Federated Learning Over Wireless Networks: Convergence Analysis and Resource Allocation

There is an increasing interest in a fast-growing machine learning technique called Federated Learning (FL), in which the model training is distributed over mobile user equipment (UEs), exploiting UEs' local computation and training data. Despite its advantages such as preserving data privacy,...

Full description

Saved in:
Bibliographic Details
Published inIEEE/ACM transactions on networking Vol. 29; no. 1; pp. 398 - 409
Main Authors Dinh, Canh T., Tran, Nguyen H., Nguyen, Minh N. H., Hong, Choong Seon, Bao, Wei, Zomaya, Albert Y., Gramoli, Vincent
Format Journal Article
LanguageEnglish
Published New York IEEE 01.02.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract There is an increasing interest in a fast-growing machine learning technique called Federated Learning (FL), in which the model training is distributed over mobile user equipment (UEs), exploiting UEs' local computation and training data. Despite its advantages such as preserving data privacy, FL still has challenges of heterogeneity across UEs' data and physical resources. To address these challenges, we first propose FEDL , a FL algorithm which can handle heterogeneous UE data without further assumptions except strongly convex and smooth loss functions. We provide a convergence rate characterizing the trade-off between local computation rounds of each UE to update its local model and global communication rounds to update the FL global model. We then employ FEDL in wireless networks as a resource allocation optimization problem that captures the trade-off between FEDL convergence wall clock time and energy consumption of UEs with heterogeneous computing and power resources. Even though the wireless resource allocation problem of FEDL is non-convex, we exploit this problem's structure to decompose it into three sub-problems and analyze their closed-form solutions as well as insights into problem design. Finally, we empirically evaluate the convergence of FEDL with PyTorch experiments, and provide extensive numerical results for the wireless resource allocation sub-problems. Experimental results show that FEDL outperforms the vanilla FedAvg algorithm in terms of convergence rate and test accuracy in various settings.
AbstractList There is an increasing interest in a fast-growing machine learning technique called Federated Learning (FL), in which the model training is distributed over mobile user equipment (UEs), exploiting UEs’ local computation and training data. Despite its advantages such as preserving data privacy, FL still has challenges of heterogeneity across UEs’ data and physical resources. To address these challenges, we first propose FEDL , a FL algorithm which can handle heterogeneous UE data without further assumptions except strongly convex and smooth loss functions. We provide a convergence rate characterizing the trade-off between local computation rounds of each UE to update its local model and global communication rounds to update the FL global model. We then employ FEDL in wireless networks as a resource allocation optimization problem that captures the trade-off between FEDL convergence wall clock time and energy consumption of UEs with heterogeneous computing and power resources. Even though the wireless resource allocation problem of FEDL is non-convex, we exploit this problem’s structure to decompose it into three sub-problems and analyze their closed-form solutions as well as insights into problem design. Finally, we empirically evaluate the convergence of FEDL with PyTorch experiments, and provide extensive numerical results for the wireless resource allocation sub-problems. Experimental results show that FEDL outperforms the vanilla FedAvg algorithm in terms of convergence rate and test accuracy in various settings.
Author Nguyen, Minh N. H.
Hong, Choong Seon
Gramoli, Vincent
Tran, Nguyen H.
Bao, Wei
Dinh, Canh T.
Zomaya, Albert Y.
Author_xml – sequence: 1
  givenname: Canh T.
  orcidid: 0000-0002-0205-7743
  surname: Dinh
  fullname: Dinh, Canh T.
  email: tdin6081@uni.sydney.edu.au
  organization: School of Computer Science, The University of Sydney, Sydney, NSW, Australia
– sequence: 2
  givenname: Nguyen H.
  orcidid: 0000-0001-7323-9213
  surname: Tran
  fullname: Tran, Nguyen H.
  email: nguyen.tran@sydney.edu.au
  organization: School of Computer Science, The University of Sydney, Sydney, NSW, Australia
– sequence: 3
  givenname: Minh N. H.
  orcidid: 0000-0002-3035-0816
  surname: Nguyen
  fullname: Nguyen, Minh N. H.
