Federated Learning Over Wireless Networks: Convergence Analysis and Resource Allocation
There is an increasing interest in a fast-growing machine learning technique called Federated Learning (FL), in which the model training is distributed over mobile user equipment (UEs), exploiting UEs' local computation and training data. Despite its advantages such as preserving data privacy,...
Saved in:
Published in | IEEE/ACM transactions on networking Vol. 29; no. 1; pp. 398 - 409 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.02.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | There is an increasing interest in a fast-growing machine learning technique called Federated Learning (FL), in which the model training is distributed over mobile user equipment (UEs), exploiting UEs' local computation and training data. Despite its advantages such as preserving data privacy, FL still has challenges of heterogeneity across UEs' data and physical resources. To address these challenges, we first propose FEDL , a FL algorithm which can handle heterogeneous UE data without further assumptions except strongly convex and smooth loss functions. We provide a convergence rate characterizing the trade-off between local computation rounds of each UE to update its local model and global communication rounds to update the FL global model. We then employ FEDL in wireless networks as a resource allocation optimization problem that captures the trade-off between FEDL convergence wall clock time and energy consumption of UEs with heterogeneous computing and power resources. Even though the wireless resource allocation problem of FEDL is non-convex, we exploit this problem's structure to decompose it into three sub-problems and analyze their closed-form solutions as well as insights into problem design. Finally, we empirically evaluate the convergence of FEDL with PyTorch experiments, and provide extensive numerical results for the wireless resource allocation sub-problems. Experimental results show that FEDL outperforms the vanilla FedAvg algorithm in terms of convergence rate and test accuracy in various settings. |
---|---|
AbstractList | There is an increasing interest in a fast-growing machine learning technique called Federated Learning (FL), in which the model training is distributed over mobile user equipment (UEs), exploiting UEs’ local computation and training data. Despite its advantages such as preserving data privacy, FL still has challenges of heterogeneity across UEs’ data and physical resources. To address these challenges, we first propose FEDL , a FL algorithm which can handle heterogeneous UE data without further assumptions except strongly convex and smooth loss functions. We provide a convergence rate characterizing the trade-off between local computation rounds of each UE to update its local model and global communication rounds to update the FL global model. We then employ FEDL in wireless networks as a resource allocation optimization problem that captures the trade-off between FEDL convergence wall clock time and energy consumption of UEs with heterogeneous computing and power resources. Even though the wireless resource