Human Activity Classification Based on Point Clouds Measured by Millimeter Wave MIMO Radar With Deep Recurrent Neural Networks
We investigate the feasibility of classifying human activities measured by a MIMO radar in the form of a point cloud. If a human subject is measured by a radar system that has a very high angular azimuth and elevation resolution, scatterers from the body can be localized. When precisely represented,...
Saved in:
Published in | IEEE sensors journal Vol. 21; no. 12; pp. 13522 - 13529 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
15.06.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We investigate the feasibility of classifying human activities measured by a MIMO radar in the form of a point cloud. If a human subject is measured by a radar system that has a very high angular azimuth and elevation resolution, scatterers from the body can be localized. When precisely represented, individual points form a point cloud whose shape resembles that of the human subject. As the subject engages in various activities, the shapes of the point clouds change accordingly. We propose to classify human activities through recognition of point cloud variations. To construct a dataset, we used an FMCW MIMO radar to measure 19 human subjects performing 7 activities. The radar had 12 TXs and 16 RXs, producing a <inline-formula> <tex-math notation="LaTeX">33\times 31 </tex-math></inline-formula> virtual array with approximately 3.5 degrees of angular resolution in azimuth and elevation. To classify human activities, we used a deep recurrent neural network (DRNN) with a two-dimensional convolutional network. The convolutional filters captured point clouds' features at time instance for sequential input into the DRNN, which recognized time-varying signatures, producing a classification accuracy exceeding 97%. |
---|---|
AbstractList | We investigate the feasibility of classifying human activities measured by a MIMO radar in the form of a point cloud. If a human subject is measured by a radar system that has a very high angular azimuth and elevation resolution, scatterers from the body can be localized. When precisely represented, individual points form a point cloud whose shape resembles that of the human subject. As the subject engages in various activities, the shapes of the point clouds change accordingly. We propose to classify human activities through recognition of point cloud variations. To construct a dataset, we used an FMCW MIMO radar to measure 19 human subjects performing 7 activities. The radar had 12 TXs and 16 RXs, producing a [Formula Omitted] virtual array with approximately 3.5 degrees of angular resolution in azimuth and elevation. To classify human activities, we used a deep recurrent neural network (DRNN) with a two-dimensional convolutional network. The convolutional filters captured point clouds’ features at time instance for sequential input into the DRNN, which recognized time-varying signatures, producing a classification accuracy exceeding 97%. We investigate the feasibility of classifying human activities measured by a MIMO radar in the form of a point cloud. If a human subject