  email: minhnhn@khu.ac.kr
  organization: Department of Computer Science and Engineering, Kyung Hee University, Seoul, South Korea
– sequence: 4
  givenname: Choong Seon
  orcidid: 0000-0003-3484-7333
  surname: Hong
  fullname: Hong, Choong Seon
  email: cshong@khu.ac.kr
  organization: Department of Computer Science and Engineering, Kyung Hee University, Seoul, South Korea
– sequence: 5
  givenname: Wei
  orcidid: 0000-0003-1874-1766
  surname: Bao
  fullname: Bao, Wei
  email: wei.bao@sydney.edu.au
  organization: School of Computer Science, The University of Sydney, Sydney, NSW, Australia
– sequence: 6
  givenname: Albert Y.
  orcidid: 0000-0002-3090-1059
  surname: Zomaya
  fullname: Zomaya, Albert Y.
  email: albert.zomaya@sydney.edu.au
  organization: School of Computer Science, The University of Sydney, Sydney, NSW, Australia
– sequence: 7
  givenname: Vincent
  surname: Gramoli
  fullname: Gramoli, Vincent
  email: vincent.gramoli@epfl.ch
  organization: School of Computer Science, The University of Sydney, Sydney, NSW, Australia
BookMark eNp9kE9Lw0AQxRepYFv9AOIl4Dl1_2fXWymtCsWCVHpcNsmkbI2bupsq_famtnjw4GmGmfcb3rwB6vnGA0LXBI8Iwfpu-TxdjiimeMQwE1mGz1CfCKFSKqTsdT2WLJVS0ws0iHGDMWGYyj5azaCEYFsokznY4J1fJ4tPCMnKBaghxuQZ2q8mvMX7ZNL4brMGX0Ay9rbeRxcT68vkBWKzC4dpXTeFbV3jL9F5ZesIV6c6RK-z6XLymM4XD0-T8TwtqGZtWlFVMiUtCI5LmeV5IXJcVtLSnHEFBdNZVYqcd5-UNK8ywrkolGaC01wpStgQ3R7vbkPzsYPYmk1npTMXDeUaK8yFVJ0qO6qK0MQYoDKFa398tsG62hBsDimaQ4rmkKI5pdiR5A-5De7dhv2_zM2RcQDwq9dUEq0F-waS93-E
CODEN IEANEP
CitedBy_id crossref_primary_10_1109_JIOT_2024_3462722
crossref_primary_10_1109_JIOT_2024_3457372
crossref_primary_10_1109_TWC_2024_3457591
crossref_primary_10_1007_s00607_022_01078_1
crossref_primary_10_1109_JSAC_2023_3242710
crossref_primary_10_1109_LWC_2023_3273318
crossref_primary_10_1109_TVT_2021_3055767
crossref_primary_10_1109_JIOT_2023_3316470
crossref_primary_10_1109_TCOMM_2024_3379368
crossref_primary_10_1145_3703628
crossref_primary_10_1007_s12083_021_01254_8
crossref_primary_10_1109_TMC_2023_3303017
crossref_primary_10_7717_peerj_cs_2360
crossref_primary_10_1109_TWC_2023_3303492
crossref_primary_10_1109_TNNLS_2023_3327248
crossref_primary_10_1109_TMC_2022_3214234
crossref_primary_10_1109_JSAC_2024_3431568
crossref_primary_10_1109_TVT_2024_3359860
crossref_primary_10_32604_cmc_2023_032758
crossref_primary_10_1109_TNET_2023_3257236
crossref_primary_10_1109_TPDS_2022_3202887
crossref_primary_10_1109_TSC_2024_3478826
crossref_primary_10_1109_TNET_2022_3143495
crossref_primary_10_1109_TWC_2024_3466177
crossref_primary_10_1109_JIOT_2023_3314743
crossref_primary_10_1109_TNET_2023_3328632
crossref_primary_10_3390_ai4030039
crossref_primary_10_1109_TNET_2023_3328635
crossref_primary_10_1109_LWC_2022_3147236
crossref_primary_10_3390_electronics12153259
crossref_primary_10_1109_TNET_2024_3365534
crossref_primary_10_3390_info15040190