allocation problem of FEDL is non-convex, we exploit this problem’s structure to decompose it into three sub-problems and analyze their closed-form solutions as well as insights into problem design. Finally, we empirically evaluate the convergence of FEDL with PyTorch experiments, and provide extensive numerical results for the wireless resource allocation sub-problems. Experimental results show that FEDL outperforms the vanilla FedAvg algorithm in terms of convergence rate and test accuracy in various settings. |
Author | Nguyen, Minh N. H. Hong, Choong Seon Gramoli, Vincent Tran, Nguyen H. Bao, Wei Dinh, Canh T. Zomaya, Albert Y. |
Author_xml | – sequence: 1 givenname: Canh T. orcidid: 0000-0002-0205-7743 surname: Dinh fullname: Dinh, Canh T. email: tdin6081@uni.sydney.edu.au organization: School of Computer Science, The University of Sydney, Sydney, NSW, Australia – sequence: 2 givenname: Nguyen H. orcidid: 0000-0001-7323-9213 surname: Tran fullname: Tran, Nguyen H. email: nguyen.tran@sydney.edu.au organization: School of Computer Science, The University of Sydney, Sydney, NSW, Australia – sequence: 3 givenname: Minh N. H. orcidid: 0000-0002-3035-0816 surname: Nguyen fullname: Nguyen, Minh N. H. email: minhnhn@khu.ac.kr organization: Department of Computer Science and Engineering, Kyung Hee University, Seoul, South Korea – sequence: 4 givenname: Choong Seon orcidid: 0000-0003-3484-7333 surname: Hong fullname: Hong, Choong Seon email: cshong@khu.ac.kr organization: Department of Computer Science and Engineering, Kyung Hee University, Seoul, South Korea – sequence: 5 givenname: Wei orcidid: 0000-0003-1874-1766 surname: Bao fullname: Bao, Wei email: wei.bao@sydney.edu.au organization: School of Computer Science, The University of Sydney, Sydney, NSW, Australia – sequence: 6 givenname: Albert Y. orcidid: 0000-0002-3090-1059 surname: Zomaya fullname: Zomaya, Albert Y. email: albert.zomaya@sydney.edu.au organization: School of Computer Science, The University of Sydney, Sydney, NSW, Australia – sequence: 7 givenname: Vincent surname: Gramoli fullname: Gramoli, Vincent email: vincent.gramoli@epfl.ch organization: School of Computer Science, The University of Sydney, Sydney, NSW, Australia |
BookMark | eNp9kE9Lw0AQxRepYFv9AOIl4Dl1_2fXWymtCsWCVHpcNsmkbI2bupsq_famtnjw4GmGmfcb3rwB6vnGA0LXBI8Iwfpu-TxdjiimeMQwE1mGz1CfCKFSKqTsdT2WLJVS0ws0iHGDMWGYyj5azaCEYFsokznY4J1fJ4tPCMnKBaghxuQZ2q8mvMX7ZNL4brMGX0Ay9rbeRxcT68vkBWKzC4dpXTeFbV3jL9F5ZesIV6c6RK-z6XLymM4XD0-T8TwtqGZtWlFVMiUtCI5LmeV5IXJcVtLSnHEFBdNZVYqcd5-UNK8ywrkolGaC01wpStgQ3R7vbkPzsYPYmk1npTMXDeUaK8yFVJ0qO6qK0MQYoDKFa398tsG62hBsDimaQ4rmkKI5pdiR5A-5De7dhv2_zM2RcQDwq9dUEq0F-waS93-E |
CODEN | IEANEP |
CitedBy_id | crossref_primary_10_1109_JIOT_2024_3462722 crossref_primary_10_1109_JIOT_2024_3457372 crossref_primary_10_1109_TWC_2024_3457591 crossref_primary_10_1007_s00607_022_01078_1 crossref_primary_10_1109_JSAC_2023_3242710 crossref_primary_10_1109_LWC_2023_3273318 crossref_primary_10_1109_TVT_2021_3055767 crossref_primary_10_1109_JIOT_2023_3316470 crossref_primary_10_1109_TCOMM_2024_3379368 crossref_primary_10_1145_3703628 crossref_primary_10_1007_s12083_021_01254_8 