is measured by a radar system that has a very high angular azimuth and elevation resolution, scatterers from the body can be localized. When precisely represented, individual points form a point cloud whose shape resembles that of the human subject. As the subject engages in various activities, the shapes of the point clouds change accordingly. We propose to classify human activities through recognition of point cloud variations. To construct a dataset, we used an FMCW MIMO radar to measure 19 human subjects performing 7 activities. The radar had 12 TXs and 16 RXs, producing a <inline-formula> <tex-math notation="LaTeX">33\times 31 </tex-math></inline-formula> virtual array with approximately 3.5 degrees of angular resolution in azimuth and elevation. To classify human activities, we used a deep recurrent neural network (DRNN) with a two-dimensional convolutional network. The convolutional filters captured point clouds' features at time instance for sequential input into the DRNN, which recognized time-varying signatures, producing a classification accuracy exceeding 97%. |
Author | Alnujaim, Ibrahim Oh, Daegun Kim, Youngwook |
Author_xml | – sequence: 1 givenname: Youngwook orcidid: 0000-0002-4067-6254 surname: Kim fullname: Kim, Youngwook email: youngkim@csufresno.edu organization: Electrical and Computer Engineering Department, California State University, Fresno, CA, USA – sequence: 2 givenname: Ibrahim orcidid: 0000-0001-5610-0631 surname: Alnujaim fullname: Alnujaim, Ibrahim organization: Electrical and Computer Engineering Department, California State University, Fresno, CA, USA – sequence: 3 givenname: Daegun surname: Oh fullname: Oh, Daegun organization: Advanced Radar Research Division, Daegu Gyeongbuk Institute of Science and Technology, Daegu, South Korea |
BookMark | eNp9kE9P3DAQxa0KpMK2H6DqxRLnLB7_iZ0jXRZYxEJFQe0tcpKJappNFtsB7YXPjreLeuDQ07zRe29G-h2SvX7okZAvwKYArDi-_DG_nnLGYSpYboQxH8gBKGUy0NLsbbVgmRT610dyGMIDY1BopQ_Iy8W4sj09qaN7cnFDZ50NwbWuttENPf1mAzY0ie-D62Nyh7EJdIk2jD4Z1YYuXde5FUb09Kd9QrpcLG_orW1s2l38TU8R1_QW69F7TBeucfS2SyM-D_5P-ET2W9sF_Pw2J-T-bH43u8iubs4Xs5OrrOaFiFnLpc7bvDKmBtVUmosGDUoODdTKKNVIxgvJECtW6bYAWzVVCxaKVgFHA2JCjnZ31354HDHE8mEYfZ9ellxJkHkhZJ5SsEvVfgjBY1uuvVtZvymBlVvM5RZzucVcvmFOHf2uU7v4F1701nX_bX7dNR0i_vtUCKMFl-IVihWNSg |
CODEN | ISJEAZ |
CitedBy_id | crossref_primary_10_1109_JSEN_2024_3355421 crossref_primary_10_1109_ACCESS_2024_3431692 crossref_primary_10_1109_JSEN_2022_3175618 crossref_primary_10_1109_TIM_2025_3545718 crossref_primary_10_1109_JSEN_2022_3145844 crossref_primary_10_3390_s24020648 crossref_primary_10_1109_JSEN_2022_3212687 crossref_primary_10_3390_rs15082101 crossref_primary_10_1109_JIOT_2023_3235268 crossref_primary_10_3390_signals3020017 crossref_primary_10_1109_JSEN_2021_3118836 crossref_primary_10_1109_JSEN_2024_3452110 crossref_primary_10_1109_JSEN_2024_3505145 crossref_primary_10_1088_1742_6596_2290_1_012059 crossref_primary_10_1109_JMW_2023_3264494 crossref_primary_10_1109_OJEMB_2024_3408078 crossref_primary_10_3390_rs14205177 crossref_primary_10_1109_JSEN_2023_3307390 crossref_primary_10_1109_TCPMT_2024_3352183 crossref_primary_10_1016_j_seta_2022_102910 