crossref_primary_10_1109_TC_2021_3068219
crossref_primary_10_1109_TMC_2024_3350654
crossref_primary_10_1109_TVT_2024_3410178
crossref_primary_10_1109_COMST_2023_3302474
crossref_primary_10_1007_s11633_022_1338_z
crossref_primary_10_1109_COMST_2023_3330910
crossref_primary_10_1109_TNET_2024_3363916
crossref_primary_10_1109_TSC_2024_3376259
crossref_primary_10_1109_TII_2022_3223234
crossref_primary_10_1109_TPDS_2022_3206480
crossref_primary_10_3390_s23167262
crossref_primary_10_1109_TMC_2023_3315334
crossref_primary_10_1109_TNSM_2022_3216326
crossref_primary_10_1109_JIOT_2023_3330754
crossref_primary_10_1109_TNET_2024_3481437
crossref_primary_10_1109_TWC_2020_3003744
crossref_primary_10_1109_MSP_2021_3125282
crossref_primary_10_1109_JIOT_2022_3218729
crossref_primary_10_1109_JSAC_2022_3180799
crossref_primary_10_1109_TNET_2023_3262482
crossref_primary_10_1109_TWC_2022_3144140
crossref_primary_10_1109_TPDS_2022_3195207
crossref_primary_10_1109_COMST_2024_3352910
crossref_primary_10_1109_JIOT_2023_3262620
crossref_primary_10_1109_JIOT_2024_3432049
crossref_primary_10_1109_TMC_2024_3508260
crossref_primary_10_1109_JSAC_2022_3143259
crossref_primary_10_1109_TMC_2021_3125793
crossref_primary_10_1007_s11432_023_3918_9
crossref_primary_10_1109_TCE_2023_3342187
crossref_primary_10_1109_JIOT_2023_3298366
crossref_primary_10_1109_TNSE_2024_3489554
crossref_primary_10_1109_TWC_2021_3137024
crossref_primary_10_1109_TMC_2023_3262829
crossref_primary_10_1109_TMC_2021_3085979
crossref_primary_10_3390_jsan13010001
crossref_primary_10_1109_TITS_2023_3236991
crossref_primary_10_1109_TWC_2022_3189601
crossref_primary_10_1109_TNET_2023_3297390
crossref_primary_10_1016_j_heliyon_2023_e17622
crossref_primary_10_1109_TVT_2021_3135332
crossref_primary_10_1109_TVT_2023_3234550
crossref_primary_10_1109_TMC_2023_3237636
crossref_primary_10_1109_TVT_2023_3325843
crossref_primary_10_1109_TPDS_2023_3277367
crossref_primary_10_1109_TWC_2021_3103874
crossref_primary_10_1109_TNET_2022_3168939
crossref_primary_10_1016_j_comnet_2023_109556
crossref_primary_10_1109_TWC_2023_3291701
crossref_primary_10_1109_TPDS_2022_3146253
crossref_primary_10_1145_3673237
crossref_primary_10_1109_LWC_2023_3245280
crossref_primary_10_1109_JIOT_2024_3363443
crossref_primary_10_3390_math11122693
crossref_primary_10_1109_TCOMM_2022_3163439
crossref_primary_10_3390_signals3040041
crossref_primary_10_1109_TNSE_2023_3328776
crossref_primary_10_1109_TVT_2024_3382893
crossref_primary_10_1109_JIOT_2022_3188544
crossref_primary_10_1109_JIOT_2023_3285868
crossref_primary_10_1109_TWC_2022_3167263
crossref_primary_10_1016_j_automatica_2023_111126
crossref_primary_10_1109_TNSM_2021_3137887
crossref_primary_10_1049_cmu2_12333
crossref_primary_10_1109_TAI_2024_3443787
crossref_primary_10_1109_TMC_2024_3466844
crossref_primary_10_1109_JIOT_2022_3151193
