Spectral Unmixing With Perturbed Endmembers

We consider the problem of supervised spectral unmixing with a fully-perturbed linear mixture model where the given endmembers, as well as the observations of the spectral image, are subject to perturbation due to noise, error, or model mismatch. We calculate the Fisher information matrix and the Cr...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on geoscience and remote sensing Vol. 57; no. 1; pp. 194 - 211
Main Author Arablouei, Reza
Format Journal Article
LanguageEnglish
Published New York IEEE 01.01.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We consider the problem of supervised spectral unmixing with a fully-perturbed linear mixture model where the given endmembers, as well as the observations of the spectral image, are subject to perturbation due to noise, error, or model mismatch. We calculate the Fisher information matrix and the Cramer-Rao lower bound associated with the estimation of the abundance matrix in the considered fully-perturbed linear spectral unmixing problem. We develop an algorithm for estimating the abundance matrix by minimizing a constrained and regularized maximum-log-likelihood objective function using the block coordinate-descend iterations and the alternating direction method of multipliers. We analyze the convergence of the proposed algorithm theoretically and perform simulations with real hyperspectral image data sets to evaluate its performance. The simulation results corroborate the efficacy of the proposed algorithm in mitigating the adverse effects of perturbation in the endmembers.
AbstractList We consider the problem of supervised spectral unmixing with a fully-perturbed linear mixture model where the given endmembers, as well as the observations of the spectral image, are subject to perturbation due to noise, error, or model mismatch. We calculate the Fisher information matrix and the Cramer-Rao lower bound associated with the estimation of the abundance matrix in the considered fully-perturbed linear spectral unmixing problem. We develop an algorithm for estimating the abundance matrix by minimizing a constrained and regularized maximum-log-likelihood objective function using the block coordinate-descend iterations and the alternating direction method of multipliers. We analyze the convergence of the proposed algorithm theoretically and perform simulations with real hyperspectral image data sets to evaluate its performance. The simulation results corroborate the efficacy of the proposed algorithm in mitigating the adverse effects of perturbation in the endmembers.
Author Arablouei, Reza
Author_xml – sequence: 1
  givenname: Reza
  orcidid: 0000-0002-6932-2900
  surname: Arablouei
  fullname: Arablouei, Reza
  email: reza.arablouei@csiro.au
  organization: Commonwealth Scientific and Industrial Research Organisation, Pullenvale, QLD, Australia
BookMark eNp9kE1LAzEQhoNUsK3-APGy4FG25mOzyR6l1CoIim3xGLLZiaZ0szVJQf-9W1o8ePA0MPM-M8wzQgPfeUDokuAJIbi6Xc5fFxOKiZxQyako-AkaEs5ljsuiGKAhJlWZU1nRMzSKcY0xKTgRQ3Sz2IJJQW-ylW_dl_Pv2ZtLH9kLhLQLNTTZzDcttDWEeI5Ord5EuDjWMVrdz5bTh_zpef44vXvKDa1Yym0JQPr9peBclMZoQyVuKmpKkKbWlDPDtK2sxJJpZgUwWvdNi_uBaIRmY3R92LsN3ecOYlLrbhd8f1JRUhKJC8plnxKHlAldjAGsMi7p5Drfv-M2imC1N6P2ZtTejDqa6Unyh9wG1-rw_S9zdWAcAPzmZUEJFRX7AUgGb6c
CODEN IGRSD2
CitedBy_id crossref_primary_10_1109_MGRS_2021_3071158
crossref_primary_10_1109_TGRS_2024_3354046
crossref_primary_10_1109_JSTARS_2021_3127728
crossref_primary_10_1109_TGRS_2020_2971081
crossref_primary_10_1109_JSTARS_2021_3105826
crossref_primary_10_1109_LGRS_2019_2920687
crossref_primary_10_1109_TGRS_2019_2903875
crossref_primary_10_1117_1_JRS_14_044510
Cites_doi 10.1109/MGRS.2013.2244672
10.1109/TGRS.2016.2580702
10.1109/TIP.2009.2028250
10.1016/j.sigpro.2007.04.004
10.1137/1.9781611971002
10.1109/TGRS.2010.2098413
10.1109/TIP.2011.2160189
10.1007/BF01581204
10.1109/JSTARS.2012.2194696
10.1214/aoms/1177731868
10.1137/0717073
10.1109/TGRS.2015.2417162
10.1109/TGRS.2011.2151197
10.1145/1464182.1464209
10.2307/1907619
10.1109/LGRS.2013.2261276
10.1109/JSTARS.2013.2266732
10.1109/TGRS.2004.835299
10.1109/TIP.2016.2579259
10.1109/TGRS.2013.2240001
10.1109/TSP.2008.917851
10.1023/A:1017501703105
10.1257/jep.15.4.69
10.1080/00401706.1979.10489751
10.1016/0022-2496(85)90006-9
10.1109/TSP.2009.2025802
