Spectral Unmixing With Perturbed Endmembers
We consider the problem of supervised spectral unmixing with a fully-perturbed linear mixture model where the given endmembers, as well as the observations of the spectral image, are subject to perturbation due to noise, error, or model mismatch. We calculate the Fisher information matrix and the Cr...
Saved in:
Published in | IEEE transactions on geoscience and remote sensing Vol. 57; no. 1; pp. 194 - 211 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.01.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We consider the problem of supervised spectral unmixing with a fully-perturbed linear mixture model where the given endmembers, as well as the observations of the spectral image, are subject to perturbation due to noise, error, or model mismatch. We calculate the Fisher information matrix and the Cramer-Rao lower bound associated with the estimation of the abundance matrix in the considered fully-perturbed linear spectral unmixing problem. We develop an algorithm for estimating the abundance matrix by minimizing a constrained and regularized maximum-log-likelihood objective function using the block coordinate-descend iterations and the alternating direction method of multipliers. We analyze the convergence of the proposed algorithm theoretically and perform simulations with real hyperspectral image data sets to evaluate its performance. The simulation results corroborate the efficacy of the proposed algorithm in mitigating the adverse effects of perturbation in the endmembers. |
---|---|
AbstractList | We consider the problem of supervised spectral unmixing with a fully-perturbed linear mixture model where the given endmembers, as well as the observations of the spectral image, are subject to perturbation due to noise, error, or model mismatch. We calculate the Fisher information matrix and the Cramer-Rao lower bound associated with the estimation of the abundance matrix in the considered fully-perturbed linear spectral unmixing problem. We develop an algorithm for estimating the abundance matrix by minimizing a constrained and regularized maximum-log-likelihood objective function using the block coordinate-descend iterations and the alternating direction method of multipliers. We analyze the convergence of the proposed algorithm theoretically and perform simulations with real hyperspectral image data sets to evaluate its performance. The simulation results corroborate the efficacy of the proposed algorithm in mitigating the adverse effects of perturbation in the endmembers. |
Author | Arablouei, Reza |
Author_xml | – sequence: 1 givenname: Reza orcidid: 0000-0002-6932-2900 surname: Arablouei fullname: Arablouei, Reza email: reza.arablouei@csiro.au organization: Commonwealth Scientific and Industrial Research Organisation, Pullenvale, QLD, Australia |
BookMark | eNp9kE1LAzEQhoNUsK3-APGy4FG25mOzyR6l1CoIim3xGLLZiaZ0szVJQf-9W1o8ePA0MPM-M8wzQgPfeUDokuAJIbi6Xc5fFxOKiZxQyako-AkaEs5ljsuiGKAhJlWZU1nRMzSKcY0xKTgRQ3Sz2IJJQW-ylW_dl_Pv2ZtLH9kLhLQLNTTZzDcttDWEeI5Ord5EuDjWMVrdz5bTh_zpef44vXvKDa1Yym0JQPr9peBclMZoQyVuKmpKkKbWlDPDtK2sxJJpZgUwWvdNi_uBaIRmY3R92LsN3ecOYlLrbhd8f1JRUhKJC8plnxKHlAldjAGsMi7p5Drfv-M2imC1N6P2ZtTejDqa6Unyh9wG1-rw_S9zdWAcAPzmZUEJFRX7AUgGb6c |
CODEN | IGRSD2 |
CitedBy_id | crossref_primary_10_1109_MGRS_2021_3071158 crossref_primary_10_1109_TGRS_2024_3354046 crossref_primary_10_1109_JSTARS_2021_3127728 crossref_primary_10_1109_TGRS_2020_2971081 crossref_primary_10_1109_JSTARS_2021_3105826 crossref_primary_10_1109_LGRS_2019_2920687 crossref_primary_10_1109_TGRS_2019_2903875 crossref_primary_10_1117_1_JRS_14_044510 |