crossref_primary_10_1631_FITEE_2300122
crossref_primary_10_1016_j_future_2021_11_020
crossref_primary_10_1109_LCOMM_2021_3103536
crossref_primary_10_1109_TWC_2023_3344637
crossref_primary_10_1109_JPROC_2024_3409428
crossref_primary_10_1109_TCOMM_2022_3153068
crossref_primary_10_1007_s11280_021_00989_x
crossref_primary_10_1109_MCI_2020_3039068
crossref_primary_10_1109_TNET_2022_3231864
crossref_primary_10_1109_TPDS_2023_3240883
crossref_primary_10_1109_OJCOMS_2022_3188051
crossref_primary_10_1109_TVT_2022_3205778
crossref_primary_10_1109_ACCESS_2022_3216710
crossref_primary_10_1109_ACCESS_2024_3493112
crossref_primary_10_1109_TGCN_2023_3242999
crossref_primary_10_1109_TNET_2022_3231986
crossref_primary_10_1109_LWC_2024_3518694
crossref_primary_10_1109_TPDS_2021_3131654
crossref_primary_10_3390_en17246485
crossref_primary_10_1109_TCOMM_2024_3420733
crossref_primary_10_1016_j_icte_2022_01_019
crossref_primary_10_1109_TMC_2023_3331690
crossref_primary_10_1109_TNET_2023_3286987
crossref_primary_10_1109_TNSE_2022_3206474
crossref_primary_10_1109_TWC_2021_3138394
crossref_primary_10_1109_OJCOMS_2022_3222749
crossref_primary_10_1109_TMC_2023_3335258
crossref_primary_10_1109_TCCN_2024_3394889
crossref_primary_10_1109_TNET_2024_3379439
crossref_primary_10_1109_TNSE_2022_3196463
crossref_primary_10_1109_TNSM_2023_3278023
crossref_primary_10_1109_LCOMM_2022_3174295
crossref_primary_10_1109_TWC_2023_3235894
crossref_primary_10_1109_LCOMM_2024_3368667
crossref_primary_10_1109_JIOT_2022_3153996
crossref_primary_10_1016_j_neunet_2023_06_010
crossref_primary_10_3390_systems10040117
crossref_primary_10_1109_ACCESS_2024_3438163
crossref_primary_10_1007_s11432_022_3652_2
crossref_primary_10_1109_TNET_2024_3487582
crossref_primary_10_1109_TSC_2024_3489437
crossref_primary_10_1109_JIOT_2023_3285937
crossref_primary_10_1109_TII_2022_3170900
crossref_primary_10_1109_TWC_2024_3360642
crossref_primary_10_1109_JSAC_2021_3118346
crossref_primary_10_1109_ACCESS_2023_3244099
crossref_primary_10_1109_JIOT_2022_3224239
crossref_primary_10_1109_JSAC_2021_3118344
crossref_primary_10_1109_TMC_2023_3289940
crossref_primary_10_1109_JIOT_2022_3204637
crossref_primary_10_1109_JIOT_2022_3172936
crossref_primary_10_1109_TWC_2023_3330010
crossref_primary_10_1109_JSAC_2024_3365901
crossref_primary_10_1109_TMC_2024_3509852
crossref_primary_10_1109_JIOT_2022_3183295
crossref_primary_10_1109_TITS_2023_3265416
crossref_primary_10_1109_TCCN_2024_3424840
crossref_primary_10_1109_TVT_2022_3150004
crossref_primary_10_1109_JSAC_2021_3126076
crossref_primary_10_1109_TWC_2022_3192550
crossref_primary_10_1109_TNET_2024_3482356
crossref_primary_10_1007_s12083_023_01616_4
crossref_primary_10_1109_JSAC_2022_3213344
crossref_primary_10_1109_ACCESS_2025_3528248
crossref_primary_10_1109_JSAC_2022_3213345
crossref_primary_10_1109_TMLCN_2023_3285171