crossref_primary_10_1109_TIM_2023_3302936 crossref_primary_10_1109_TIM_2024_3366575 crossref_primary_10_1109_OJAP_2023_3279090 crossref_primary_10_1109_JSEN_2023_3283778 crossref_primary_10_1109_OJCOMS_2024_3411529 crossref_primary_10_1109_JIOT_2023_3235808 crossref_primary_10_1109_JSEN_2024_3415078 crossref_primary_10_1109_TIM_2023_3298408 crossref_primary_10_1109_JSEN_2022_3203154 crossref_primary_10_1109_TGRS_2022_3189746 crossref_primary_10_1109_JSEN_2024_3485106 crossref_primary_10_3390_rs13183791 crossref_primary_10_1109_JSEN_2025_3535673 crossref_primary_10_1109_TRS_2025_3539289 crossref_primary_10_3390_rs16091522 crossref_primary_10_1109_TRS_2023_3341230 crossref_primary_10_3390_electronics12234785 crossref_primary_10_1109_LSENS_2023_3336793 crossref_primary_10_1109_JSEN_2024_3496552 crossref_primary_10_3390_s22239401 crossref_primary_10_1049_rsn2_12320 crossref_primary_10_3390_make5040075 crossref_primary_10_1109_JSEN_2021_3117942 crossref_primary_10_1109_JSEN_2022_3210579 crossref_primary_10_1088_1361_6501_ac849c crossref_primary_10_1109_MCOM_011_2200580 crossref_primary_10_3390_app142210764 crossref_primary_10_1109_TMTT_2022_3200097 crossref_primary_10_31436_iiumej_v26i1_3268 |
Cites_doi | 10.1109/TAES.2017.2740098 10.1109/IRS.2012.6233325 10.1049/iet-rsn.2015.0119 10.1201/9781315155340 10.1109/TMTT.2016.2597824 10.1109/LGRS.2019.2930636 10.1109/IEEECONF44664.2019.9048939 10.1109/ACCESS.2020.2971064 10.23919/EuCAP48036.2020.9135381 10.3390/s16121990 10.1109/TGRS.2009.2012849 10.1109/ISMICT.2016.7498911 10.1109/JSEN.2020.3006386 10.1002/047084535X 10.1109/LGRS.2019.2919770 10.1049/el:20060355 10.1109/ACCESS.2017.2778011 10.23919/ICIF.2018.8455344 10.23919/EURAD.2017.8249173 10.1109/LGRS.2020.2980320 10.1109/JSEN.2018.2808688 10.1109/CVPR.2015.7299101 10.1109/LGRS.2014.2311819 10.1109/RADAR.2016.7485147 10.1109/LGRS.2015.2491329 10.1109/LGRS.2009.2038728 10.1109/TGRS.2019.2907277 10.1109/LSP.2013.2289740 10.1109/MSP.2018.2890128 10.1049/iet-rsn.2013.0165 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
DBID | 97E RIA RIE AAYXX CITATION 7SP 7U5 8FD L7M |
DOI | 10.1109/JSEN.2021.3068388 |
DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
DatabaseTitleList | Solid State and Superconductivity Abstracts |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography Engineering |
EISSN | 1558-1748 |
EndPage | 13529 |
ExternalDocumentID | 10_1109_JSEN_2021_3068388 9387324 |
Genre | orig-research |
GrantInformation_xml | – fundername: Daegu Gyeongbuk Institute of Science and Technology (DGIST) Research and Development Program of the Ministry of Science and Information and Communications Technology grantid: 19-ST-01 funderid: 10.13039/501100010274 |
GroupedDBID | -~X 0R~ 29I 4.4 5GY 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AGQYO AHBIQ AJQPL AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 EBS F5P HZ~ IFIPE IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS TWZ AAYXX CITATION 7SP 7U5 8FD L7M |
ID | FETCH-LOGICAL-c293t-f2476f6b88c15db723de8e421d1c5855d402940eeb0b7f91abdbf1a19f512e813 |
IEDL.DBID | RIE |
ISSN | 1530-437X |
