Myoelectric Control With Fixed Convolution-Based Time-Domain Feature Extraction: Exploring the Spatio-Temporal Interaction

The role of feature extraction in electromyogram (EMG) based pattern recognition has recently been emphasized with several publications promoting deep learning (DL) solutions that outperform traditional methods. It has been shown that the ability of DL models to extract temporal, spatial, and spatio...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on human-machine systems Vol. 52; no. 6; pp. 1247 - 1257
Main Authors Khushaba, Rami N., Al-Timemy, Ali H., Samuel, Oluwarotimi Williams, Scheme, Erik J.
Format Journal Article
LanguageEnglish
Published New York IEEE 01.12.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The role of feature extraction in electromyogram (EMG) based pattern recognition has recently been emphasized with several publications promoting deep learning (DL) solutions that outperform traditional methods. It has been shown that the ability of DL models to extract temporal, spatial, and spatio-temporal information provides significant enhancements to the performance and generalizability of myoelectric control. Despite these advancements, it can be argued that DL models are computationally very expensive, requiring long training times, increased training data, and high computational resources, yielding solutions that may not yet be feasible for clinical translation given the available technology. The aim of this paper is, therefore, to leverage the benefits of spatio-temporal DL concepts into a computationally feasible and accurate traditional feature extraction method. Specifically, the proposed novel method extracts a set of well-known time-domain features into a matrix representation, convolves them with predetermined fixed filters, and temporally evolves the resulting features over a short and long-term basis to extract the EMG temporal dynamics. The proposed method, based on Fixed Spatio-Temporal Convolutions, offers significant reductions in the computational costs, while demonstrating a solution that can compete with, and even outperform, recent DL models. Experimental tests were performed on sparse-and high-density EMG (HD-EMG) signals databases, across a total of 44 subjects performing a maximum of 53 movements. Despite the simplification compared to deep approaches, our results show that the proposed solution significantly reduces the classification error rates by 3% to 10% in comparison to recent DL models, while being efficient for real-time implementations.
AbstractList The role of feature extraction in electromyogram (EMG) based pattern recognition has recently been emphasized with several publications promoting deep learning (DL) solutions that outperform traditional methods. It has been shown that the ability of DL models to extract temporal, spatial, and spatio–temporal information provides significant enhancements to the performance and generalizability of myoelectric control. Despite these advancements, it can be argued that DL models are computationally very expensive, requiring long training times, increased training data, and high computational resources, yielding solutions that may not yet be feasible for clinical translation given the available technology. The aim of this paper is, therefore, to leverage the benefits of spatio–temporal DL concepts into a computationally feasible and accurate traditional feature extraction method. Specifically, the proposed novel method extracts a set of well-known time-domain features into a matrix representation, convolves them with predetermined fixed filters, and temporally evolves the resulting features over a short and long-term basis to extract the EMG temporal dynamics. The proposed method, based on Fixed Spatio–Temporal Convolutions, offers significant reductions in the computational costs, while demonstrating a solution that can compete with, and even outperform, recent DL models. Experimental tests were performed on sparse-and high-density EMG (HD-EMG) signals databases, across a total of 44 subjects performing a maximum of 53 movements. Despite the simplification compared to deep approaches, our results show that the proposed solution significantly reduces the classification error rates by 3% to 10% in comparison to recent DL models, while being efficient for real-time implementations.
Author Khushaba, Rami N.
Samuel, Oluwarotimi Williams
Al-Timemy, Ali H.
Scheme, Erik J.
Author_xml – sequence: 1
  givenname: Rami N.
  orcidid: 0000-0001-8528-8979
  surname: Khushaba
  fullname: Khushaba, Rami N.
  email: rkhushab@gmail.com
  organization: Australian Center for Field Robotics, University of Sydney, Chippendale, NSW, Australia
– sequence: 2
  givenname: Ali H.
  orcidid: 0000-0003-2738-8896
  surname: Al-Timemy
  fullname: Al-Timemy, Ali H.
  email: ali.altimemy@kecbu.uobaghdad.edu.iq
  organization: Biomedical Engineering Department, Al-Khwarizmi College of Engineering, University of Baghdad, Baghdad, Iraq
– sequence: 3
  givenname: Oluwarotimi Williams
  orcidid: 0000-0003-1945-1402
  surname: Samuel
  fullname: Samuel, Oluwarotimi Williams
  email: samuel@siat.ac.cn
  organization: Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
– sequence: 4
  givenname: Erik J.
  orcidid: 0000-0002-4421-1016
  surname: Scheme
  fullname: Scheme, Erik J.