crossref_primary_10_1007_s00521_021_06378_9
crossref_primary_10_1109_TMC_2024_3437435
crossref_primary_10_1109_TWC_2022_3221770
crossref_primary_10_3390_drones8030082
crossref_primary_10_1109_TPDS_2023_3277423
crossref_primary_10_1109_TSP_2023_3322791
crossref_primary_10_1109_MCOM_005_210108
crossref_primary_10_1109_TII_2021_3117861
crossref_primary_10_1631_FITEE_2100538
crossref_primary_10_1109_TNSE_2024_3488719
crossref_primary_10_1016_j_vehcom_2024_100870
crossref_primary_10_1109_JIOT_2024_3414472
crossref_primary_10_1109_TC_2023_3337317
crossref_primary_10_1109_TVT_2023_3250273
crossref_primary_10_1109_JIOT_2023_3301019
crossref_primary_10_1186_s13634_024_01192_6
crossref_primary_10_1109_TCOMM_2024_3435072
crossref_primary_10_1109_TNET_2022_3219924
crossref_primary_10_1109_OJCOMS_2023_3266389
crossref_primary_10_1109_TNSE_2023_3344850
crossref_primary_10_1109_TETCI_2022_3170471
crossref_primary_10_1109_TNET_2024_3384839
crossref_primary_10_3390_s22249776
crossref_primary_10_1109_JPROC_2024_3437365
crossref_primary_10_1109_TWC_2023_3315962
crossref_primary_10_1109_TNSE_2023_3246463
crossref_primary_10_1109_TVT_2022_3173057
crossref_primary_10_1109_JSTSP_2023_3239189
crossref_primary_10_1109_ACCESS_2024_3458089
crossref_primary_10_1109_JIOT_2022_3223690
crossref_primary_10_1109_TNSM_2024_3414417
crossref_primary_10_1109_TGCN_2023_3262516
crossref_primary_10_3390_electronics11040670
crossref_primary_10_1007_s12065_022_00718_x
crossref_primary_10_1109_TSC_2024_3350050
crossref_primary_10_1109_JSTSP_2021_3126174
crossref_primary_10_1109_OJCOMS_2024_3438264
crossref_primary_10_30794_pausbed_1370918
crossref_primary_10_1186_s13677_024_00614_y
crossref_primary_10_1109_LWC_2024_3412674
crossref_primary_10_1016_j_jpdc_2023_01_006
crossref_primary_10_1109_JIOT_2022_3194833
crossref_primary_10_1016_j_eij_2023_02_005
crossref_primary_10_1109_TETC_2022_3159282
crossref_primary_10_1109_ACCESS_2025_3526426
crossref_primary_10_1109_TMLCN_2024_3453212
crossref_primary_10_1016_j_compmedimag_2022_102139
crossref_primary_10_1007_s11277_024_10929_3
crossref_primary_10_1109_TNNLS_2022_3170872
crossref_primary_10_1109_TSMC_2023_3276329
crossref_primary_10_1109_JIOT_2022_3197317
crossref_primary_10_1016_j_future_2023_05_007
crossref_primary_10_1109_TNET_2024_3423316
crossref_primary_10_1109_JIOT_2021_3085429
crossref_primary_10_1109_JIOT_2022_3172270
crossref_primary_10_1109_TWC_2022_3181611
crossref_primary_10_1109_JIOT_2024_3362972
crossref_primary_10_1109_TNSE_2023_3334476
Cites_doi 10.1109/JSAC.2019.2904348
10.1007/978-3-319-91578-4
10.1145/3404397.3404457
10.1109/INFCOM.2001.916721
10.1109/MCOM.001.1900649
10.1109/5.726791
10.1007/s10107-004-0559-y
10.1017/CBO9780511804441
10.1109/IJCNN.2017.7966217
10.1080/10556788.2016.1278445
10.1109/TWC.2020.2971981
10.1109/INFOCOM.2019.8737464
10.1109/TWC.2020.3002988