IngestDate | Mon Jun 30 10:19:38 EDT 2025 Tue Jul 01 03:37:02 EDT 2025 Thu Apr 24 22:59:31 EDT 2025 Wed Aug 27 02:50:50 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c293t-f2476f6b88c15db723de8e421d1c5855d402940eeb0b7f91abdbf1a19f512e813 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-5610-0631 0000-0002-4067-6254 |
PQID | 2541469346 |
PQPubID | 75733 |
PageCount | 8 |
ParticipantIDs | ieee_primary_9387324 crossref_primary_10_1109_JSEN_2021_3068388 crossref_citationtrail_10_1109_JSEN_2021_3068388 proquest_journals_2541469346 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-06-15 |
PublicationDateYYYYMMDD | 2021-06-15 |
PublicationDate_xml | – month: 06 year: 2021 text: 2021-06-15 day: 15 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE sensors journal |
PublicationTitleAbbrev | JSEN |
PublicationYear | 2021 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref34 ref12 ref15 ref14 ref31 ref30 ref33 ref11 ref32 ref10 ref2 ref1 ref17 ref16 ref19 ref18 chen (ref26) 2010 feng (ref21) 2019 ref24 ref23 ref25 sengupta (ref20) 2020 ref22 kim (ref5) 2009; 47 ref28 ref29 ref8 ref7 ref9 ref4 ref3 ref6 qi (ref27) 2017 |
References_xml | – ident: ref10 doi: 10.1109/TAES.2017.2740098 – start-page: 732 year: 2020 ident: ref20 article-title: MmWave radar point cloud segmentation using GMM in multimodal traffic monitoring publication-title: Proc IEEE Int Radar Conf (RADAR) – ident: ref17 doi: 10.1109/IRS.2012.6233325 – ident: ref8 doi: 10.1049/iet-rsn.2015.0119 – ident: ref1 doi: 10.1201/9781315155340 – ident: ref15 doi: 10.1109/TMTT.2016.2597824 – ident: ref11 doi: 10.1109/LGRS.2019.2930636 – ident: ref18 doi: 10.1109/IEEECONF44664.2019.9048939 – year: 2010 ident: ref26 publication-title: Introduction to Direction-of-Arrival Estimation – ident: ref30 doi: 10.1109/ACCESS.2020.2971064 – ident: ref23 doi: 10.23919/EuCAP48036.2020.9135381 – ident: ref13 doi: 10.3390/s16121990 – volume: 47 start-page: 1328 year: 2009 ident: ref5 article-title: Human activity classification based on micro-Doppler signatures using a support vector machine publication-title: IEEE Trans Geosci Remote Sens doi: 10.1109/TGRS.2009.2012849 – ident: ref16 doi: 10.1109/ISMICT.2016.7498911 – ident: ref31 doi: 10.1109/JSEN.2020.3006386 – ident: ref28 doi: 10.1002/047084535X – ident: ref14 doi: 10.1109/LGRS.2019.2919770 – ident: ref22 doi: 10.1049/el:20060355 – ident: ref34 doi: 10.1109/ACCESS.2017.2778011 – ident: ref19 doi: 10.23919/ICIF.2018.8455344 – ident: ref29 doi: 10.23919/EURAD.2017.8249173 – ident: ref12 doi: 10.1109/LGRS.2020.2980320 – ident: ref4 doi: 10.1109/JSEN.2018.2808688 – start-page: 1 year: 2019 ident: ref21 article-title: Point cloud segmentation with a high-resolution automotive radar publication-title: Proc AmE-Automot Meets Electron 10th GMM-Symp – ident: ref33 doi: 10.1109/CVPR.2015.7299101 – ident: ref6 doi: 10.1109/LGRS.2014.2311819 – ident: ref3 doi: 10.1109/RADAR.2016.7485147 – ident: ref9 doi: 10.1109/LGRS.2015.2491329 – ident: ref24 doi: 10.1109/LGRS.2009.2038728 – ident: ref32 doi: 10.1109/TGRS.2019.2907277 – start-page: 652 year: 2017 ident: ref27 article-title: PointNet: Deep learning on point sets for 3D classification and segmentation publication-title: Proc IEEE Conf Comput Vis Pattern Recognit – ident: ref25 doi: 10.1109/LSP.2013.2289740 – ident: ref2 doi: 10.1109/MSP.2018.2890128 – ident: ref7 doi: 10.1049/iet-rsn.2013.0165 |