  email: escheme@unb.ca
  organization: Institute of Biomedical Engineering, University of New Brunswick, Fredericton, NB, Canada
BookMark eNp9kE9PwjAYhxuDiYh8AONliedh_9Ct86YIQgLxwIzHpetepGSssysG_PR2AT14sJe--eX59W2eS9SpTAUIXRM8IAQnd-l0sRxQTOmAkWGEOTtDXUoiEVKGeednpgm5QP2m2WB_BOWciy76WhwMlKCc1SoYmcpZUwZv2q2Did5D0Uafptw5barwUTY-SfUWwiezlboKJiDdzkIw3jsrVQvd-7kujdXVe-DWECxr6eMwhW1trCyDWeXghF6h85UsG-if7h56nYzT0TScvzzPRg_zUNGEuXDFIyVjYJLmKqc4z6EQjAiCSVHkQigVc1ixnBQkiQRXTFGIvYakGNKC8KFiPXR7fLe25mMHjcs2ZmcrvzKjMYuEiIY48lR8pJQ1TWNhlSnt2r97JVKXGcFZ6zprXWet6-zk2jfJn2Zt9Vbaw7-dm2NHA8Avn8QUx5SybwnIjeA
CODEN ITHSA6
CitedBy_id crossref_primary_10_3390_s24175828
crossref_primary_10_1016_j_asoc_2024_112382
crossref_primary_10_1016_j_engappai_2024_108952
crossref_primary_10_3390_s24237768
crossref_primary_10_1109_TBME_2022_3221799
crossref_primary_10_1088_2516_1091_acc625
crossref_primary_10_32604_cmc_2023_043383
crossref_primary_10_1088_1741_2552_ad5107
crossref_primary_10_3390_s24247926
crossref_primary_10_1016_j_engappai_2023_107251
crossref_primary_10_1038_s41598_024_54677_7
crossref_primary_10_1016_j_bspc_2024_107429
crossref_primary_10_3389_fbioe_2024_1463377
crossref_primary_10_1109_JIOT_2023_3300689
crossref_primary_10_3389_fphy_2023_1174220
crossref_primary_10_1109_TIM_2024_3485448
Cites_doi 10.1145/3450494
10.1109/TNSRE.2019.2962189
10.1109/CVPR.2017.113
10.1109/TAI.2020.3046160
10.1682/JRRD.2010.09.0177
10.1109/EMBC.2019.8857638
10.1109/EMBC44109.2020.9176308
10.1109/EMBC.2019.8856648
10.1109/ACCESS.2020.3027497
10.1016/0013-4694(70)90143-4
10.1109/THMS.2016.2641389
10.1109/ACCESS.2019.2963881
10.3389/fnbot.2016.00015
10.1016/j.eswa.2016.05.031
10.1098/rsif.2017.0734
10.1109/TNSRE.2015.2445634
10.3390/s18051615
10.1109/CAC.2018.8623035
10.1371/journal.pone.0206049
10.1016/j.eswa.2013.02.023
10.1111/aor.13004
10.1109/TKDE.2007.190669
10.1109/EMBC.2013.6610327
10.1109/10.204774
10.1109/AIEA51086.2020.00020
10.1109/THMS.2014.2358634
10.3390/s19122811
10.3390/bdcc2030021
10.1109/THMS.2019.2925191
10.1109/TNSRE.2021.3094324
10.1016/j.bspc.2019.101774
10.1109/TNSRE.2017.2687761
10.1186/s12984-017-0284-4
10.1109/TNSRE.2021.3077413
10.1016/j.eswa.2021.114977
10.1109/TNSRE.2017.2687520
10.1109/SSCI.2016.7850064
10.1109/THMS.2021.3098115
10.1109/ACCESS.2018.2851282
10.1109/TNSRE.2019.2896269
10.1371/journal.pone.0186132
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
7TB
8FD
FR3
JQ2
L7M
L~C
L~D
DOI 10.1109/THMS.2022.3146053
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2168-2305
EndPage 1257
ExternalDocumentID 10_1109_THMS_2022_3146053
9720722
Genre orig-research
GrantInformation_xml – fundername: Shenzhen Governmental Basic Research
  grantid: JCYJ20180507182508857
– fundername: National Natural Science Foundation of China
  grantid: 82050410452
  funderid: 10.13039/501100001809
GroupedDBID 0R~
4.4
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
AENEX
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
HZ~
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
RIG
7SC
7SP
7TB
8FD
FR3
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c293t-f56ca7e3a2bcb20bbed8318101ddb88cc75ef3b1d19685c3c2e73149d42d154c3
IEDL.DBID RIE
ISSN 2168-2291
IngestDate Sun Jun 29 15:00:29 EDT 2025
Tue Jul 01 03:00:58 EDT 2025
Thu Apr 24 22:57:30 EDT 2025
Wed Aug 27 02:18:27 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c293t-f56ca7e3a2bcb20bbed8318101ddb88cc75ef3b1d19685c3c2e73149d42d154c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-8528-8979
0000-0003-1945-1402
0000-0002-4421-1016
0000-0003-2738-8896
PQID 2736886406
PQPubID 85416
PageCount 11
ParticipantIDs ieee_primary_9720722
crossref_citationtrail_10_1109_THMS_2022_3146053
crossref_primary_10_1109_THMS_2022_3146053
proquest_journals_2736886406
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-Dec.