Cites_doi | 10.1109/MGRS.2013.2244672 10.1109/TGRS.2016.2580702 10.1109/TIP.2009.2028250 10.1016/j.sigpro.2007.04.004 10.1137/1.9781611971002 10.1109/TGRS.2010.2098413 10.1109/TIP.2011.2160189 10.1007/BF01581204 10.1109/JSTARS.2012.2194696 10.1214/aoms/1177731868 10.1137/0717073 10.1109/TGRS.2015.2417162 10.1109/TGRS.2011.2151197 10.1145/1464182.1464209 10.2307/1907619 10.1109/LGRS.2013.2261276 10.1109/JSTARS.2013.2266732 10.1109/TGRS.2004.835299 10.1109/TIP.2016.2579259 10.1109/TGRS.2013.2240001 10.1109/TSP.2008.917851 10.1023/A:1017501703105 10.1257/jep.15.4.69 10.1080/00401706.1979.10489751 10.1016/0022-2496(85)90006-9 10.1109/TSP.2009.2025802 10.1109/18.59929 10.1137/120891009 10.1109/MSP.2013.2279177 10.1109/JSTARS.2016.2521898 10.1109/TGRS.2006.888466 10.1109/TGRS.2005.844293 10.1007/s10107-015-0946-6 10.1109/TGRS.2013.2281589 10.1109/WHISPERS.2010.5594963 10.1016/0898-1221(76)90003-1 10.1109/LGRS.2007.895727 10.1109/97.700921 10.1561/2200000016 10.1109/TIP.2016.2614131 10.1080/03081088108817379 10.1109/TSP.2015.2486746 10.1109/TGRS.2009.2038483 10.1109/LSP.2009.2016831 10.1016/0167-2789(92)90242-F 10.1093/oso/9780198572237.001.0001 10.1109/36.911111 10.2307/2291512 10.3934/ipi.2008.2.455 10.1109/IGARSS.2007.4423734 10.1117/12.226807 10.1109/TCI.2016.2631979 10.1007/s00180-011-0301-1 10.1109/TGRS.2012.2191590 10.1109/WHISPERS.2009.5289072 10.1109/MSP.2013.2279731 10.1007/978-1-4419-9569-8_10 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019 |
DBID | 97E RIA RIE AAYXX CITATION 7UA 8FD C1K F1W FR3 H8D H96 KR7 L.G L7M |
DOI | 10.1109/TGRS.2018.2852745 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Water Resources Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Water Resources Abstracts Environmental Sciences and Pollution Management |
DatabaseTitleList | Aerospace Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 1558-0644 |
EndPage | 211 |
ExternalDocumentID | 10_1109_TGRS_2018_2852745 8421279 |
Genre | orig-research |
GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT AENEX AETIX AFRAH AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IBMZZ ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS RXW TAE TN5 VH1 Y6R AAYOK AAYXX CITATION RIG 7UA 8FD C1K F1W FR3 H8D H96 KR7 L.G L7M |
ID | FETCH-LOGICAL-c293t-f6ee1014675576ccac280d92c6e8cba253c3af9f8083a3f7e32b253f053c7d7a3 |
IEDL.DBID | RIE |
ISSN | 0196-2892 |
IngestDate | Mon Jun 30 08:15:48 EDT 2025 Tue Jul 01 01:34:10 EDT 2025 Thu Apr 24 22:59:52 EDT 2025 Wed Aug 27 03:02:09 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c293t-f6ee1014675576ccac280d92c6e8cba253c3af9f8083a3f7e32b253f053c7d7a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-6932-2900 |
PQID | 2161804258 |
PQPubID | 85465 |
PageCount | 18 |
ParticipantIDs | proquest_journals_2161804258 crossref_citationtrail_10_1109_TGRS_2018_2852745 crossref_primary_10_1109_TGRS_2018_2852745 ieee_primary_8421279 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-Jan. 2019-1-00 20190101 |
PublicationDateYYYYMMDD | 2019-01-01 |
PublicationDate_xml | – month: 01 year: 2019 text: 2019-Jan. |
PublicationDecade | 2010 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on geoscience and remote sensing |
PublicationTitleAbbrev | TGRS |
PublicationYear | 2019 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | iordache (ref22) 2011 ref57 ref13 ref56 ref12 ref59 ref58 ref14 ref53 ref52 ref11 ref54 ref10 ref17 ref16 ref19 grimmett (ref70) 2001 ref18 ref51 esser (ref40) 2009 ref50 ref48 ref42 lawson (ref29) 1974 ref41 ref44 ref43 glowinski (ref38) 1975; 9 ref49 ref8 ref7 shaw (ref4) 2003; 14 ref3 ref5 arablouei (ref6) 2016; 9948 bernstein (ref46) 2005 baumgardner (ref65) 2015 ref35 ref37 ref36 ref31 ref30 ref33 ref32 ref2 ref1 ref39 dobigeon (ref9) 2016; 30 ref71 bowden (ref55) 1984 ref68 ref24 ref23 ref26 ref69 ref25 ref64 ref20 ref63 donoho (ref47) 2003 ref66 bertsekas (ref34) 1999 ref21 ref28 ref27 li (ref15) 2015; 53 (ref67) 2018 ref60 ref62 ref61 kay (ref45) 1993 |
