Asynchronous Broadcast-Based Convex Optimization Over a Network
We consider a distributed multi-agent network system where each agent has its own convex objective function, which can be evaluated with stochastic errors. The problem consists of minimizing the sum of the agent functions over a commonly known constraint set, but without a central coordinator and wi...
Saved in:
Published in | IEEE transactions on automatic control Vol. 56; no. 6; pp. 1337 - 1351 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
New York, NY
IEEE
01.06.2011
Institute of Electrical and Electronics Engineers |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We consider a distributed multi-agent network system where each agent has its own convex objective function, which can be evaluated with stochastic errors. The problem consists of minimizing the sum of the agent functions over a commonly known constraint set, but without a central coordinator and without agents sharing the explicit form of their objectives. We propose an asynchronous broadcast-based algorithm where the communications over the network are subject to random link failures. We investigate the convergence properties of the algorithm for a diminishing (random) stepsize and a constant stepsize, where each agent chooses its own stepsize independently of the other agents. Under some standard conditions on the gradient errors, we establish almost sure convergence of the method to an optimal point for diminishing stepsize. For constant stepsize, we establish some error bounds on the expected distance from the optimal point and the expected function value. We also provide numerical results. |
---|---|
AbstractList | We consider a distributed multi-agent network system where each agent has its own convex objective function, which can be evaluated with stochastic errors. The problem consists of minimizing the sum of the agent functions over a commonly known constraint set, but without a central coordinator and without agents sharing the explicit form of their objectives. We propose an asynchronous broadcast-based algorithm where the communications over the network are subject to random link failures. We investigate the convergence properties of the algorithm for a diminishing (random) stepsize and a constant stepsize, where each agent chooses its own stepsize independently of the other agents. Under some standard conditions on the gradient errors, we establish almost sure convergence of the method to an optimal point for diminishing stepsize. For constant stepsize, we establish some error bounds on the expected distance from the optimal point and the expected function value. We also provide numerical results. |
Author | Nedic, A |
Author_xml | – sequence: 1 givenname: A surname: Nedic fullname: Nedic, A email: angelia@illinois.edu organization: Ind. & Enterprise Syst. Eng. Dept., Univ. of Illinois at Urbana-Champaign, Urbana, IL, USA |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24265172$$DView record in Pascal Francis |
BookMark | eNp9kD1PwzAURS0EEm1hR2LJwphiv8SOPaG24kuq6FJm6-HYwtDGlR0K5deT0sLAwPR0pXuunk6fHDahsYScMTpkjKrL-WgyBNoloJUSnB6QHuNc5sChOCQ9SpnMFUhxTPopvXRRlCXrkatR2jTmOYYmvKVsHAPWBlObjzHZOpuEZm0_stmq9Uv_ia0PTTZb25hh9mDb9xBfT8iRw0Wyp_s7II831_PJXT6d3d5PRtPcgCra3AEzTpUIAi2niqlSVvWTkSArB9aoUqGTFtDWonCVrLktQZlKolSiwMIUA3Kx211hMrhwERvjk15Fv8S40VCC4KyCrid2PRNDStE6bXz7_Xgb0S80o3qrS3e69FaX3uvqQPoH_Nn-BznfId5a-1vvpPMKWPEF0g92_Q |
CODEN | IETAA9 |