10.1109/SPAWC.2019.8815402
10.1109/TSP.2016.2637317
10.24963/ijcai.2018/447
10.1007/BF01130406
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TNET.2020.3035770
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-2566
EndPage 409
ExternalDocumentID 10_1109_TNET_2020_3035770
9261995
Genre orig-research
GrantInformation_xml – fundername: Vietnam National Foundation for Science and Technology Development (NAFOSTED)
  grantid: 102.02-2019.321
  funderid: 10.13039/100012046
GroupedDBID -DZ
-~X
.DC
0R~
29I
4.4
5GY
5VS
6IK
85S
8US
97E
9M8
AAJGR
AAKMM
AALFJ
AARMG
AASAJ
AAWTH
AAWTV
ABAZT
ABPPZ
ABQJQ
ABVLG
ACGFS
ACGOD
ACIWK
ACM
ADBCU
ADL
AEBYY
AEFXT
AEJOY
AENSD
AETEA
AETIX
AFWIH
AFWXC
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AIKLT
AKJIK
AKQYR
AKRVB
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BDXCO
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CCLIF
CS3
D0L
EBS
EJD
FEDTE
GUFHI
HF~
HGAVV
HZ~
H~9
I07
ICLAB
IEDLZ
IES
IFIPE
IFJZH
IPLJI
JAVBF
LAI
LHSKQ
M43
MVM
O9-
OCL
P1C
P2P
PQQKQ
RIA
RIE
RNS
ROL
TN5
UPT
UQL
VH1
XOL
YR2
ZCA
AAYOK
AAYXX
CITATION
RIG
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c293t-f28d386ae540d67bbc5b0df6a2b348ec397fd5b4558d2bf71445c893542b88213
IEDL.DBID RIE
ISSN 1063-6692
IngestDate Sun Jun 29 12:33:23 EDT 2025
Tue Jul 01 01:49:25 EDT 2025
Thu Apr 24 22:57:05 EDT 2025
Wed Aug 27 05:44:46 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c293t-f28d386ae540d67bbc5b0df6a2b348ec397fd5b4558d2bf71445c893542b88213
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-3090-1059
0000-0002-3035-0816
0000-0003-1874-1766
0000-0002-0205-7743
0000-0003-3484-7333
0000-0001-7323-9213
PQID 2490804568
PQPubID 32020
PageCount 12
ParticipantIDs crossref_citationtrail_10_1109_TNET_2020_3035770
crossref_primary_10_1109_TNET_2020_3035770
ieee_primary_9261995
proquest_journals_2490804568
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-Feb.
2021-2-00
20210201
PublicationDateYYYYMMDD 2021-02-01
PublicationDate_xml – month: 02
  year: 2021
  text: 2021-Feb.
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE/ACM transactions on networking
PublicationTitleAbbrev TNET
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref34
reinsel (ref2) 2018
ref36
ref14
burd (ref31) 1996; 13
ref33
ref32
ref10
shamir (ref11) 0; 2014
wang (ref25) 2018
nesterov (ref28) 2018; 137
ref1
caldas (ref37) 2018
ref17
ref38
(ref35) 2020
ref19
kone?ný (ref6) 2016
smith (ref8) 2018; 18
kone?ný (ref15) 2016
wang (ref12) 2018
li (ref39) 2019
smith (ref16) 2017
ref23
mcmahan (ref4) 2017; 54
chen (ref24) 2019
ref22
ref21
reddi (ref27) 2016
ref29
tang (ref20) 2018
ref7
(ref3) 2019
stich (ref13) 2019
dinh (ref18) 2020
li (ref9) 2019
miettinen (ref30) 2010
zhang (ref26) 2017
williams (ref5) 2018
References_xml – year: 2018
  ident: ref5
  publication-title: What does AI in a phone really mean?