crossref_primary_10_1109_TMC_2023_3303017 crossref_primary_10_7717_peerj_cs_2360 crossref_primary_10_1109_TWC_2023_3303492 crossref_primary_10_1109_TNNLS_2023_3327248 crossref_primary_10_1109_TMC_2022_3214234 crossref_primary_10_1109_JSAC_2024_3431568 crossref_primary_10_1109_TVT_2024_3359860 crossref_primary_10_32604_cmc_2023_032758 crossref_primary_10_1109_TNET_2023_3257236 crossref_primary_10_1109_TPDS_2022_3202887 crossref_primary_10_1109_TSC_2024_3478826 crossref_primary_10_1109_TNET_2022_3143495 crossref_primary_10_1109_TWC_2024_3466177 crossref_primary_10_1109_JIOT_2023_3314743 crossref_primary_10_1109_TNET_2023_3328632 crossref_primary_10_3390_ai4030039 crossref_primary_10_1109_TNET_2023_3328635 crossref_primary_10_1109_LWC_2022_3147236 crossref_primary_10_3390_electronics12153259 crossref_primary_10_1109_TNET_2024_3365534 crossref_primary_10_3390_info15040190 crossref_primary_10_1109_TC_2021_3068219 crossref_primary_10_1109_TMC_2024_3350654 crossref_primary_10_1109_TVT_2024_3410178 crossref_primary_10_1109_COMST_2023_3302474 crossref_primary_10_1007_s11633_022_1338_z crossref_primary_10_1109_COMST_2023_3330910 crossref_primary_10_1109_TNET_2024_3363916 crossref_primary_10_1109_TSC_2024_3376259 crossref_primary_10_1109_TII_2022_3223234 crossref_primary_10_1109_TPDS_2022_3206480 crossref_primary_10_3390_s23167262 crossref_primary_10_1109_TMC_2023_3315334 crossref_primary_10_1109_TNSM_2022_3216326 crossref_primary_10_1109_JIOT_2023_3330754 crossref_primary_10_1109_TNET_2024_3481437 crossref_primary_10_1109_TWC_2020_3003744 crossref_primary_10_1109_MSP_2021_3125282 crossref_primary_10_1109_JIOT_2022_3218729 crossref_primary_10_1109_JSAC_2022_3180799 crossref_primary_10_1109_TNET_2023_3262482 crossref_primary_10_1109_TWC_2022_3144140 crossref_primary_10_1109_TPDS_2022_3195207 crossref_primary_10_1109_COMST_2024_3352910 crossref_primary_10_1109_JIOT_2023_3262620 crossref_primary_10_1109_JIOT_2024_3432049 crossref_primary_10_1109_TMC_2024_3508260 crossref_primary_10_1109_JSAC_2022_3143259 crossref_primary_10_1109_TMC_2021_3125793 crossref_primary_10_1007_s11432_023_3918_9 crossref_primary_10_1109_TCE_2023_3342187 crossref_primary_10_1109_JIOT_2023_3298366 crossref_primary_10_1109_TNSE_2024_3489554 crossref_primary_10_1109_TWC_2021_3137024 crossref_primary_10_1109_TMC_2023_3262829 crossref_primary_10_1109_TMC_2021_3085979 crossref_primary_10_3390_jsan13010001 crossref_primary_10_1109_TITS_2023_3236991 crossref_primary_10_1109_TWC_2022_3189601 crossref_primary_10_1109_TNET_2023_3297390 crossref_primary_10_1016_j_heliyon_2023_e17622 crossref_primary_10_1109_TVT_2021_3135332 crossref_primary_10_1109_TVT_2023_3234550 crossref_primary_10_1109_TMC_2023_3237636 crossref_primary_10_1109_TVT_2023_3325843 crossref_primary_10_1109_TPDS_2023_3277367 crossref_primary_10_1109_TWC_2021_3103874 crossref_primary_10_1109_TNET_2022_3168939 crossref_primary_10_1016_j_comnet_2023_109556 crossref_primary_10_1109_TWC_2023_3291701 crossref_primary_10_1109_TPDS_2022_3146253 crossref_primary_10_1145_3673237 crossref_primary_10_1109_LWC_2023_3245280 crossref_primary_10_1109_JIOT_2024_3363443 crossref_primary_10_3390_math11122693 crossref_primary_10_1109_TCOMM_2022_3163439 