CitedBy_id | crossref_primary_10_3390_s19020301 crossref_primary_10_1109_TRO_2014_2315713 crossref_primary_10_1007_s11424_020_0071_3 crossref_primary_10_1016_j_ejcon_2020_08_006 crossref_primary_10_1109_MSP_2020_2976000 crossref_primary_10_1137_18M122902X crossref_primary_10_1002_oca_2643 crossref_primary_10_1109_ACCESS_2023_3283503 crossref_primary_10_1109_TMM_2023_3275853 crossref_primary_10_1109_TAC_2017_2778696 crossref_primary_10_1109_ACCESS_2019_2960494 crossref_primary_10_1016_j_neucom_2015_12_043 crossref_primary_10_1080_17445760_2017_1294690 crossref_primary_10_1109_TSP_2024_3366437 crossref_primary_10_1109_TAC_2019_2916985 crossref_primary_10_1007_s11768_015_5100_8 crossref_primary_10_1007_s10107_018_1355_4 crossref_primary_10_1109_TSMC_2018_2867154 crossref_primary_10_1016_j_ifacol_2017_08_434 crossref_primary_10_1109_TSP_2021_3083981 crossref_primary_10_1109_TNNLS_2020_3027381 crossref_primary_10_1109_TAC_2020_2977940 crossref_primary_10_1007_s12555_018_9543_9 crossref_primary_10_1049_iet_cta_2013_0363 crossref_primary_10_1109_TIT_2013_2275131 crossref_primary_10_1109_TSP_2017_2703677 crossref_primary_10_1002_asjc_2996 crossref_primary_10_1016_j_sysconle_2014_06_008 crossref_primary_10_3390_electronics13234803 crossref_primary_10_1142_S0219530519410082 crossref_primary_10_1109_TAC_2020_2981035 crossref_primary_10_1109_TAC_2014_2364096 crossref_primary_10_1080_10556788_2023_2261602 crossref_primary_10_1109_TNNLS_2024_3376421 crossref_primary_10_1049_cth2_12351 crossref_primary_10_1109_TII_2012_2219061 crossref_primary_10_1109_ACCESS_2023_3341295 crossref_primary_10_1109_TAC_2015_2512043 crossref_primary_10_1109_TCNS_2014_2367571 crossref_primary_10_1080_00207721_2018_1442886 crossref_primary_10_1109_TSP_2018_2807423 crossref_primary_10_1109_TCNS_2021_3059848 crossref_primary_10_3182_20140824_6_ZA_1003_01377 crossref_primary_10_1049_iet_cta_2019_0672 crossref_primary_10_1109_TSIPN_2017_2695121 crossref_primary_10_1109_TAC_2020_3014316 crossref_primary_10_1155_2017_1793291 crossref_primary_10_1109_TSIPN_2024_3402354 crossref_primary_10_3390_en10050620 crossref_primary_10_1109_TAC_2019_2930234 crossref_primary_10_1109_TSIPN_2020_2967143 crossref_primary_10_1109_TSIPN_2024_3407660 crossref_primary_10_1049_iet_gtd_2019_0144 crossref_primary_10_1109_TAC_2019_2933607 crossref_primary_10_1016_j_automatica_2015_11_015 crossref_primary_10_1016_j_automatica_2015_11_014 crossref_primary_10_1109_TCNS_2014_2357513 crossref_primary_10_1016_j_automatica_2022_110741 crossref_primary_10_1007_s10957_021_01833_y crossref_primary_10_1109_TSP_2017_2666771 crossref_primary_10_1109_TSMC_2024_3516936 crossref_primary_10_1016_j_engappai_2020_104115 crossref_primary_10_1109_TSP_2017_2703664 crossref_primary_10_1109_JIOT_2020_3040657 crossref_primary_10_1109_TCNS_2017_2782364 crossref_primary_10_1109_TSMC_2019_2945864 crossref_primary_10_1109_ACCESS_2025_3525487 crossref_primary_10_1109_TETCI_2023_3299294 crossref_primary_10_1109_TAC_2017_2730481 crossref_primary_10_1109_TSMC_2019_2946287 crossref_primary_10_1016_j_automatica_2019_02_003 crossref_primary_10_1109_TAC_2019_2937499 crossref_primary_10_1109_TSP_2020_3018317 crossref_primary_10_1016_j_ijepes_2020_106240 crossref_primary_10_1016_j_automatica_2016_06_004 crossref_primary_10_1109_JAS_2021_1003904 crossref_primary_10_3390_s20216153 crossref_primary_10_1016_j_neunet_2024_106291 crossref_primary_10_3390_app9050829 crossref_primary_10_1109_TAC_2016_2529285 crossref_primary_10_1049_sil2_12199 crossref_primary_10_1016_j_ifacol_2017_08_983 crossref_primary_10_1007_s10489_023_04765_4 crossref_primary_10_1109_TNNLS_2014_2336806 crossref_primary_10_1109_TAI_2023_3326113 crossref_primary_10_1016_j_automatica_2018_03_054 crossref_primary_10_1109_TAC_2022_3216970 