10.1109/18.59929
10.1137/120891009
10.1109/MSP.2013.2279177
10.1109/JSTARS.2016.2521898
10.1109/TGRS.2006.888466
10.1109/TGRS.2005.844293
10.1007/s10107-015-0946-6
10.1109/TGRS.2013.2281589
10.1109/WHISPERS.2010.5594963
10.1016/0898-1221(76)90003-1
10.1109/LGRS.2007.895727
10.1109/97.700921
10.1561/2200000016
10.1109/TIP.2016.2614131
10.1080/03081088108817379
10.1109/TSP.2015.2486746
10.1109/TGRS.2009.2038483
10.1109/LSP.2009.2016831
10.1016/0167-2789(92)90242-F
10.1093/oso/9780198572237.001.0001
10.1109/36.911111
10.2307/2291512
10.3934/ipi.2008.2.455
10.1109/IGARSS.2007.4423734
10.1117/12.226807
10.1109/TCI.2016.2631979
10.1007/s00180-011-0301-1
10.1109/TGRS.2012.2191590
10.1109/WHISPERS.2009.5289072
10.1109/MSP.2013.2279731
10.1007/978-1-4419-9569-8_10
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
DBID 97E
RIA
RIE
AAYXX
CITATION
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
DOI 10.1109/TGRS.2018.2852745
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Water Resources Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList
Aerospace Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1558-0644
EndPage 211
ExternalDocumentID 10_1109_TGRS_2018_2852745
8421279
Genre orig-research
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AETIX
AFRAH
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IBMZZ
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
RXW
TAE
TN5
VH1
Y6R
AAYOK
AAYXX
CITATION
RIG
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
ID FETCH-LOGICAL-c293t-f6ee1014675576ccac280d92c6e8cba253c3af9f8083a3f7e32b253f053c7d7a3
IEDL.DBID RIE
ISSN 0196-2892
IngestDate Mon Jun 30 08:15:48 EDT 2025
Tue Jul 01 01:34:10 EDT 2025
Thu Apr 24 22:59:52 EDT 2025
Wed Aug 27 03:02:09 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c293t-f6ee1014675576ccac280d92c6e8cba253c3af9f8083a3f7e32b253f053c7d7a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-6932-2900
PQID 2161804258
PQPubID 85465
PageCount 18
ParticipantIDs proquest_journals_2161804258
crossref_citationtrail_10_1109_TGRS_2018_2852745
crossref_primary_10_1109_TGRS_2018_2852745
ieee_primary_8421279
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-Jan.
2019-1-00
20190101
PublicationDateYYYYMMDD 2019-01-01
PublicationDate_xml – month: 01
  year: 2019
  text: 2019-Jan.
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on geoscience and remote sensing
PublicationTitleAbbrev TGRS
PublicationYear 2019
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References iordache (ref22) 2011
ref57
ref13
ref56
ref12
ref59
ref58
ref14
ref53
ref52
ref11
ref54
ref10
ref17
ref16
ref19
grimmett (ref70) 2001
ref18
ref51
esser (ref40) 2009
ref50
ref48
ref42
lawson (ref29) 1974
ref41
ref44
ref43
glowinski (ref38) 1975; 9
ref49
ref8
ref7
shaw (ref4) 2003; 14
ref3
ref5
arablouei (ref6) 2016; 9948
bernstein (ref46) 2005
baumgardner (ref65) 2015
ref35
ref37
ref36
ref31
ref30
ref33
ref32
ref2
ref1
ref39
dobigeon (ref9) 2016; 30
ref71
bowden (ref55) 1984
ref68
ref24
ref23
ref26
ref69
ref25
ref64
ref20
ref63
donoho (ref47) 2003
ref66
bertsekas (ref34) 1999
ref21
ref28
ref27
li (ref15) 2015; 53
(ref67) 2018
ref60
ref62
ref61
kay (ref45) 1993
References_xml – ident: ref2
  doi: 10.1109/MGRS.2013.2244672
– ident: ref20
  doi: 10.1109/TGRS.2016.2580702
– ident: ref52
  doi: 10.1109/TIP.2009.2028250
– ident: ref61
  doi: 10.1016/j.sigpro.2007.04.004
– ident: ref62
  doi: 10.1137/1.9781611971002
– ident: ref23
  doi: 10.1109/TGRS.2010.2098413
– ident: ref5
  doi: 10.1109/TIP.2011.2160189
– year: 2005
  ident: ref46
  publication-title: Matrix Mathematics
– year: 1984
  ident: ref55
  publication-title: Instrumental Variables
– ident: ref36
  doi: 10.1007/BF01581204
– ident: ref1
  doi: 10.1109/JSTARS.2012.2194696
– year: 1974
  ident: ref29
  publication-title: Solving Least Squares Problems
– ident: ref57
  doi: 10.1214/aoms/1177731868
– ident: ref63
  doi: 10.1137/0717073
– volume: 53
  start-page: 5067
  year: 2015
  ident: ref15
  article-title: Minimum volume simplex analysis: A fast algorithm for linear hyperspectral unmixing
  publication-title: IEEE Trans Geosci Remote Sens
  doi: 10.1109/TGRS.2015.2417162
– start-page: 1141
  year: 2003
  ident: ref47
  article-title: When does non-negative matrix factorization give a correct decomposition into parts?