crossref_primary_10_3390_signals3040041 crossref_primary_10_1109_TNSE_2023_3328776 crossref_primary_10_1109_TVT_2024_3382893 crossref_primary_10_1109_JIOT_2022_3188544 crossref_primary_10_1109_JIOT_2023_3285868 crossref_primary_10_1109_TWC_2022_3167263 crossref_primary_10_1016_j_automatica_2023_111126 crossref_primary_10_1109_TNSM_2021_3137887 crossref_primary_10_1049_cmu2_12333 crossref_primary_10_1109_TAI_2024_3443787 crossref_primary_10_1109_TMC_2024_3466844 crossref_primary_10_1109_JIOT_2022_3151193 crossref_primary_10_1631_FITEE_2300122 crossref_primary_10_1016_j_future_2021_11_020 crossref_primary_10_1109_LCOMM_2021_3103536 crossref_primary_10_1109_TWC_2023_3344637 crossref_primary_10_1109_JPROC_2024_3409428 crossref_primary_10_1109_TCOMM_2022_3153068 crossref_primary_10_1007_s11280_021_00989_x crossref_primary_10_1109_MCI_2020_3039068 crossref_primary_10_1109_TNET_2022_3231864 crossref_primary_10_1109_TPDS_2023_3240883 crossref_primary_10_1109_OJCOMS_2022_3188051 crossref_primary_10_1109_TVT_2022_3205778 crossref_primary_10_1109_ACCESS_2022_3216710 crossref_primary_10_1109_ACCESS_2024_3493112 crossref_primary_10_1109_TGCN_2023_3242999 crossref_primary_10_1109_TNET_2022_3231986 crossref_primary_10_1109_LWC_2024_3518694 crossref_primary_10_1109_TPDS_2021_3131654 crossref_primary_10_3390_en17246485 crossref_primary_10_1109_TCOMM_2024_3420733 crossref_primary_10_1016_j_icte_2022_01_019 crossref_primary_10_1109_TMC_2023_3331690 crossref_primary_10_1109_TNET_2023_3286987 crossref_primary_10_1109_TNSE_2022_3206474 crossref_primary_10_1109_TWC_2021_3138394 crossref_primary_10_1109_OJCOMS_2022_3222749 crossref_primary_10_1109_TMC_2023_3335258 crossref_primary_10_1109_TCCN_2024_3394889 crossref_primary_10_1109_TNET_2024_3379439 crossref_primary_10_1109_TNSE_2022_3196463 crossref_primary_10_1109_TNSM_2023_3278023 crossref_primary_10_1109_LCOMM_2022_3174295 crossref_primary_10_1109_TWC_2023_3235894 crossref_primary_10_1109_LCOMM_2024_3368667 crossref_primary_10_1109_JIOT_2022_3153996 crossref_primary_10_1016_j_neunet_2023_06_010 crossref_primary_10_3390_systems10040117 crossref_primary_10_1109_ACCESS_2024_3438163 crossref_primary_10_1007_s11432_022_3652_2 crossref_primary_10_1109_TNET_2024_3487582 crossref_primary_10_1109_TSC_2024_3489437 crossref_primary_10_1109_JIOT_2023_3285937 crossref_primary_10_1109_TII_2022_3170900 crossref_primary_10_1109_TWC_2024_3360642 crossref_primary_10_1109_JSAC_2021_3118346 crossref_primary_10_1109_ACCESS_2023_3244099 crossref_primary_10_1109_JIOT_2022_3224239 crossref_primary_10_1109_JSAC_2021_3118344 crossref_primary_10_1109_TMC_2023_3289940 crossref_primary_10_1109_JIOT_2022_3204637 crossref_primary_10_1109_JIOT_2022_3172936 crossref_primary_10_1109_TWC_2023_3330010 crossref_primary_10_1109_JSAC_2024_3365901 crossref_primary_10_1109_TMC_2024_3509852 crossref_primary_10_1109_JIOT_2022_3183295 crossref_primary_10_1109_TITS_2023_3265416 crossref_primary_10_1109_TCCN_2024_3424840 crossref_primary_10_1109_TVT_2022_3150004 crossref_primary_10_1109_JSAC_2021_3126076 crossref_primary_10_1109_TWC_2022_3192550 crossref_primary_10_1109_TNET_2024_3482356 crossref_primary_10_1007_s12083_023_01616_4 