– ident: ref7
  doi: 10.1109/JSAC.2019.2904348
– year: 2020
  ident: ref35
– year: 2020
  ident: ref18
  article-title: Personalized federated learning with Moreau envelopes
  publication-title: 34th Conf Neural Inf Process Syst (NeurIPS)
– start-page: 16
  year: 2019
  ident: ref9
  article-title: Federated optimization in heterogeneous networks
  publication-title: Proc 1st Adapt Multitask Learn ICML Workshop
– volume: 137
  year: 2018
  ident: ref28
  publication-title: Convex Optimization Lecture Notes
  doi: 10.1007/978-3-319-91578-4
– volume: 2014
  start-page: ii
  year: 0
  ident: ref11
  article-title: Communication-efficient distributed optimization using an approximate newton-type method
  publication-title: Proc ICML
– year: 2016
  ident: ref6
  article-title: Federated optimization: Distributed machine learning for on-device intelligence
  publication-title: arXiv 1610 02527
– volume: 18
  start-page: 1
  year: 2018
  ident: ref8
  article-title: CoCoA: A general framework for communication-efficient distributed optimization
  publication-title: J Mach Learn Res
– ident: ref17
  doi: 10.1145/3404397.3404457
– start-page: 7663
  year: 2018
  ident: ref20
  article-title: Communication compression for decentralized training
  publication-title: Proc NeurIPS
– start-page: 4
  year: 2010
  ident: ref30
  article-title: Energy efficiency of mobile clients in cloud computing
  publication-title: Proc USENIX HotCloud
– volume: 54
  start-page: 1273
  year: 2017
  ident: ref4
  article-title: Communication-efficient learning of deep networks from decentralized data
  publication-title: Proc 20th Int Conf Artif Intell Statist (PMLR)
– ident: ref32
  doi: 10.1109/INFCOM.2001.916721
– year: 2016
  ident: ref27
  publication-title: arXiv 1608 06879
– ident: ref22
  doi: 10.1109/MCOM.001.1900649
– ident: ref36
  doi: 10.1109/5.726791
– start-page: 28
  year: 2018
  ident: ref2
  publication-title: The Digitization of the World From Edge to Core
– year: 2019
  ident: ref13
  article-title: Local SGD converges fast and communicates little
  publication-title: Proc Int Conf Learn Represent (ICLR)
– ident: ref33
  doi: 10.1007/s10107-004-0559-y
– ident: ref29
  doi: 10.1017/CBO9780511804441
– year: 2019
  ident: ref3
  publication-title: Free Community-based GPS Maps & Traffic Navigation App |Waze
– year: 2018
  ident: ref37
  article-title: LEAF: A benchmark for federated settings
  publication-title: arXiv 1812 01097
– start-page: 4427
  year: 2017
  ident: ref16
  article-title: Federated multi-task learning
  publication-title: Proc NeurIPS
– year: 2016
  ident: ref15
  article-title: Federated learning: Strategies for improving communication efficiency
  publication-title: arXiv 1610 05492
– ident: ref38
  doi: 10.1109/IJCNN.2017.7966217
– ident: ref10
  doi: 10.1080/10556788.2016.1278445
– start-page: 9850
  year: 2018
  ident: ref25
  article-title: ATOMO: Communication-efficient learning via atomic sparsification
  publication-title: Proc NeurIPS
– ident: ref23
  doi: 10.1109/TWC.2020.2971981
– ident: ref1
  doi: 10.1109/INFOCOM.2019.8737464
– ident: ref21
  doi: 10.1109/TWC.2020.3002988
– start-page: 4035
  year: 2017
  ident: ref26
  article-title: ZipML: Training linear models with end-to-end low precision, and a little bit of deep learning
  publication-title: Proc Int Conf Mach Learn
– year: 2018
  ident: ref12
  article-title: Cooperative SGD: A unified framework for the design and analysis of communication-efficient SGD algorithms