SSID | ssj0019757 |
Score | 2.5371544 |
Snippet | We investigate the feasibility of classifying human activities measured by a MIMO radar in the form of a point cloud. If a human subject is measured by a radar... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 13522 |
SubjectTerms | Angular resolution Azimuth Classification deep convolutional neural networks deep recurrent neural networks Feature extraction FMCW radar Human activity classification Human performance Human subjects Millimeter wave radar Millimeter waves MIMO radar Neural networks point clouds Radar Radar antennas Radar equipment Radar measurements Recurrent neural networks Shape Three-dimensional displays |
Title | Human Activity Classification Based on Point Clouds Measured by Millimeter Wave MIMO Radar With Deep Recurrent Neural Networks |
URI | https://ieeexplore.ieee.org/document/9387324 https://www.proquest.com/docview/2541469346 |
Volume | 21 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB61vQAHHi2oCwX5wAmRbfxIHB8LtCqVsqBCxd4iPybqCtit2CxSOfDbGTvZBQFC3GzFjix9Y3tmPDMfwFP0pi2Etpn1CjPFsaVzUNiMl1ZqV3jnZUwUrifl6YU6mxbTLXi-yYVBxBR8huPYTG_5YeFX0VV2aGSlSQHYhm0y3Ppcrc2LgdGpqidt4DxTUk-HF0yem8Ozd8cTsgQFH5N-XMlEsvLzDkqkKn-cxOl6ObkD9XphfVTJx_Gqc2P_7beajf-78rtwe9Az2VEvGPdgC-e7cOuX6oO7cGMgQL-83oPvyZnPjnxPJsESV2aMIkrAsRd01wVGjbeL2byjr4tVWLK69y8G5q5ZzCmcfY6xNeyD_Yqsfl2_Yec2WOrPukv2CvGKnUfnfiwHxWJNEFrepA9CX96Hi5Pj9y9Ps4GaIfOkH3RZK5Qu29JVledFcFrIgBUqwQP3ZIAUgcxSo3JElzvdGm5dcC23nASDC6y4fAA788Uc94FJJJ2VRnJdosotAeSNlh61d7yyohhBvgar8UPd8kif8alJ9ktumohvE_FtBnxH8Gwz5aov2vGvwXsRr83AAaoRHKwlohm29bIRkTS9NFKVD_8-6xHcjP-OsWS8OICd7ssKH5PW0rknSVx_AI-f6WY |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VcigceLQgFgr4wAmRbRw7cXws0GpbmgWVVuwt8mOiroDdis0ilQO_nbGTXRAgxC1RbMXSN_Y8PDMfwDN0uskzZRLjJCaSY0PnYGYSXhihbO6sE6FQuBoXo3N5PMknG_BiXQuDiDH5DIfhMd7l-7lbhlDZnhalIgPgGlwnvZ_zrlprfWegVezrSVs4TaRQk_4Ok6d67_j9wZh8wYwPyUIuRaRZ-amFIq3KH2dxVDCHt6FaLa3LK_k4XLZ26L791rXxf9d-B271libb70TjLmzgbBtu_tJ_cBu2egr0i6sd-B7D-WzfdXQSLLJlhjyiCB17SdrOM3p4N5_OWvo6X_oFq7oIo2f2ioWqwunnkF3DPpivyKqj6i07Nd7Q-7S9YK8RL9lpCO-HhlAsdAWh5Y27NPTFPTg_PDh7NUp6cobEkYXQJk0mVdEUtiwdz71VmfBYosy4545ckNyTY6plimhTqxrNjfW24YaTaPAMSy7uw-ZsPsMHwASS1UojuSpQpoYAcloJh8pZXposH0C6Aqt2fefyQKDxqY4eTKrrgG8d8K17fAfwfD3lsmvb8a_BOwGv9cAeqgHsriSi7jf2os4CbXqhhSwe_n3WU9ganVUn9cnR-M0juBH-EzLLeL4Lm-2XJT4mG6a1T6Lo_gDituyv |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Human+Activity+Classification+Based+on+Point+Clouds+Measured+by+Millimeter+Wave+MIMO+Radar+With+Deep+Recurrent+Neural+Networks&rft.jtitle=IEEE+sensors+journal&rft.au=Kim%2C+Youngwook&rft.au=Ibrahim+Alnujaim&rft.au=Oh%2C+Daegun&rft.date=2021-06-15&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1530-437X&rft.eissn=1558-1748&rft.volume=21&rft.issue=12&rft.spage=13522&rft_id=info:doi/10.1109%2FJSEN.2021.3068388&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-437X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-437X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-437X&client=summon |