2022-12-00
20221201
PublicationDateYYYYMMDD 2022-12-01
PublicationDate_xml – month: 12
  year: 2022
  text: 2022-Dec.
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on human-machine systems
PublicationTitleAbbrev THMS
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref13
ref34
ref12
ref37
ref15
ref36
ref14
ref30
ref33
ref11
ref32
ref10
ref2
ref1
ref39
ref38
ref16
cai (ref40) 2008; 20
ref19
ref18
josephs (ref31) 0; 136
ref24
ref23
ref26
ref25
ref20
ref42
ref41
ref44
ref21
ref43
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
allard (ref22) 2020; 8
ref5
taee (ref17) 0
References_xml – ident: ref32
  doi: 10.1145/3450494
– ident: ref16
  doi: 10.1109/TNSRE.2019.2962189
– ident: ref24
  doi: 10.1109/CVPR.2017.113
– ident: ref12
  doi: 10.1109/TAI.2020.3046160
– ident: ref43
  doi: 10.1682/JRRD.2010.09.0177
– ident: ref25
  doi: 10.1109/EMBC.2019.8857638
– volume: 136
  start-page: 126
  year: 0
  ident: ref31
  article-title: sEMG gesture recognition with a simple model of attention
  publication-title: Proc Mach Learn Health NeurIPS Workshop
– ident: ref34
  doi: 10.1109/EMBC44109.2020.9176308
– ident: ref20
  doi: 10.1109/EMBC.2019.8856648
– ident: ref11
  doi: 10.1109/ACCESS.2020.3027497
– ident: ref35
  doi: 10.1016/0013-4694(70)90143-4
– ident: ref4
  doi: 10.1109/THMS.2016.2641389
– ident: ref1
  doi: 10.1109/ACCESS.2019.2963881
– ident: ref33
  doi: 10.3389/fnbot.2016.00015
– ident: ref3
  doi: 10.1016/j.eswa.2016.05.031
– ident: ref8
  doi: 10.1098/rsif.2017.0734
– ident: ref6
  doi: 10.1109/TNSRE.2015.2445634
– ident: ref7
  doi: 10.3390/s18051615
– ident: ref28
  doi: 10.1109/CAC.2018.8623035
– ident: ref27
  doi: 10.1371/journal.pone.0206049
– ident: ref9
  doi: 10.1016/j.eswa.2013.02.023
– ident: ref26
  doi: 10.1111/aor.13004
– volume: 20
  start-page: 1
  year: 2008
  ident: ref40
  article-title: SRDA: An efficient algorithm for large-scale discriminant analysis
  publication-title: IEEE Trans Knowl Data Eng
  doi: 10.1109/TKDE.2007.190669
– volume: 8
  start-page: 1
  year: 2020
  ident: ref22
  article-title: Interpreting deep learning features for myoelectric control: A comparison with handcrafted features
  publication-title: Front Bioeng Biotechnol
– start-page: 2671
  year: 0
  ident: ref17
  article-title: Spatially filtered low-density EMG and time-domain descriptors improves hand movement recognition
  publication-title: Proc 41st Annu Int Conf IEEE Eng Med Biol Soc
– ident: ref42
  doi: 10.1109/EMBC.2013.6610327
– ident: ref39
  doi: 10.1109/10.204774
– ident: ref15
  doi: 10.1109/AIEA51086.2020.00020
– ident: ref18
  doi: 10.1109/THMS.2014.2358634
– ident: ref29
  doi: 10.3390/s19122811
– ident: ref2
  doi: 10.3390/bdcc2030021
– ident: ref23
  doi: 10.1109/THMS.2019.2925191
– ident: ref44
  doi: 10.1109/TNSRE.2021.3094324
– ident: ref21
  doi: 10.1016/j.bspc.2019.101774
– ident: ref41
  doi: 10.1109/TNSRE.2017.2687761
– ident: ref37
  doi: 10.1186/s12984-017-0284-4
– ident: ref14
  doi: 10.1109/TNSRE.2021.3077413
– ident: ref19
  doi: 10.1016/j.eswa.2021.114977
– ident: ref10
  doi: 10.1109/TNSRE.2017.2687520
– ident: ref13
  doi: 10.1109/SSCI.2016.7850064