crossref_primary_10_1109_TAC_2017_2756860 crossref_primary_10_1142_S0217595919500234 crossref_primary_10_1109_TAC_2016_2545098 crossref_primary_10_1109_TSIPN_2016_2593896 crossref_primary_10_1016_j_sigpro_2013_11_017 crossref_primary_10_1109_OJCOMS_2025_3540133 crossref_primary_10_1137_22M148570X crossref_primary_10_1002_rnc_3164 crossref_primary_10_1049_iet_cta_2018_5417 crossref_primary_10_1109_TAC_2020_3033490 crossref_primary_10_1016_j_jfranklin_2019_03_021 crossref_primary_10_1002_rnc_2856 crossref_primary_10_1109_TNSE_2022_3153386 crossref_primary_10_1049_iet_cta_2018_6224 crossref_primary_10_1109_TAC_2015_2460051 crossref_primary_10_1109_TAC_2020_2994024 crossref_primary_10_1109_TCNS_2016_2633788 crossref_primary_10_1109_TAC_2015_2504932 crossref_primary_10_1109_TCYB_2014_2378552 crossref_primary_10_1109_TCYB_2017_2728644 crossref_primary_10_1155_2014_618641 crossref_primary_10_1049_cth2_12488 crossref_primary_10_1109_TCSII_2021_3132392 crossref_primary_10_3390_s18114027 crossref_primary_10_1287_opre_2016_1501 crossref_primary_10_1109_TSG_2019_2910169 crossref_primary_10_1109_TMC_2015_2393856 crossref_primary_10_1016_j_ifacol_2023_10_116 crossref_primary_10_1109_JSAIT_2021_3080256 crossref_primary_10_1109_TETCI_2018_2880771 crossref_primary_10_1002_oca_1017 crossref_primary_10_1109_TNNLS_2017_2691760 crossref_primary_10_1016_j_automatica_2017_09_016 crossref_primary_10_1109_TAC_2017_2714645 crossref_primary_10_1137_140961249 crossref_primary_10_1016_j_ins_2017_09_038 crossref_primary_10_1109_TAC_2020_3011916 crossref_primary_10_1049_iet_cta_2017_0674 crossref_primary_10_1109_TAC_2019_2910946 crossref_primary_10_1109_JIOT_2024_3407584 crossref_primary_10_1109_TAC_2018_2880407 crossref_primary_10_1137_16M1084316 crossref_primary_10_1016_j_jfranklin_2019_01_050 crossref_primary_10_1109_TAC_2020_3010264 crossref_primary_10_1109_TAC_2021_3077516 crossref_primary_10_1109_TCYB_2024_3440349 crossref_primary_10_1016_j_enbuild_2024_114871 crossref_primary_10_1109_TSP_2013_2264056 crossref_primary_10_1016_j_sysconle_2018_02_009 crossref_primary_10_1109_JIOT_2021_3137757 crossref_primary_10_1109_TPDS_2022_3212424 crossref_primary_10_1109_TSMC_2018_2823901 crossref_primary_10_1109_TSP_2019_2926022 crossref_primary_10_1109_TAC_2012_2209984 crossref_primary_10_1109_TNNLS_2021_3110295 |
Cites_doi | 10.1109/JSAC.2005.843546 10.1016/j.jpdc.2006.08.010 10.1007/s10957-010-9737-7 10.1109/TAC.1986.1104412 10.1109/CDC.2007.4434888 10.1017/CBO9780511755347 10.1007/978-94-015-8937-6_6 10.1109/TAC.2010.2041686 10.1109/TAC.2008.2009515 10.1137/S1052623497331063 10.1137/S0363012995282784 10.1109/TIT.2006.874516 10.1109/TAC.2003.812781 10.1109/TSP.2009.2016247 10.1080/17442508308833246 10.1109/INFCOM.2009.5062275 10.1007/978-93-86279-38-5 10.1137/080726380 10.1109/TSP.2008.2007111 10.1109/TAC.2004.834113 |
ContentType | Journal Article |
Copyright | 2015 INIST-CNRS |
Copyright_xml | – notice: 2015 INIST-CNRS |
DBID | 97E RIA RIE AAYXX CITATION IQODW |
DOI | 10.1109/TAC.2010.2079650 |
DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Pascal-Francis |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Applied Sciences |
EISSN | 1558-2523 |
EndPage | 1351 |
ExternalDocumentID | 24265172 10_1109_TAC_2010_2079650 5585721 |
Genre | orig-research |
GroupedDBID | -~X .DC 0R~ 29I 3EH 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IAAWW IBMZZ ICLAB IDIHD IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P RIA RIE RNS TAE TN5 VH1 VJK ~02 AAYOK AAYXX CITATION RIG IQODW |
ID | FETCH-LOGICAL-c293t-f21cf94a26ae50919487dbc8287f2ec949af8e2aed63f78d5e429c78a8963a3c3 |
IEDL.DBID | RIE |
ISSN | 0018-9286 |
