Myoelectric Control With Fixed Convolution-Based Time-Domain Feature Extraction: Exploring the Spatio-Temporal Interaction
The role of feature extraction in electromyogram (EMG) based pattern recognition has recently been emphasized with several publications promoting deep learning (DL) solutions that outperform traditional methods. It has been shown that the ability of DL models to extract temporal, spatial, and spatio...
Saved in:
Published in | IEEE transactions on human-machine systems Vol. 52; no. 6; pp. 1247 - 1257 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.12.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The role of feature extraction in electromyogram (EMG) based pattern recognition has recently been emphasized with several publications promoting deep learning (DL) solutions that outperform traditional methods. It has been shown that the ability of DL models to extract temporal, spatial, and spatio-temporal information provides significant enhancements to the performance and generalizability of myoelectric control. Despite these advancements, it can be argued that DL models are computationally very expensive, requiring long training times, increased training data, and high computational resources, yielding solutions that may not yet be feasible for clinical translation given the available technology. The aim of this paper is, therefore, to leverage the benefits of spatio-temporal DL concepts into a computationally feasible and accurate traditional feature extraction method. Specifically, the proposed novel method extracts a set of well-known time-domain features into a matrix representation, convolves them with predetermined fixed filters, and temporally evolves the resulting features over a short and long-term basis to extract the EMG temporal dynamics. The proposed method, based on Fixed Spatio-Temporal Convolutions, offers significant reductions in the computational costs, while demonstrating a solution that can compete with, and even outperform, recent DL models. Experimental tests were performed on sparse-and high-density EMG (HD-EMG) signals databases, across a total of 44 subjects performing a maximum of 53 movements. Despite the simplification compared to deep approaches, our results show that the proposed solution significantly reduces the classification error rates by 3% to 10% in comparison to recent DL models, while being efficient for real-time implementations. |
---|---|
AbstractList | The role of feature extraction in electromyogram (EMG) based pattern recognition has recently been emphasized with several publications promoting deep learning (DL) solutions that outperform traditional methods. It has been shown that the ability of DL models to extract temporal, spatial, and spatio–temporal information provides significant enhancements to the performance and generalizability of myoelectric control. Despite these advancements, it can be argued that DL models are computationally very expensive, requiring long training times, increased training data, and high computational resources, yielding solutions that may not yet be feasible for clinical translation given the available technology. The aim of this paper is, therefore, to leverage the benefits of spatio–temporal DL concepts into a computationally feasible and accurate traditional feature extraction method. Specifically, the proposed novel method extracts a set of well-known time-domain features into a matrix representation, convolves them with predetermined fixed filters, and temporally evolves the resulting features over a short and long-term basis to extract the EMG temporal dynamics. The proposed method, based on Fixed Spatio–Temporal Convolutions, offers significant reductions in the computational costs, while demonstrating a solution that can compete with, and even outperform, recent DL models. Experimental tests were performed on sparse-and high-density EMG (HD-EMG) signals databases, across a total of 44 subjects performing a maximum of 53 movements. Despite the simplification compared to deep approaches, our results show that the proposed solution significantly reduces the classification error rates by 3% to 10% in comparison to recent DL models, while being efficient for real-time implementations. |