crossref_primary_10_1109_JSAC_2022_3213344 crossref_primary_10_1109_ACCESS_2025_3528248 crossref_primary_10_1109_JSAC_2022_3213345 crossref_primary_10_1109_TMLCN_2023_3285171 crossref_primary_10_1007_s00521_021_06378_9 crossref_primary_10_1109_TMC_2024_3437435 crossref_primary_10_1109_TWC_2022_3221770 crossref_primary_10_3390_drones8030082 crossref_primary_10_1109_TPDS_2023_3277423 crossref_primary_10_1109_TSP_2023_3322791 crossref_primary_10_1109_MCOM_005_210108 crossref_primary_10_1109_TII_2021_3117861 crossref_primary_10_1631_FITEE_2100538 crossref_primary_10_1109_TNSE_2024_3488719 crossref_primary_10_1016_j_vehcom_2024_100870 crossref_primary_10_1109_JIOT_2024_3414472 crossref_primary_10_1109_TC_2023_3337317 crossref_primary_10_1109_TVT_2023_3250273 crossref_primary_10_1109_JIOT_2023_3301019 crossref_primary_10_1186_s13634_024_01192_6 crossref_primary_10_1109_TCOMM_2024_3435072 crossref_primary_10_1109_TNET_2022_3219924 crossref_primary_10_1109_OJCOMS_2023_3266389 crossref_primary_10_1109_TNSE_2023_3344850 crossref_primary_10_1109_TETCI_2022_3170471 crossref_primary_10_1109_TNET_2024_3384839 crossref_primary_10_3390_s22249776 crossref_primary_10_1109_JPROC_2024_3437365 crossref_primary_10_1109_TWC_2023_3315962 crossref_primary_10_1109_TNSE_2023_3246463 crossref_primary_10_1109_TVT_2022_3173057 crossref_primary_10_1109_JSTSP_2023_3239189 crossref_primary_10_1109_ACCESS_2024_3458089 crossref_primary_10_1109_JIOT_2022_3223690 crossref_primary_10_1109_TNSM_2024_3414417 crossref_primary_10_1109_TGCN_2023_3262516 crossref_primary_10_3390_electronics11040670 crossref_primary_10_1007_s12065_022_00718_x crossref_primary_10_1109_TSC_2024_3350050 crossref_primary_10_1109_JSTSP_2021_3126174 crossref_primary_10_1109_OJCOMS_2024_3438264 crossref_primary_10_30794_pausbed_1370918 crossref_primary_10_1186_s13677_024_00614_y crossref_primary_10_1109_LWC_2024_3412674 crossref_primary_10_1016_j_jpdc_2023_01_006 crossref_primary_10_1109_JIOT_2022_3194833 crossref_primary_10_1016_j_eij_2023_02_005 crossref_primary_10_1109_TETC_2022_3159282 crossref_primary_10_1109_ACCESS_2025_3526426 crossref_primary_10_1109_TMLCN_2024_3453212 crossref_primary_10_1016_j_compmedimag_2022_102139 crossref_primary_10_1007_s11277_024_10929_3 crossref_primary_10_1109_TNNLS_2022_3170872 crossref_primary_10_1109_TSMC_2023_3276329 crossref_primary_10_1109_JIOT_2022_3197317 crossref_primary_10_1016_j_future_2023_05_007 crossref_primary_10_1109_TNET_2024_3423316 crossref_primary_10_1109_JIOT_2021_3085429 crossref_primary_10_1109_JIOT_2022_3172270 crossref_primary_10_1109_TWC_2022_3181611 crossref_primary_10_1109_JIOT_2024_3362972 crossref_primary_10_1109_TNSE_2023_3334476 |
Cites_doi | 10.1109/JSAC.2019.2904348 10.1007/978-3-319-91578-4 10.1145/3404397.3404457 10.1109/INFCOM.2001.916721 10.1109/MCOM.001.1900649 10.1109/5.726791 10.1007/s10107-004-0559-y 10.1017/CBO9780511804441 10.1109/IJCNN.2017.7966217 10.1080/10556788.2016.1278445 10.1109/TWC.2020.2971981 10.1109/INFOCOM.2019.8737464 10.1109/TWC.2020.3002988 10.1109/SPAWC.2019.8815402 10.1109/TSP.2016.2637317 10.24963/ijcai.2018/447 10.1007/BF01130406 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
