-en7WAewy7Cbr7BB2qsXSfSYzpdJfav78C5gc46k
link.rule.ids 315,786,790,802,27955,27956,55107
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED-N8QA8jI8x0THgHnhCuE3iNh-PXaGE0VZI7dS9RbZjaxFbhrpUovxR_I3cJWk1AQ-8JXFsX3QX353v_DuAtwMnVZj7sTB9awUjgAktrRZSK5Ie68fK8n7HdBam5_2zi8HFHrzfnYWx1tbJZ7bLl3UsP78xa94q6yUMeBTJe3Cf9LwXNae1djEDcjSa-ng0c0LMb2OYvpf0zubzEfmCgdcNWB9zce87Wqguq_LXWlwrmPFjmG5Ja_JKvnXXle6an3-gNv4v7U_goLU0cdiIxlPYs-UzeHQHf_AQfnGWx9UGySElgUe-E1-5bBrGXkDfpExP_cDlZDjDefHJYnq6wKZ9yInojsto47KoLlFhvbCYCoMyF6laXTPkrphfci5vjmMiRizVBhdbO5nGUGVO_UhOSTdcERU8AjnVihOx8cOmVNeFwdNC3eKoWJl1UT2H8_HHxSgVbQEHYciKqIRTHOR0MdkAJowV6UVaUZxSTlvfc5FvaDnI6Rk1DnLPyYHLw1hHkQwMKdR-JI9gv7wp7QvAROuIRlPSOoY09LXJ40iTr8b2qQ50B95tGZp9b3A6stq_8ZKMuZ8x97OW-x04ZAbtXmx504GTrQhk7Z98mwV9GYeMuiiP_93rDTxIF9NJNvk8-_ISHvI8TQ7aCexXq7V9RUZLpV_Xsvobvd_m_Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Highly+Linear+High-Power+802.11ac%2Fax+WLAN+SiGe+HBT+Power+Amplifiers+With+a+Compact+2nd-Harmonic-Shorted+Four-Way+Transformer+and+a+Thermally+Compensating+Dynamic+Bias+Circuit&rft.jtitle=IEEE+journal+of+solid-state+circuits&rft.au=Ju%2C+Inchan&rft.au=Gong%2C+Yunyi&rft.au=Cressler%2C+John+D.&rft.date=2020-09-01&rft.issn=0018-9200&rft.eissn=1558-173X&rft.volume=55&rft.issue=9&rft.spage=2356&rft.epage=2370&rft_id=info:doi/10.1109%2FJSSC.2020.2993720&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_JSSC_2020_2993720
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9200&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9200&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9200&client=summon