– ident: ref5
  doi: 10.1109/THMS.2021.3098115
– ident: ref38
  doi: 10.1109/ACCESS.2018.2851282
– ident: ref30
  doi: 10.1109/TNSRE.2019.2896269
– ident: ref36
  doi: 10.1371/journal.pone.0186132
SSID ssj0000825558
Score 2.4883292
Snippet The role of feature extraction in electromyogram (EMG) based pattern recognition has recently been emphasized with several publications promoting deep learning...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1247
SubjectTerms Computing costs
Convolution
Convolutional neural networks
Convolutional neural networks (CNN)
Data models
Deep learning
Electromyography
Feature extraction
Machine learning
Matrix representation
Myoelectric control
myoelectric signals
Myoelectricity
Pattern recognition
spatio-temporal models
Spatiotemporal phenomena
Time domain analysis
Training
Title Myoelectric Control With Fixed Convolution-Based Time-Domain Feature Extraction: Exploring the Spatio-Temporal Interaction
URI https://ieeexplore.ieee.org/document/9720722
https://www.proquest.com/docview/2736886406
Volume 52
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1JTwIxFG7Ukx7c0IhbevBkLMx0mM2bC4SY4AWI3CbTvk4kIhgcDPLrfW2HiVuMt8mkbZp-r-33-jZCzsBPkVUHAQMf6VsDVMpSiCQDCFLuZSAiVwc4d-6Ddr9xN_AHK-SijIVRShnnM1XTn8aWDxM5009l9TjkTsjxwF1Fxc3GapXvKVrV8U05Tu4GCD6P3cKI6TpxvdfudFEZ5Bx1VG0J9L5cQ6auyo_D2NwwrS3SWc7NOpY81Wa5qMnFt7SN_538NtksqCa9srKxQ1bUeJdsfEpAWCGLzvvEFsIZSnpjvdbpwzB_pK3hXIH-9VbIJrvG-w6oDhlht5PndDimmj7Opoo25_nUxkdc0tKnjyKzpF3jr816Nv_ViJr3R9t0j_Rbzd5NmxXVGJhESpCzzA9kGiov5UIK7gihIMIDAbc0IKKRlKGvMk-4gHs68qUnuQpxsWNocECeJr19sjaejNUBoRnESmSZ66MANUIZxwpwaVA6BLJNmckqcZbgJLJIVa4rZowSo7I4caLxTDSeSYFnlZyXXV5sno6_Glc0PmXDApoqOV5KQFLs5NcE6V0QRQHynsPfex2RdT22dXE5Jmv5dKZOkKjk4tRI6AeifeeP
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB4hOLQ9AC2tWF71oaeqXhJnnQc3XqttS7iwqNyi2OOIFbCLliwCfj1jOxu1UFW9RZEtW_7Gnm_seQB8QVkSq45jjpLoWw9NyUtMNUeMSxFVqNLQBjjnp_HgvPfjQl4swLc2FsYY45zPTNd-urd8nOiZvSrbzRIRJIIO3CXS-zL00VrtjYo1dqQryCnCmOAXWdg8Y4ZBtjsc5GdkDgpBVqp9C4z-UESussqr49jpmP4K5PPZedeSq-6sVl399CJx4_9OfxWWG7LJ9r10vIcFM_4A735LQbgGT_njxJfCGWl26P3W2a9Rfcn6oweD9td9I538gDQeMhs0wo8mN-VozCyBnE0NO36opz5CYo-1Xn2MuCU7cx7bfOgzYF0zdwPpm36E8_7x8HDAm3oMXBMpqHklY10mJiqF0koEShlM6UigTY2Eaap1Ik0VqRBpV6dSR1qYhBY7w55AYmo6-gSL48nYrAOrMDOqqkJJItRLdJYZpKUh-VDEN3WlOxDMwSl0k6zc1sy4LpzREmSFxbOweBYNnh342na59Zk6_tV4zeLTNmyg6cDWXAKKZi_fFUTw4jSNifls_L3XZ3gzGOYnxcn305-b8NaO4x1etmCxns7MNtGWWu04aX0G2wvq2A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Myoelectric+Control+With+Fixed+Convolution-Based+Time-Domain+Feature+Extraction%3A+Exploring+the+Spatio%E2%80%93Temporal+Interaction&rft.jtitle=IEEE+transactions+on+human-machine+systems&rft.au=Khushaba%2C+Rami+N&rft.au=Al-Timemy%2C+Ali+H&rft.au=Oluwarotimi+Williams+Samuel&rft.au=Scheme%2C+Erik+J&rft.date=2022-12-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=2168-2291&rft.eissn=2168-2305&rft.volume=52&rft.issue=6&rft.spage=1247&rft_id=info:doi/10.1109%2FTHMS.2022.3146053&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2291&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2291&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2291&client=summon