References_xml | – ident: ref2 doi: 10.1109/MGRS.2013.2244672 – ident: ref20 doi: 10.1109/TGRS.2016.2580702 – ident: ref52 doi: 10.1109/TIP.2009.2028250 – ident: ref61 doi: 10.1016/j.sigpro.2007.04.004 – ident: ref62 doi: 10.1137/1.9781611971002 – ident: ref23 doi: 10.1109/TGRS.2010.2098413 – ident: ref5 doi: 10.1109/TIP.2011.2160189 – year: 2005 ident: ref46 publication-title: Matrix Mathematics – year: 1984 ident: ref55 publication-title: Instrumental Variables – ident: ref36 doi: 10.1007/BF01581204 – ident: ref1 doi: 10.1109/JSTARS.2012.2194696 – year: 1974 ident: ref29 publication-title: Solving Least Squares Problems – ident: ref57 doi: 10.1214/aoms/1177731868 – ident: ref63 doi: 10.1137/0717073 – volume: 53 start-page: 5067 year: 2015 ident: ref15 article-title: Minimum volume simplex analysis: A fast algorithm for linear hyperspectral unmixing publication-title: IEEE Trans Geosci Remote Sens doi: 10.1109/TGRS.2015.2417162 – start-page: 1141 year: 2003 ident: ref47 article-title: When does non-negative matrix factorization give a correct decomposition into parts? publication-title: Proc Adv Neural Inf Process Syst – ident: ref18 doi: 10.1109/TGRS.2011.2151197 – year: 1999 ident: ref34 publication-title: Nonlinear Programming – ident: ref64 doi: 10.1145/1464182.1464209 – volume: 9948 start-page: 99480a year: 2016 ident: ref6 article-title: Fast and robust pushbroom hyperspectral imaging via DMD-based scanning publication-title: Proc SPIE – ident: ref56 doi: 10.2307/1907619 – ident: ref32 doi: 10.1109/LGRS.2013.2261276 – volume: 14 start-page: 3 year: 2003 ident: ref4 article-title: Spectral imaging for remote sensing publication-title: Lincoln Lab J – year: 2018 ident: ref67 – ident: ref31 doi: 10.1109/JSTARS.2013.2266732 – ident: ref11 doi: 10.1109/TGRS.2004.835299 – year: 2011 ident: ref22 article-title: A sparse regression approach to hyperspectral unmixing – year: 2015 ident: ref65 article-title: 220 band AVIRIS hyperspectral image data set: June 12, 1992 Indian pine test site 3 – ident: ref42 doi: 10.1109/TIP.2016.2579259 – ident: ref25 doi: 10.1109/TGRS.2013.2240001 – ident: ref30 doi: 10.1109/TSP.2008.917851 – ident: ref33 doi: 10.1023/A:1017501703105 – ident: ref54 doi: 10.1257/jep.15.4.69 – ident: ref71 doi: 10.1080/00401706.1979.10489751 – ident: ref68 doi: 10.1016/0022-2496(85)90006-9 – volume: 9 start-page: 41 year: 1975 ident: ref38 article-title: Sur lapproximation, par éléments finis dordre un, et la résolution, par pénalisation-dualité dune classe de problémes de Dirichlet non linéaires publication-title: Revue française d'automatique informatique recherche opérationnelle Analyse numérique – ident: ref17 doi: 10.1109/TSP.2009.2025802 – ident: ref48 doi: 10.1109/18.59929 – ident: ref35 doi: 10.1137/120891009 – ident: ref8 doi: 10.1109/MSP.2013.2279177 – ident: ref27 doi: 10.1109/JSTARS.2016.2521898 – ident: ref14 doi: 10.1109/TGRS.2006.888466 – ident: ref10 doi: 10.1109/TGRS.2005.844293 – year: 2009 ident: ref40 article-title: Applications of Lagrangian-based alternating direction methods and connections to split-Bregman – ident: ref60 doi: 10.1007/s10107-015-0946-6 – ident: ref26 doi: 10.1109/TGRS.2013.2281589 – ident: ref21 doi: 10.1109/WHISPERS.2010.5594963 – ident: ref37 doi: 10.1016/0898-1221(76)90003-1 – year: 1993 ident: ref45 publication-title: Fundamentals of Statistical Signal Processing Estimation Theory – ident: ref13 doi: 10.1109/LGRS.2007.895727 – ident: ref49 doi: 10.1109/97.700921 – ident: ref39 doi: 10.1561/2200000016 – ident: ref7 doi: 10.1109/TIP.2016.2614131 – ident: ref69 doi: 10.1080/03081088108817379 – ident: ref41 doi: 10.1109/TSP.2015.2486746 – ident: ref12 doi: 10.1109/TGRS.2009.2038483 – ident: ref50 doi: 10.1109/LSP.2009.2016831 – ident: ref51 doi: 10.1016/0167-2789(92)90242-F – year: 2001 ident: ref70 publication-title: Probability and Random Processes doi: 10.1093/oso/9780198572237.001.0001 – ident: ref28 doi: 10.1109/36.911111 – ident: ref58 doi: 10.2307/2291512 – ident: ref53 doi: 10.3934/ipi.2008.2.455 – ident: ref19 doi: 10.1109/IGARSS.2007.4423734 – ident: ref66 doi: 10.1117/12.226807 – volume: 30 start-page: 185 year: 2016 ident: ref9 article-title: Linear and nonlinear unmixing in hyperspectral imaging publication-title: Data Science Journal – ident: ref43 doi: 10.1109/TCI.2016.2631979 – ident: ref44 doi: 10.1007/s00180-011-0301-1 – ident: ref24 doi: 10.1109/TGRS.2012.2191590 – ident: ref16 doi: 10.1109/WHISPERS.2009.5289072 – ident: ref3 doi: 10.1109/MSP.2013.2279731 – ident: ref59 doi: 10.1007/978-1-4419-9569-8_10 |
SSID | ssj0014517 |
Score | 2.3289943 |
Snippet | We consider the problem of supervised spectral unmixing with a fully-perturbed linear mixture model where the given endmembers, as well as the observations of... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 194 |
SubjectTerms | Abundance Algorithms Alternating direction method of multipliers (ADMM) block coordinate-descent (BCD) Computer simulation Cramer–Rao lower bound (CRLB) Data models Estimation Fisher information Hyperspectral imaging hyperspectral unmixing instrumental variable (IV) Libraries Lower bounds Manganese Mathematical analysis Matrix methods Mixture models Objective function Perturbation methods perturbed endmembers Spectra total least-squares (TLS) total variation |
Title | Spectral Unmixing With Perturbed Endmembers |
URI | https://ieeexplore.ieee.org/document/8421279 https://www.proquest.com/docview/2161804258 |
Volume | 57 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dS8MwED-2gaAPfmyK0yl98Els1yZpmzyKbA5hIrrh3kqTJjh0nWwdiH-9SdsVvxDfQpuUNJfk8ru73A_gzFMhNnnUbcaIsAkRpsQ9G3GRYOIqn8XGozu8DQZjcjPxJzW4qO7CSCnz4DPpmGLuy0_mYmVMZV1q3Jchq0NdA7firlblMSC-V16NDmwNIlDpwfRc1h1d3z-YIC7qIOprFOZ_0UE5qcqPnThXL_0dGK47VkSVPDurjDvi_VvOxv_2fBe2y3OmdVlMjD2oybQJW5-yDzZhI4_-FMtWwUJvTB7WOJ1N3_Rb63GaPVl3cqE1EpeJ1UuTmTTcIct9GPd7o6uBXbIo2EKr8sxWgZSGkFcjA40ttMAEom7CkAgkFTxGPhY4VkxRfRiLsQolRlw_VHp1ijAJY3wAjXSeykOwNLRDccBx6HNMMJE0oChRlGBXxkj_YBvc9bhGokwxbpguXqIcargsMqKIjCiiUhRtOK-avBb5Nf6q3DJDW1UsR7UNnbXwonIFLiNkmADMjkSPfm91DJv626wwp3SgkS1W8kQfMDJ-ms-sD6OoyTo |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NT8IwFH9BjFEPfqBGFHUHT8bB1nZbezQGRAViFCK3Ze26SJRhYCTGv952G4tfMd6arc2699q-vs8fwKkdeVjXUTcZI8IkROgWt03ERYiJFTks0B7dbs9tD8jN0BmW4LzIhZFSpsFnsq6bqS8_nIi5NpU1qHZfemwJlpXcd-wsW6vwGRDHzpOjXVOpESj3YdoWa_Sv7h90GBetI-ooPcz5IoVSWJUfZ3EqYFqb0F1MLYsrea7PE14X79-qNv537luwkd80jYtsaWxDScYVWP9Uf7ACK2n8p5jtZDj02uhhDOLx6E29NR5HyZNxJ6dKJnEZGs04HEuNHjLbhUGr2b9smzmOgimUME_MyJVSQ_Iq3UBpF4plAlErZEi4kgoeIAcLHEQsouo6FuDIkxhx9TBS-1N4oRfgPSjHk1jug6GUOxS4HHsOxwQTSV2KwogSbMkAqR-sgrWgqy_yIuMa6-LFT5UNi_maFb5mhZ-zogpnxZDXrMLGX513NGmLjjlVq1BbMM_P9-DMRxoLQJ9J9OD3USew2u53O37nund7CGvqOywzrtSgnEzn8khdNxJ-nK6yD1LXzIM |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Spectral+Unmixing+With+Perturbed+Endmembers&rft.jtitle=IEEE+transactions+on+geoscience+and+remote+sensing&rft.au=Arablouei%2C+Reza&rft.date=2019-01-01&rft.issn=0196-2892&rft.eissn=1558-0644&rft.volume=57&rft.issue=1&rft.spage=194&rft.epage=211&rft_id=info:doi/10.1109%2FTGRS.2018.2852745&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TGRS_2018_2852745 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0196-2892&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0196-2892&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0196-2892&client=summon |