Author | Khushaba, Rami N. Samuel, Oluwarotimi Williams Al-Timemy, Ali H. Scheme, Erik J. |
Author_xml | – sequence: 1 givenname: Rami N. orcidid: 0000-0001-8528-8979 surname: Khushaba fullname: Khushaba, Rami N. email: rkhushab@gmail.com organization: Australian Center for Field Robotics, University of Sydney, Chippendale, NSW, Australia – sequence: 2 givenname: Ali H. orcidid: 0000-0003-2738-8896 surname: Al-Timemy fullname: Al-Timemy, Ali H. email: ali.altimemy@kecbu.uobaghdad.edu.iq organization: Biomedical Engineering Department, Al-Khwarizmi College of Engineering, University of Baghdad, Baghdad, Iraq – sequence: 3 givenname: Oluwarotimi Williams orcidid: 0000-0003-1945-1402 surname: Samuel fullname: Samuel, Oluwarotimi Williams email: samuel@siat.ac.cn organization: Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China – sequence: 4 givenname: Erik J. orcidid: 0000-0002-4421-1016 surname: Scheme fullname: Scheme, Erik J. email: escheme@unb.ca organization: Institute of Biomedical Engineering, University of New Brunswick, Fredericton, NB, Canada |
BookMark | eNp9kE9PwjAYhxuDiYh8AONliedh_9Ct86YIQgLxwIzHpetepGSssysG_PR2AT14sJe--eX59W2eS9SpTAUIXRM8IAQnd-l0sRxQTOmAkWGEOTtDXUoiEVKGeednpgm5QP2m2WB_BOWciy76WhwMlKCc1SoYmcpZUwZv2q2Did5D0Uafptw5barwUTY-SfUWwiezlboKJiDdzkIw3jsrVQvd-7kujdXVe-DWECxr6eMwhW1trCyDWeXghF6h85UsG-if7h56nYzT0TScvzzPRg_zUNGEuXDFIyVjYJLmKqc4z6EQjAiCSVHkQigVc1ixnBQkiQRXTFGIvYakGNKC8KFiPXR7fLe25mMHjcs2ZmcrvzKjMYuEiIY48lR8pJQ1TWNhlSnt2r97JVKXGcFZ6zprXWet6-zk2jfJn2Zt9Vbaw7-dm2NHA8Avn8QUx5SybwnIjeA |
CODEN | ITHSA6 |
CitedBy_id | crossref_primary_10_3390_s24175828 crossref_primary_10_1016_j_asoc_2024_112382 crossref_primary_10_1016_j_engappai_2024_108952 crossref_primary_10_3390_s24237768 crossref_primary_10_1109_TBME_2022_3221799 crossref_primary_10_1088_2516_1091_acc625 crossref_primary_10_32604_cmc_2023_043383 crossref_primary_10_1088_1741_2552_ad5107 crossref_primary_10_3390_s24247926 crossref_primary_10_1016_j_engappai_2023_107251 crossref_primary_10_1038_s41598_024_54677_7 crossref_primary_10_1016_j_bspc_2024_107429 crossref_primary_10_3389_fbioe_2024_1463377 crossref_primary_10_1109_JIOT_2023_3300689 crossref_primary_10_3389_fphy_2023_1174220 crossref_primary_10_1109_TIM_2024_3485448 |
Cites_doi | 10.1145/3450494 10.1109/TNSRE.2019.2962189 10.1109/CVPR.2017.113 10.1109/TAI.2020.3046160 10.1682/JRRD.2010.09.0177 10.1109/EMBC.2019.8857638 10.1109/EMBC44109.2020.9176308 10.1109/EMBC.2019.8856648 10.1109/ACCESS.2020.3027497 10.1016/0013-4694(70)90143-4 10.1109/THMS.2016.2641389 10.1109/ACCESS.2019.2963881 10.3389/fnbot.2016.00015 10.1016/j.eswa.2016.05.031 10.1098/rsif.2017.0734 10.1109/TNSRE.2015.2445634 10.3390/s18051615 10.1109/CAC.2018.8623035 10.1371/journal.pone.0206049 10.1016/j.eswa.2013.02.023 10.1111/aor.13004 10.1109/TKDE.2007.190669 10.1109/EMBC.2013.6610327 10.1109/10.204774 10.1109/AIEA51086.2020.00020 10.1109/THMS.2014.2358634 10.3390/s19122811 10.3390/bdcc2030021 10.1109/THMS.2019.2925191 10.1109/TNSRE.2021.3094324 10.1016/j.bspc.2019.101774 10.1109/TNSRE.2017.2687761 10.1186/s12984-017-0284-4 10.1109/TNSRE.2021.3077413 10.1016/j.eswa.2021.114977 10.1109/TNSRE.2017.2687520 10.1109/SSCI.2016.7850064 10.1109/THMS.2021.3098115 10.1109/ACCESS.2018.2851282 10.1109/TNSRE.2019.2896269 10.1371/journal.pone.0186132 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 7TB 8FD FR3 JQ2 L7M L~C L~D |
DOI | 10.1109/THMS.2022.3146053 |
DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Technology Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2168-2305 |
EndPage | 1257 |
ExternalDocumentID | 10_1109_THMS_2022_3146053 9720722 |
Genre | orig-research |
GrantInformation_xml | – fundername: Shenzhen Governmental Basic Research grantid: JCYJ20180507182508857 – fundername: National Natural Science Foundation of China grantid: 82050410452 funderid: 10.13039/501100001809 |
GroupedDBID | 0R~ 4.4 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACIWK AENEX AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD HZ~ IFIPE IPLJI JAVBF M43 O9- OCL PQQKQ RIA RIE RNS AAYXX CITATION RIG 7SC 7SP 7TB 8FD FR3 JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c293t-f56ca7e3a2bcb20bbed8318101ddb88cc75ef3b1d19685c3c2e73149d42d154c3 |
IEDL.DBID | RIE |
ISSN | 2168-2291 |
IngestDate | Sun Jun 29 15:00:29 EDT 2025 Tue Jul 01 03:00:58 EDT 2025 Thu Apr 24 22:57:30 EDT 2025 Wed Aug 27 02:18:27 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c293t-f56ca7e3a2bcb20bbed8318101ddb88cc75ef3b1d19685c3c2e73149d42d154c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-8528-8979 0000-0003-1945-1402 0000-0002-4421-1016 0000-0003-2738-8896 |
PQID | 2736886406 |
PQPubID | 85416 |
PageCount | 11 |
ParticipantIDs | ieee_primary_9720722 crossref_citationtrail_10_1109_THMS_2022_3146053 crossref_primary_10_1109_THMS_2022_3146053 proquest_journals_2736886406 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-Dec. 2022-12-00 20221201 |
PublicationDateYYYYMMDD | 2022-12-01 |
PublicationDate_xml | – month: 12 year: 2022 text: 2022-Dec. |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on human-machine systems |
PublicationTitleAbbrev | THMS |
PublicationYear | 2022 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref35 ref13 ref34 ref12 ref37 ref15 ref36 ref14 ref30 ref33 ref11 ref32 ref10 ref2 ref1 ref39 ref38 ref16 cai (ref40) 2008; 20 ref19 ref18 josephs (ref31) 0; 136 ref24 ref23 ref26 ref25 ref20 ref42 ref41 ref44 ref21 ref43 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 allard (ref22) 2020; 8 ref5 taee (ref17) 0 |
References_xml | – ident: ref32 doi: 10.1145/3450494 – ident: ref16 doi: 10.1109/TNSRE.2019.2962189 – ident: ref24 doi: 10.1109/CVPR.2017.113 – ident: ref12 doi: 10.1109/TAI.2020.3046160 – ident: ref43 doi: 10.1682/JRRD.2010.09.0177 – ident: ref25 doi: 10.1109/EMBC.2019.8857638 – volume: 136 start-page: 126 year: 0 ident: ref31 article-title: sEMG gesture recognition with a simple model of attention publication-title: Proc Mach Learn Health NeurIPS Workshop – ident: ref34 doi: 10.1109/EMBC44109.2020.9176308 – ident: ref20 doi: 10.1109/EMBC.2019.8856648 – ident: ref11 doi: 10.1109/ACCESS.2020.3027497 – ident: ref35 doi: 10.1016/0013-4694(70)90143-4 – ident: ref4 doi: 10.1109/THMS.2016.2641389 – ident: ref1 doi: 10.1109/ACCESS.2019.2963881 – ident: ref33 doi: 10.3389/fnbot.2016.00015 – ident: ref3 doi: 10.1016/j.eswa.2016.05.031 – ident: ref8 doi: 10.1098/rsif.2017.0734 – ident: ref6 doi: 10.1109/TNSRE.2015.2445634 – ident: ref7 doi: 10.3390/s18051615 – ident: ref28 doi: 10.1109/CAC.2018.8623035 – ident: ref27 doi: 10.1371/journal.pone.0206049 – ident: ref9 doi: 10.1016/j.eswa.2013.02.023 – ident: ref26 doi: 10.1111/aor.13004 – volume: 20 start-page: 1 year: 2008 ident: ref40 article-title: SRDA: An efficient algorithm for large-scale discriminant analysis publication-title: IEEE Trans Knowl Data Eng doi: 10.1109/TKDE.2007.190669 – volume: 8 start-page: 1 year: 2020 ident: ref22 article-title: Interpreting deep learning features for myoelectric control: A comparison with handcrafted features publication-title: Front Bioeng Biotechnol – start-page: 2671 year: 0 ident: ref17 article-title: Spatially filtered low-density EMG and time-domain descriptors improves hand movement recognition publication-title: Proc 41st Annu Int Conf IEEE