DOI | 10.1109/TNET.2020.3035770 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Technology Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1558-2566 |
EndPage | 409 |
ExternalDocumentID | 10_1109_TNET_2020_3035770 9261995 |
Genre | orig-research |
GrantInformation_xml | – fundername: Vietnam National Foundation for Science and Technology Development (NAFOSTED) grantid: 102.02-2019.321 funderid: 10.13039/100012046 |
GroupedDBID | -DZ -~X .DC 0R~ 29I 4.4 5GY 5VS 6IK 85S 8US 97E 9M8 AAJGR AAKMM AALFJ AARMG AASAJ AAWTH AAWTV ABAZT ABPPZ ABQJQ ABVLG ACGFS ACGOD ACIWK ACM ADBCU ADL AEBYY AEFXT AEJOY AENSD AETEA AETIX AFWIH AFWXC AGQYO AGSQL AHBIQ AI. AIBXA AIKLT AKJIK AKQYR AKRVB ALLEH ALMA_UNASSIGNED_HOLDINGS ATWAV BDXCO BEFXN BFFAM BGNUA BKEBE BPEOZ CCLIF CS3 D0L EBS EJD FEDTE GUFHI HF~ HGAVV HZ~ H~9 I07 ICLAB IEDLZ IES IFIPE IFJZH IPLJI JAVBF LAI LHSKQ M43 MVM O9- OCL P1C P2P PQQKQ RIA RIE RNS ROL TN5 UPT UQL VH1 XOL YR2 ZCA AAYOK AAYXX CITATION RIG 7SC 7SP 8FD JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c293t-f28d386ae540d67bbc5b0df6a2b348ec397fd5b4558d2bf71445c893542b88213 |
IEDL.DBID | RIE |
ISSN | 1063-6692 |
IngestDate | Sun Jun 29 12:33:23 EDT 2025 Tue Jul 01 01:49:25 EDT 2025 Thu Apr 24 22:57:05 EDT 2025 Wed Aug 27 05:44:46 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c293t-f28d386ae540d67bbc5b0df6a2b348ec397fd5b4558d2bf71445c893542b88213 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-3090-1059 0000-0002-3035-0816 0000-0003-1874-1766 0000-0002-0205-7743 0000-0003-3484-7333 0000-0001-7323-9213 |
PQID | 2490804568 |
PQPubID | 32020 |
PageCount | 12 |
ParticipantIDs | crossref_citationtrail_10_1109_TNET_2020_3035770 crossref_primary_10_1109_TNET_2020_3035770 ieee_primary_9261995 proquest_journals_2490804568 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-Feb. 2021-2-00 20210201 |
PublicationDateYYYYMMDD | 2021-02-01 |
PublicationDate_xml | – month: 02 year: 2021 text: 2021-Feb. |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE/ACM transactions on networking |
PublicationTitleAbbrev | TNET |
PublicationYear | 2021 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref34 reinsel (ref2) 2018 ref36 ref14 burd (ref31) 1996; 13 ref33 ref32 ref10 shamir (ref11) 0; 2014 wang (ref25) 2018 nesterov (ref28) 2018; 137 ref1 caldas (ref37) 2018 ref17 ref38 (ref35) 2020 ref19 kone?ný (ref6) 2016 smith (ref8) 2018; 18 kone?ný (ref15) 2016 wang (ref12) 2018 li (ref39) 2019 smith (ref16) 2017 ref23 mcmahan (ref4) 2017; 54 chen (ref24) 2019 ref22 ref21 reddi (ref27) 2016 ref29 tang (ref20) 2018 ref7 (ref3) 2019 stich (ref13) 2019 dinh (ref18) 2020 li (ref9) 2019 miettinen (ref30) 2010 zhang (ref26) 2017 williams (ref5) 2018 |
References_xml | – year: 2018 ident: ref5 publication-title: What does AI in a phone really mean? – ident: ref7 doi: 10.1109/JSAC.2019.2904348 – year: 2020 ident: ref35 – year: 2020 ident: ref18 article-title: Personalized federated learning with Moreau envelopes publication-title: 34th Conf Neural Inf Process Syst (NeurIPS) – start-page: 16 year: 2019 ident: ref9 article-title: Federated optimization in heterogeneous networks publication-title: Proc 1st Adapt Multitask Learn