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref18
  doi: 10.1109/TGRS.2011.2151197
– year: 1999
  ident: ref34
  publication-title: Nonlinear Programming
– ident: ref64
  doi: 10.1145/1464182.1464209
– volume: 9948
  start-page: 99480a
  year: 2016
  ident: ref6
  article-title: Fast and robust pushbroom hyperspectral imaging via DMD-based scanning
  publication-title: Proc SPIE
– ident: ref56
  doi: 10.2307/1907619
– ident: ref32
  doi: 10.1109/LGRS.2013.2261276
– volume: 14
  start-page: 3
  year: 2003
  ident: ref4
  article-title: Spectral imaging for remote sensing
  publication-title: Lincoln Lab J
– year: 2018
  ident: ref67
– ident: ref31
  doi: 10.1109/JSTARS.2013.2266732
– ident: ref11
  doi: 10.1109/TGRS.2004.835299
– year: 2011
  ident: ref22
  article-title: A sparse regression approach to hyperspectral unmixing
– year: 2015
  ident: ref65
  article-title: 220 band AVIRIS hyperspectral image data set: June 12, 1992 Indian pine test site 3
– ident: ref42
  doi: 10.1109/TIP.2016.2579259
– ident: ref25
  doi: 10.1109/TGRS.2013.2240001
– ident: ref30
  doi: 10.1109/TSP.2008.917851
– ident: ref33
  doi: 10.1023/A:1017501703105
– ident: ref54
  doi: 10.1257/jep.15.4.69
– ident: ref71
  doi: 10.1080/00401706.1979.10489751
– ident: ref68
  doi: 10.1016/0022-2496(85)90006-9
– volume: 9
  start-page: 41
  year: 1975
  ident: ref38
  article-title: Sur lapproximation, par éléments finis dordre un, et la résolution, par pénalisation-dualité dune classe de problémes de Dirichlet non linéaires
  publication-title: Revue française d'automatique informatique recherche opérationnelle Analyse numérique
– ident: ref17
  doi: 10.1109/TSP.2009.2025802
– ident: ref48
  doi: 10.1109/18.59929
– ident: ref35
  doi: 10.1137/120891009
– ident: ref8
  doi: 10.1109/MSP.2013.2279177
– ident: ref27
  doi: 10.1109/JSTARS.2016.2521898
– ident: ref14
  doi: 10.1109/TGRS.2006.888466
– ident: ref10
  doi: 10.1109/TGRS.2005.844293
– year: 2009
  ident: ref40
  article-title: Applications of Lagrangian-based alternating direction methods and connections to split-Bregman
– ident: ref60
  doi: 10.1007/s10107-015-0946-6
– ident: ref26
  doi: 10.1109/TGRS.2013.2281589
– ident: ref21
  doi: 10.1109/WHISPERS.2010.5594963
– ident: ref37
  doi: 10.1016/0898-1221(76)90003-1
– year: 1993
  ident: ref45
  publication-title: Fundamentals of Statistical Signal Processing Estimation Theory
– ident: ref13
  doi: 10.1109/LGRS.2007.895727
– ident: ref49
  doi: 10.1109/97.700921
– ident: ref39
  doi: 10.1561/2200000016
– ident: ref7
  doi: 10.1109/TIP.2016.2614131
– ident: ref69
  doi: 10.1080/03081088108817379
– ident: ref41
  doi: 10.1109/TSP.2015.2486746
– ident: ref12
  doi: 10.1109/TGRS.2009.2038483
– ident: ref50
  doi: 10.1109/LSP.2009.2016831
– ident: ref51
  doi: 10.1016/0167-2789(92)90242-F
– year: 2001
  ident: ref70
  publication-title: Probability and Random Processes
  doi: 10.1093/oso/9780198572237.001.0001
– ident: ref28
  doi: 10.1109/36.911111
– ident: ref58
  doi: 10.2307/2291512
– ident: ref53
  doi: 10.3934/ipi.2008.2.455
– ident: ref19
  doi: 10.1109/IGARSS.2007.4423734
– ident: ref66
  doi: 10.1117/12.226807
– volume: 30
  start-page: 185