IngestDate | Mon Jul 21 09:18:01 EDT 2025 Thu Apr 24 23:03:23 EDT 2025 Tue Jul 01 01:11:39 EDT 2025 Wed Aug 27 02:52:15 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | Almost sure convergence Probabilistic approach distributed multi-agent system Bounded error Interconnected power system Error bound Network management Distributed system Communication network Set constraint Convex programming random broadcast network Value function Multiagent system Asynchronous algorithms Broadcasting Wireless network convex optimization Convex function Objective function Artificial intelligence Asynchronous transmission |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c293t-f21cf94a26ae50919487dbc8287f2ec949af8e2aed63f78d5e429c78a8963a3c3 |
PageCount | 15 |
ParticipantIDs | crossref_citationtrail_10_1109_TAC_2010_2079650 ieee_primary_5585721 pascalfrancis_primary_24265172 crossref_primary_10_1109_TAC_2010_2079650 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2011-06-01 |
PublicationDateYYYYMMDD | 2011-06-01 |
PublicationDate_xml | – month: 06 year: 2011 text: 2011-06-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | New York, NY |
PublicationPlace_xml | – name: New York, NY |
PublicationTitle | IEEE transactions on automatic control |
PublicationTitleAbbrev | TAC |
PublicationYear | 2011 |
Publisher | IEEE Institute of Electrical and Electronics Engineers |
Publisher_xml | – name: IEEE – name: Institute of Electrical and Electronics Engineers |
References | ref31 ref11 ref32 borkar (ref26) 2008 lobel (ref13) 2008 ref2 tsitsiklis (ref15) 1984 ref17 nedi (ref10) 2008 ref19 ref18 ram (ref12) 2010; 147 johansson (ref1) 2008 billingsley (ref29) 1979 ref23 xiao (ref21) 2007; 67 ref25 ram (ref7) 2009 ref20 ref22 ermoliev (ref24) 1988 bertsekas (ref16) 1997 ref27 ref8 ref9 ref4 ref3 ref6 bertsekas (ref28) 2003 nedi (ref14) 2010 ram (ref5) 2010 polyak (ref30) 1987 |
References_xml | – ident: ref3 doi: 10.1109/JSAC.2005.843546 – year: 1979 ident: ref29 publication-title: Probability and Measure – volume: 67 start-page: 33 year: 2007 ident: ref21 article-title: Distributed average consensus with least mean square deviation publication-title: J Parallel Distrib Comput doi: 10.1016/j.jpdc.2006.08.010 – volume: 147 start-page: 516 year: 2010 ident: ref12 article-title: Distributed stochastic subgradient projection algorithms for convex optimization publication-title: J Optimiz Theory and Applic doi: 10.1007/s10957-010-9737-7 – ident: ref17 doi: 10.1109/TAC.1986.1104412 – ident: ref2 doi: 10.1109/CDC.2007.4434888 – start-page: 4177 year: 2008 ident: ref10 article-title: Distributed subgradient algorithms and quantization effects publication-title: Proc 47th IEEE Conf Decision and Control – start-page: 141 year: 1988 ident: ref24 publication-title: Numerical techniques for stochastic optimization – year: 1987 ident: ref30 publication-title: Introduction to Optimization – year: 1984 ident: ref15 publication-title: Problems in decentralized decision making and computation – year: 1997 ident: ref16 publication-title: Parallel and Distributed Computation Numerical Methods – year: 2003 ident: ref28 publication-title: Convex Analysis and Optimization – ident: ref32 doi: 10.1017/CBO9780511755347 – year: 2008 ident: ref13 publication-title: Distributed subgradient methods over random networks – ident: ref31 doi: 10.1007/978-94-015-8937-6_6 – ident: ref11 doi: 10.1109/TAC.2010.2041686 – ident: ref9 doi: 10.1109/TAC.2008.2009515 – ident: ref25 doi: 10.1137/S1052623497331063 – year: 2008 ident: ref1 publication-title: On Distributed Optimization in Networked Systems – year: 2010 ident: ref5 publication-title: Sensor Networks When Theory Meets Practice – start-page: 340 year: 2010 ident: ref14 publication-title: Convex Optimization in Signal Processing and Communications – ident: ref18 doi: 10.1137/S0363012995282784 – start-page: 3581 year: 2009 ident: ref7 article-title: Asynchronous gossip algorithms for stochastic optimization publication-title: Proc 48th IEEE Conf Decision and Control – ident: ref27 doi: 10.1109/TIT.2006.874516 – ident: ref19 doi: 10.1109/TAC.2003.812781 – ident: ref6 doi: 10.1109/TSP.2009.2016247 – ident: ref23 doi: 10.1080/17442508308833246 – ident: ref4 doi: 10.1109/INFCOM.2009.5062275 – year: 2008 ident: ref26 publication-title: Stochastic Approximation A Dynamical Viewpoint doi: 10.1007/978-93-86279-38-5 – ident: ref8 doi: 10.1137/080726380 – ident: ref22 doi: 10.1109/TSP.2008.2007111 – ident: ref20 doi: 10.1109/TAC.2004.834113 |
SSID | ssj0016441 |
Score | 2.5051258 |
Snippet | We consider a distributed multi-agent network system where each agent has its own convex objective function, which can be evaluated with stochastic errors. The... |
SourceID | pascalfrancis crossref ieee |
SourceType | Index Database Enrichment Source Publisher |
StartPage | 1337 |
SubjectTerms | Applied sciences Artificial intelligence Asynchronous algorithms Clocks Computer science; control theory; systems Computer systems and distributed systems. User interface Convergence convex optimization distributed multi-agent system Exact sciences and technology Markov processes Optimization random broadcast network Sensors Software Symmetric matrices |
Title | Asynchronous Broadcast-Based Convex Optimization Over a Network |
URI | https://ieeexplore.ieee.org/document/5585721 |
Volume | 56 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NS8MwFA9zJz34NcX5MXLwItitS7-Sk8zhGMK2ywa7lTRJL-omtgX1r_e9pitTRLwV2pTw3kt-v5e8D0KudWDcvgLjTUMBDgoAkiN1qB2ljBtJj6UyweTkyTQcL_zHZbBskNs6F8YYUwafmS4-lnf5eq0KPCrrBcBtI8wa3wHHzeZq1TcGiOt214UFzHh9JemK3nwwtDFczI1EiBn2WxBU9lTBiEiZgVBS281iC2JGB2SymZyNLHnqFnnSVZ8_6jb-d_aHZL_imnRgjeOINMzqmOxtVSBskbtB9rFSWCB3XWQUfHKplcxy5x7ATdMhhqS_0xlsKy9Vviadge1TSac2fPyELEYP8-HYqXoqOAqAPXdS1lep8CULpUGuIMBh0YnCsvcpM0r4QqbcMGl06KURB1UCYKmISw4rVXrKOyXN1XplzggF5bK-NhIIhfI19zhuBhH8WEsehFq1SW8j5lhVBcex78VzXDoerohBMTEqJq4U0yY39YhXW2zjj29bKOL6u0q6bdL5psn6PVKRANja-e_jLsiuPS3G85VL0szfCnMFdCNPOqWdfQHbldDT |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1LT8JAEJ4gHtSDLzTiA_egBw-FsqWvgzGAGlCBCybe6rK7vahgaInib_Gv-N-c7ZYGjfFm4q1Ju5t25-vMN7vzADgStjSrHMEbOj46KGiQDCYcYXAuTZdZNGQDlZzc6Tqt29rVnX2Xg_csF0ZKmQSfybK6TM7yxYhP1FZZxUZuix5LGkJ5Lacv6KBFp-1zlOYxpZcX_WbLSHsIGBwNWWyEtMpDv8aow6SyjT4SdDHgqsx7SCX3az4LPUmZFI4Vuh6-Oipo7nrMQ2Qyi1s47wIsIs-wqc4Oy84oFJPQeh5VBvWyQ1DTr_TrTR01Rk3Xd1RO_5zRS7q4qBhMFqEYQt0_Y86oXa7Bx2w5dCzLQ3kSD8r87VulyP-6XuuwmrJpUtfw34CcHG7CylyNxQKc1aPpkKsSwKNJRBrjEROcRbHRQPMtSFMF3b-SHirOpzQjlfTw7yaMdHWA_Bbc_skXbEN-OBrKHSAIX1oVkiFl4jXhWZ5Sdy5OLJhnO4IXoTITa8DTkuqqs8djkLhWph8gEAIFhCAFQhFOshHPupzIL88WlEiz51JpFqH0BTnZfUW2bOSjuz-PO4SlVr9zE9y0u9d7sKz3xtVu0j7k4_FEHiC5igelBOME7v8aJJ8psy8k |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Asynchronous+Broadcast-Based+Convex+Optimization+Over+a+Network&rft.jtitle=IEEE+transactions+on+automatic+control&rft.au=Nedic%2C+A&rft.date=2011-06-01&rft.pub=IEEE&rft.issn=0018-9286&rft.volume=56&rft.issue=6&rft.spage=1337&rft.epage=1351&rft_id=info:doi/10.1109%2FTAC.2010.2079650&rft.externalDocID=5585721 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9286&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9286&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9286&client=summon |