ICML Workshop – volume: 137 year: 2018 ident: ref28 publication-title: Convex Optimization Lecture Notes doi: 10.1007/978-3-319-91578-4 – volume: 2014 start-page: ii year: 0 ident: ref11 article-title: Communication-efficient distributed optimization using an approximate newton-type method publication-title: Proc ICML – year: 2016 ident: ref6 article-title: Federated optimization: Distributed machine learning for on-device intelligence publication-title: arXiv 1610 02527 – volume: 18 start-page: 1 year: 2018 ident: ref8 article-title: CoCoA: A general framework for communication-efficient distributed optimization publication-title: J Mach Learn Res – ident: ref17 doi: 10.1145/3404397.3404457 – start-page: 7663 year: 2018 ident: ref20 article-title: Communication compression for decentralized training publication-title: Proc NeurIPS – start-page: 4 year: 2010 ident: ref30 article-title: Energy efficiency of mobile clients in cloud computing publication-title: Proc USENIX HotCloud – volume: 54 start-page: 1273 year: 2017 ident: ref4 article-title: Communication-efficient learning of deep networks from decentralized data publication-title: Proc 20th Int Conf Artif Intell Statist (PMLR) – ident: ref32 doi: 10.1109/INFCOM.2001.916721 – year: 2016 ident: ref27 publication-title: arXiv 1608 06879 – ident: ref22 doi: 10.1109/MCOM.001.1900649 – ident: ref36 doi: 10.1109/5.726791 – start-page: 28 year: 2018 ident: ref2 publication-title: The Digitization of the World From Edge to Core – year: 2019 ident: ref13 article-title: Local SGD converges fast and communicates little publication-title: Proc Int Conf Learn Represent (ICLR) – ident: ref33 doi: 10.1007/s10107-004-0559-y – ident: ref29 doi: 10.1017/CBO9780511804441 – year: 2019 ident: ref3 publication-title: Free Community-based GPS Maps & Traffic Navigation App |Waze – year: 2018 ident: ref37 article-title: LEAF: A benchmark for federated settings publication-title: arXiv 1812 01097 – start-page: 4427 year: 2017 ident: ref16 article-title: Federated multi-task learning publication-title: Proc NeurIPS – year: 2016 ident: ref15 article-title: Federated learning: Strategies for improving communication efficiency publication-title: arXiv 1610 05492 – ident: ref38 doi: 10.1109/IJCNN.2017.7966217 – ident: ref10 doi: 10.1080/10556788.2016.1278445 – start-page: 9850 year: 2018 ident: ref25 article-title: ATOMO: Communication-efficient learning via atomic sparsification publication-title: Proc NeurIPS – ident: ref23 doi: 10.1109/TWC.2020.2971981 – ident: ref1 doi: 10.1109/INFOCOM.2019.8737464 – ident: ref21 doi: 10.1109/TWC.2020.3002988 – start-page: 4035 year: 2017 ident: ref26 article-title: ZipML: Training linear models with end-to-end low precision, and a little bit of deep learning publication-title: Proc Int Conf Mach Learn – year: 2018 ident: ref12 article-title: Cooperative SGD: A unified framework for the design and analysis of communication-efficient SGD algorithms publication-title: arXiv 1808 07576 – ident: ref19 doi: 10.1109/SPAWC.2019.8815402 – year: 2019 ident: ref24 article-title: A joint learning and communications framework for federated learning over wireless networks publication-title: arXiv 1909 07972 – ident: ref34 doi: 10.1109/TSP.2016.2637317 – year: 2019 ident: ref39 publication-title: arXiv 1910 09126 – ident: ref14 doi: 10.24963/ijcai.2018/447 – volume: 13 start-page: 203 year: 1996 ident: ref31 article-title: Processor design for portable systems publication-title: J VLSI Signal Process Syst doi: 10.1007/BF01130406 |