  year: 2016
  ident: ref9
  article-title: Linear and nonlinear unmixing in hyperspectral imaging
  publication-title: Data Science Journal
– ident: ref43
  doi: 10.1109/TCI.2016.2631979
– ident: ref44
  doi: 10.1007/s00180-011-0301-1
– ident: ref24
  doi: 10.1109/TGRS.2012.2191590
– ident: ref16
  doi: 10.1109/WHISPERS.2009.5289072
– ident: ref3
  doi: 10.1109/MSP.2013.2279731
– ident: ref59
  doi: 10.1007/978-1-4419-9569-8_10
SSID ssj0014517
Score 2.3289943
Snippet We consider the problem of supervised spectral unmixing with a fully-perturbed linear mixture model where the given endmembers, as well as the observations of...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 194
SubjectTerms Abundance
Algorithms
Alternating direction method of multipliers (ADMM)
block coordinate-descent (BCD)
Computer simulation
Cramer–Rao lower bound (CRLB)
Data models
Estimation
Fisher information
Hyperspectral imaging
hyperspectral unmixing
instrumental variable (IV)
Libraries
Lower bounds
Manganese
Mathematical analysis
Matrix methods
Mixture models
Objective function
Perturbation methods
perturbed endmembers
Spectra
total least-squares (TLS)
total variation
Title Spectral Unmixing With Perturbed Endmembers
URI https://ieeexplore.ieee.org/document/8421279
https://www.proquest.com/docview/2161804258
Volume 57
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dS8MwED-2gaAPfmyK0yl98Els1yZpmzyKbA5hIrrh3kqTJjh0nWwdiH-9SdsVvxDfQpuUNJfk8ru73A_gzFMhNnnUbcaIsAkRpsQ9G3GRYOIqn8XGozu8DQZjcjPxJzW4qO7CSCnz4DPpmGLuy0_mYmVMZV1q3Jchq0NdA7firlblMSC-V16NDmwNIlDpwfRc1h1d3z-YIC7qIOprFOZ_0UE5qcqPnThXL_0dGK47VkSVPDurjDvi_VvOxv_2fBe2y3OmdVlMjD2oybQJW5-yDzZhI4_-FMtWwUJvTB7WOJ1N3_Rb63GaPVl3cqE1EpeJ1UuTmTTcIct9GPd7o6uBXbIo2EKr8sxWgZSGkFcjA40ttMAEom7CkAgkFTxGPhY4VkxRfRiLsQolRlw_VHp1ijAJY3wAjXSeykOwNLRDccBx6HNMMJE0oChRlGBXxkj_YBvc9bhGokwxbpguXqIcargsMqKIjCiiUhRtOK-avBb5Nf6q3DJDW1UsR7UNnbXwonIFLiNkmADMjkSPfm91DJv626wwp3SgkS1W8kQfMDJ-ms-sD6OoyTo
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NT8IwFH9BjFEPfqBGFHUHT8bB1nZbezQGRAViFCK3Ze26SJRhYCTGv952G4tfMd6arc2699q-vs8fwKkdeVjXUTcZI8IkROgWt03ERYiJFTks0B7dbs9tD8jN0BmW4LzIhZFSpsFnsq6bqS8_nIi5NpU1qHZfemwJlpXcd-wsW6vwGRDHzpOjXVOpESj3YdoWa_Sv7h90GBetI-ooPcz5IoVSWJUfZ3EqYFqb0F1MLYsrea7PE14X79-qNv537luwkd80jYtsaWxDScYVWP9Uf7ACK2n8p5jtZDj02uhhDOLx6E29NR5HyZNxJ6dKJnEZGs04HEuNHjLbhUGr2b9smzmOgimUME_MyJVSQ_Iq3UBpF4plAlErZEi4kgoeIAcLHEQsouo6FuDIkxhx9TBS-1N4oRfgPSjHk1jug6GUOxS4HHsOxwQTSV2KwogSbMkAqR-sgrWgqy_yIuMa6-LFT5UNi_maFb5mhZ-zogpnxZDXrMLGX513NGmLjjlVq1BbMM_P9-DMRxoLQJ9J9OD3USew2u53O37nund7CGvqOywzrtSgnEzn8khdNxJ-nK6yD1LXzIM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Spectral+Unmixing+With+Perturbed+Endmembers&rft.jtitle=IEEE+transactions+on+geoscience+and+remote+sensing&rft.au=Arablouei%2C+Reza&rft.date=2019-01-01&rft.issn=0196-2892&rft.eissn=1558-0644&rft.volume=57&rft.issue=1&rft.spage=194&rft.epage=211&rft_id=info:doi/10.1109%2FTGRS.2018.2852745&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TGRS_2018_2852745
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0196-2892&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0196-2892&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0196-2892&client=summon