Eng Med Biol Soc – ident: ref42 doi: 10.1109/EMBC.2013.6610327 – ident: ref39 doi: 10.1109/10.204774 – ident: ref15 doi: 10.1109/AIEA51086.2020.00020 – ident: ref18 doi: 10.1109/THMS.2014.2358634 – ident: ref29 doi: 10.3390/s19122811 – ident: ref2 doi: 10.3390/bdcc2030021 – ident: ref23 doi: 10.1109/THMS.2019.2925191 – ident: ref44 doi: 10.1109/TNSRE.2021.3094324 – ident: ref21 doi: 10.1016/j.bspc.2019.101774 – ident: ref41 doi: 10.1109/TNSRE.2017.2687761 – ident: ref37 doi: 10.1186/s12984-017-0284-4 – ident: ref14 doi: 10.1109/TNSRE.2021.3077413 – ident: ref19 doi: 10.1016/j.eswa.2021.114977 – ident: ref10 doi: 10.1109/TNSRE.2017.2687520 – ident: ref13 doi: 10.1109/SSCI.2016.7850064 – ident: ref5 doi: 10.1109/THMS.2021.3098115 – ident: ref38 doi: 10.1109/ACCESS.2018.2851282 – ident: ref30 doi: 10.1109/TNSRE.2019.2896269 – ident: ref36 doi: 10.1371/journal.pone.0186132 |
SSID | ssj0000825558 |
Score | 2.4883292 |
Snippet | The role of feature extraction in electromyogram (EMG) based pattern recognition has recently been emphasized with several publications promoting deep learning... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1247 |
SubjectTerms | Computing costs Convolution Convolutional neural networks Convolutional neural networks (CNN) Data models Deep learning Electromyography Feature extraction Machine learning Matrix representation Myoelectric control myoelectric signals Myoelectricity Pattern recognition spatio-temporal models Spatiotemporal phenomena Time domain analysis Training |
Title | Myoelectric Control With Fixed Convolution-Based Time-Domain Feature Extraction: Exploring the Spatio-Temporal Interaction |
URI | https://ieeexplore.ieee.org/document/9720722 https://www.proquest.com/docview/2736886406 |
Volume | 52 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1JTwIxFG7Ukx7c0IhbevBkLMx0mM2bC4SY4AWI3CbTvk4kIhgcDPLrfW2HiVuMt8mkbZp-r-33-jZCzsBPkVUHAQMf6VsDVMpSiCQDCFLuZSAiVwc4d-6Ddr9xN_AHK-SijIVRShnnM1XTn8aWDxM5009l9TjkTsjxwF1Fxc3GapXvKVrV8U05Tu4GCD6P3cKI6TpxvdfudFEZ5Bx1VG0J9L5cQ6auyo_D2NwwrS3SWc7NOpY81Wa5qMnFt7SN_538NtksqCa9srKxQ1bUeJdsfEpAWCGLzvvEFsIZSnpjvdbpwzB_pK3hXIH-9VbIJrvG-w6oDhlht5PndDimmj7Opoo25_nUxkdc0tKnjyKzpF3jr816Nv_ViJr3R9t0j_Rbzd5NmxXVGJhESpCzzA9kGiov5UIK7gihIMIDAbc0IKKRlKGvMk-4gHs68qUnuQpxsWNocECeJr19sjaejNUBoRnESmSZ66MANUIZxwpwaVA6BLJNmckqcZbgJLJIVa4rZowSo7I4caLxTDSeSYFnlZyXXV5sno6_Glc0PmXDApoqOV5KQFLs5NcE6V0QRQHynsPfex2RdT22dXE5Jmv5dKZOkKjk4tRI6AeifeeP |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB4hOLQ9AC2tWF71oaeqXhJnnQc3XqttS7iwqNyi2OOIFbCLliwCfj1jOxu1UFW9RZEtW_7Gnm_seQB8QVkSq45jjpLoWw9NyUtMNUeMSxFVqNLQBjjnp_HgvPfjQl4swLc2FsYY45zPTNd-urd8nOiZvSrbzRIRJIIO3CXS-zL00VrtjYo1dqQryCnCmOAXWdg8Y4ZBtjsc5GdkDgpBVqp9C4z-UESussqr49jpmP4K5PPZedeSq-6sVl399CJx4_9OfxWWG7LJ9r10vIcFM_4A735LQbgGT_njxJfCGWl26P3W2a9Rfcn6oweD9td9I538gDQeMhs0wo8mN-VozCyBnE0NO36opz5CYo-1Xn2MuCU7cx7bfOgzYF0zdwPpm36E8_7x8HDAm3oMXBMpqHklY10mJiqF0koEShlM6UigTY2Eaap1Ik0VqRBpV6dSR1qYhBY7w55AYmo6-gSL48nYrAOrMDOqqkJJItRLdJYZpKUh-VDEN3WlOxDMwSl0k6zc1sy4LpzREmSFxbOweBYNnh342na59Zk6_tV4zeLTNmyg6cDWXAKKZi_fFUTw4jSNifls_L3XZ3gzGOYnxcn305-b8NaO4x1etmCxns7MNtGWWu04aX0G2wvq2A |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Myoelectric+Control+With+Fixed+Convolution-Based+Time-Domain+Feature+Extraction%3A+Exploring+the+Spatio%E2%80%93Temporal+Interaction&rft.jtitle=IEEE+transactions+on+human-machine+systems&rft.au=Khushaba%2C+Rami+N&rft.au=Al-Timemy%2C+Ali+H&rft.au=Oluwarotimi+Williams+Samuel&rft.au=Scheme%2C+Erik+J&rft.date=2022-12-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=2168-2291&rft.eissn=2168-2305&rft.volume=52&rft.issue=6&rft.spage=1247&rft_id=info:doi/10.1109%2FTHMS.2022.3146053&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2291&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2291&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2291&client=summon |