SSID | ssj0013026 |
Score | 2.7008102 |
Snippet | There is an increasing interest in a fast-growing machine learning technique called Federated Learning (FL), in which the model training is distributed over... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 398 |
SubjectTerms | Algorithms Computational modeling Convergence Data models Distributed machine learning Energy consumption Federated learning Heterogeneity Machine learning Optimization optimization decomposition Power consumption Resource allocation Resource management Tradeoffs Training Wireless communication Wireless networks |
Title | Federated Learning Over Wireless Networks: Convergence Analysis and Resource Allocation |
URI | https://ieeexplore.ieee.org/document/9261995 https://www.proquest.com/docview/2490804568 |
Volume | 29 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8NADLZaJhh4IwoF3cCESJveKwlbVVEhpJaliG7RvcJAVRC0C7-e8yUpFSDEluFOOtnO-fPZ_gxw4dLEg3huIlbILOLGJpEqU4hJotAITGgSG43l7QO_m4ppA65WvTDOuVB85jr4GXL59sUs8amsmyHcz0QTmj5wK3u1vjIGcRit5iMcFkmZ0SqD2Yuz7mR8M_GRIPUBasxEgnOJ13xQGKry4yYO7mW4A6P6YGVVyXNnudAd8_GNs_G_J9-F7Qpnkn5pGHvQcPN92FpjHzyAxyESSXisaUnFsvpE7r1lE6yInfkbkIzLGvH3azLA4vTQp-lIzWNC1NyS-vmf9GfoFlHNh_AwvJkMbqNqzkJkvLNfRAVNLUulch69WZlobYSObSEV1YynznjIUlihuRCppbpIfAwmjMc5glPtAXqPHcHG_GXujoFozrVikhkdO66cVDJztlBGMCTK46oFcS353FQk5DgLY5aHYCTOclRWjsrKK2W14HK15bVk4Phr8QEKf7WwknsL2rV68-offc8p5jwR0aYnv-86hU2KFSyhRrsNG4u3pTvzEGShz4PtfQKkMtc9 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1LT9tAEB4BPZQeoC2tGh5lD-0FycHsyzYSB0SJQoFwCYKbuy_30ChUTaKq_S39K_1vzKztgFrUG1JvPqwteefzzjeemW8A3oU8QxIvXSIqXSTS-SwxdQoxywyBwMUmsfOB7l_Kj9fqegF-zXthQgix-Cx06TLm8v2Nm9Gvst2C6H7RllCehh_fMUCbHJx8QGu-57x3PDzqJ80MgcShI5smFc-9yLUJyEy8zqx1yqa-0oZbIfPg0B1XXlmpVO65rTKML5RDH64kt0g-9wQ-dxGeIM9QvO4Ou8tRpHGYG8ZUItG64E3OdC8tdoeD4yHGnhxD4lSojCYh3_N6cYzLX2d_dGi9VfjdbkVdx_KlO5varvv5h0rk_7pXz2GlYdLssIb-C1gI45fw7J6-4hpc9UgqA9m0Z42O7Gd2gd8uo5rfEZ7xbFBXwU_22RGV38dO1MBapRZmxp61CQ52OCLHT0B-BZeP8mavYWl8Mw5vgFkprRFaOJsGaYI2ugi-Mk4JkgKUpgNpa-nSNTLrNO1jVMZwKy1KAkdJ4CgbcHRgZ37L11pj5F-L18jY84WNnTuw2cKpbE6hSckpq0ucPV9_-K5teNofnp-VZyeD0w1Y5lSvEyvSN2Fp-m0WtpBwTe3biHsGnx4bPLfvXDQX |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Federated+Learning+Over+Wireless+Networks%3A+Convergence+Analysis+and+Resource+Allocation&rft.jtitle=IEEE%2FACM+transactions+on+networking&rft.au=Dinh%2C+Canh+T&rft.au=Tran%2C+Nguyen+H&rft.au=Nguyen%2C+Minh+N+H&rft.au=Hong%2C+Choong+Seon&rft.date=2021-02-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1063-6692&rft.eissn=1558-2566&rft.volume=29&rft.issue=1&rft.spage=398&rft_id=info:doi/10.1109%2FTNET.2020.3035770&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-6692&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-6692&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-6692&client=summon |