  publication-title: arXiv 1808 07576
– ident: ref19
  doi: 10.1109/SPAWC.2019.8815402
– year: 2019
  ident: ref24
  article-title: A joint learning and communications framework for federated learning over wireless networks
  publication-title: arXiv 1909 07972
– ident: ref34
  doi: 10.1109/TSP.2016.2637317
– year: 2019
  ident: ref39
  publication-title: arXiv 1910 09126
– ident: ref14
  doi: 10.24963/ijcai.2018/447
– volume: 13
  start-page: 203
  year: 1996
  ident: ref31
  article-title: Processor design for portable systems
  publication-title: J VLSI Signal Process Syst
  doi: 10.1007/BF01130406
SSID ssj0013026
Score 2.7008102
Snippet There is an increasing interest in a fast-growing machine learning technique called Federated Learning (FL), in which the model training is distributed over...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 398
SubjectTerms Algorithms
Computational modeling
Convergence
Data models
Distributed machine learning
Energy consumption
Federated learning
Heterogeneity
Machine learning
Optimization
optimization decomposition
Power consumption
Resource allocation
Resource management
Tradeoffs
Training
Wireless communication
Wireless networks
Title Federated Learning Over Wireless Networks: Convergence Analysis and Resource Allocation
URI https://ieeexplore.ieee.org/document/9261995
https://www.proquest.com/docview/2490804568
Volume 29
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8NADLZaJhh4IwoF3cCESJveKwlbVVEhpJaliG7RvcJAVRC0C7-e8yUpFSDEluFOOtnO-fPZ_gxw4dLEg3huIlbILOLGJpEqU4hJotAITGgSG43l7QO_m4ppA65WvTDOuVB85jr4GXL59sUs8amsmyHcz0QTmj5wK3u1vjIGcRit5iMcFkmZ0SqD2Yuz7mR8M_GRIPUBasxEgnOJ13xQGKry4yYO7mW4A6P6YGVVyXNnudAd8_GNs_G_J9-F7Qpnkn5pGHvQcPN92FpjHzyAxyESSXisaUnFsvpE7r1lE6yInfkbkIzLGvH3azLA4vTQp-lIzWNC1NyS-vmf9GfoFlHNh_AwvJkMbqNqzkJkvLNfRAVNLUulch69WZlobYSObSEV1YynznjIUlihuRCppbpIfAwmjMc5glPtAXqPHcHG_GXujoFozrVikhkdO66cVDJztlBGMCTK46oFcS353FQk5DgLY5aHYCTOclRWjsrKK2W14HK15bVk4Phr8QEKf7WwknsL2rV68-offc8p5jwR0aYnv-86hU2KFSyhRrsNG4u3pTvzEGShz4PtfQKkMtc9
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1LT9tAEB4BPZQeoC2tGh5lD-0FycHsyzYSB0SJQoFwCYKbuy_30ChUTaKq_S39K_1vzKztgFrUG1JvPqwteefzzjeemW8A3oU8QxIvXSIqXSTS-SwxdQoxywyBwMUmsfOB7l_Kj9fqegF-zXthQgix-Cx06TLm8v2Nm9Gvst2C6H7RllCehh_fMUCbHJx8QGu-57x3PDzqJ80MgcShI5smFc-9yLUJyEy8zqx1yqa-0oZbIfPg0B1XXlmpVO65rTKML5RDH64kt0g-9wQ-dxGeIM9QvO4Ou8tRpHGYG8ZUItG64E3OdC8tdoeD4yHGnhxD4lSojCYh3_N6cYzLX2d_dGi9VfjdbkVdx_KlO5varvv5h0rk_7pXz2GlYdLssIb-C1gI45fw7J6-4hpc9UgqA9m0Z42O7Gd2gd8uo5rfEZ7xbFBXwU_22RGV38dO1MBapRZmxp61CQ52OCLHT0B-BZeP8mavYWl8Mw5vgFkprRFaOJsGaYI2ugi-Mk4JkgKUpgNpa-nSNTLrNO1jVMZwKy1KAkdJ4CgbcHRgZ37L11pj5F-L18jY84WNnTuw2cKpbE6hSckpq0ucPV9_-K5teNofnp-VZyeD0w1Y5lSvEyvSN2Fp-m0WtpBwTe3biHsGnx4bPLfvXDQX
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Federated+Learning+Over+Wireless+Networks%3A+Convergence+Analysis+and+Resource+Allocation&rft.jtitle=IEEE%2FACM+transactions+on+networking&rft.au=Dinh%2C+Canh+T&rft.au=Tran%2C+Nguyen+H&rft.au=Nguyen%2C+Minh+N+H&rft.au=Hong%2C+Choong+Seon&rft.date=2021-02-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1063-6692&rft.eissn=1558-2566&rft.volume=29&rft.issue=1&rft.spage=398&rft_id=info:doi/10.1109%2FTNET.2020.3035770&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-6692&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-6692&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-6692&client=summon